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Abstract
Modern surveillance systems increasingly  adopt  artificial  intelligence (AI)  for  their  automated reasoning capacities.  While  AI  can save manual
labor and improve efficiency, addressing the ethical concerns of such technologies is often overlooked. One of these AI application technologies
is vehicle re-identification - the process of identifying vehicles through multiple cameras. If vehicle re-identification is going to be used on and
with humans, we need to ensure the ethical and trusted operations of these systems. Creating reliable re-identification models relies on large
volumes of training datasets. This paper identifies, for the first time, limitations in a commonly used training dataset that impacts the research in
vehicle re-identification. The limitations include noises due to writing on images and, most importantly,  visible faces of drivers or passengers.
There is an issue if facial recognition is indirectly performed by these black box models as a by-product. To this end, an approach using an image-
to-image  translation  model  to  generate  less  noisy  training  data  that  can  guarantee  the  privacy  and  anonymity  of  people  for  vehicle  re-
identification is proposed.
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Introduction

Cameras  are  ubiquitous  and  deployed  in  public  areas,
producing large quantities of video data. To get a better under-
standing  of  the  dynamic  traffic  systems,  vehicle  re-identifica-
tion (i.e., vehicle reID or v-reID) can be performed. Each camera
in the road network captures an image of every passing vehicle
and  stores  them  in  a  gallery.  The  cameras  can  have  overlap-
ping  or  non-overlapping  views.  Given  a  query  image,  i.e.,  an
image taken from a vehicle, v-reID aims to re-identify the vehi-
cle  by  finding  its  occurrences  from  the  gallery.  Like  any  deep
learning  model,  a  lot  of  training  data  is  required  for  v-reID
models. Two of the widely used and publicly available datasets
are  VeRi-776[1] and  VehicleID[2].  Although  they  are  commonly
used,  to  the  best  of  our  knowledge,  there  is  no  existing
research that specifically comments on the content and limita-
tions of such datasets.

Artificial intelligence (AI) ethics refers to a framework of ethi-
cal  principles  and  methods  aimed  at  guiding  the  responsible
creation and use of AI technologies[3]. There is no prior research
on ethics regarding v-reID.  We assume that the reason behind
is  that  no humans are  directly  involved in  the re-identification
process.  However,  what  about  humans  being  indirectly
involved?  One  major  issue  is  that  some  faces  of  drivers  and
passengers  in  the  dataset  are  visible.  Because  existing  reID
models  are  black  boxes,  it  is  unknown  what  happens  behind
the  scenes.  In  addition,  we  notice  other  observations  in  the
datasets that may decrease the performance of v-reID models.
This  paper  uses  CycleGAN,  an  image-to-image  translator,  to
tackle these limitations.

While  the  datasets  in  this  paper  have  been  extremely  valu-
able  for  the  v-reID  research,  they  are  not  without  their  limita-
tions. The primary purpose of this paper is to highlight the limi-
tations within commonly used training datasets for  v-reID and
propose  solutions  to  address  these  concerns.  By  identifying
and  addressing  these  limitations,  we  aim  to  promote  safer
research practices and raise awareness about the ethical impli-
cations  of  AI  models  involving  humans.  In  this  way,  we  can
promote safer research, educate our readers, and build a more
human-centered  AI.  This  paper  proposes  the  use  of  existing
image-to-image translation models, such as CycleGAN, to miti-
gate the identified limitations. By employing CycleGAN, we aim
to  train  it  using  two  datasets:  one  containing  the  limitations
present  in  current  datasets  and  another  without  these  limita-
tions.  Through  this  approach,  we  can  generate  images  absent
of the identified limitations. In general, our main contribution is
threefold:  (1)  we  discuss  for  the  first  time  about  the  ethics
involved  in  vehicle  re-identification;  (2)  different  limitations  of
existing and widely used datasets that can impede the perfor-
mance of reID models are discussed, and (3) a method is devel-
oped  to  generate  data  that  is  anonymous  and  respects  the
privacy of drivers and passengers. 

Literature review
 

AI ethics principles
To  ensure  that  AI  is  reliable  throughout  its  lifecycle,  the

Australian Government has proposed eight voluntary AI ethics
principles[4]. If V-reID were to be deployed in public and used in
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multi-camera  vehicle  tracking  and  traffic  surveillance[5],  the
following  considerations,  among  others,  would  need  to  be
prioritised:

• Model: the deep learning models used for v-reID should be
transparent for users and those that are impacted. Users should
comprehend  the  hows  and  whys  of  the  models,  while  the
general  public  should  receive  a  more  accessible  education  on
the AI systems (principle: transparency and explainability).

•  Data:  the  data  collection  and  usage  should  guarantee  the
anonymity  of  drivers  and  passengers,  i.e.,  their  privacy  should
be  protected  and  respected  (principle:  privacy  protection  and
security).  Furthermore,  the  v-reID  model  should  enable  diver-
sity and should not perform any sort of unjustified surveillance
(principle: human-centered values).

To  the  best  of  our  knowledge,  limited  studies  have  been
done  on  re-identification  in  consideration  of  ethical  issues.
Dietlmeier  et  al.[6] anonymized  datasets  by  blurring  faces  on
person reID benchmarks and demonstrated that in doing so did
not compromise the performance of person reID. To introduce
privacy  and  security  in  person  reID,  Ahmad  et  al.[7] solved
person  reID  using  event  cameras.  The  latter  captures  dynamic
scenes  by  responding  to  brightness  changes  only  without
providing any RGB image content. Richardwebster et al.[8] used
saliency maps to help differentiate between individuals that are
visually similar. This helps to better understand the person reID
model's  decisions  and  helps  to  reduce  false  matches  in  high-
stake  reID,  such  as  autonomous  driving,  criminal  justice,  and
healthcare[9]. There is a need to set boundaries or regulations to
ensure a safer practice of v-reID research. 

Limitations of deep learning models
Methods  using  Deep  Neural  Networks  (DNNs),  such  as

Convolutional  Neural  Networks  (CNNs)[10−16],  Recurrent  Neural
Network  (RNNs)[17] and  Transformers[18−22],  have  been  exten-
sively used in v-reID.  Although v-reID has resulted in improve-
ments in performance, these deep learning models still remain
black  boxes.  This  means  that  the  internal  inference  processes
are either unknown or non-interpretable to us[23].

On  one  hand,  some  research  primarily  aims  to  improve  the
performance  of  v-reID  models  using  esoteric  algorithms.
However,  the  outcomes  are  not  useful  for  real-world  applica-
tions  (or  called  open-world  re-identification[24]).  Some  works
have  tackled  the  issue  of  rendering  re-identification  more
explainable  in  the  context  of  persons[25] and  vehicles[19].  Chen
et al.[25] proposed an Attribute-guided Metric Distillation (AMD)
method that learns an interpreter that uses semantic attributes
to explain the results of person reID methods. The interpreter is
capable  of  quantifying  the  contributions  of  attributes  so  that
users can know what attributes differentiate two people. More-
over, it can visualize attention maps of attributes to show what
the most significant attributes are. Our previous work[19] aimed
to render vehicle reID research more digestible. A step-by-step
guide was proposed on how to train  a  reID model,  as  existing
research papers are more complex.

Conversely, people cannot entirely trust the results produced
by these black-box models. A small alteration of an image that
is  undetectable  for  the  human  eye,  can  lead  to  a  DNN  being
confused,  thinking  it  is  something  completely  different[26].
Moreover,  even  though  v-reID  does  not  aim  to  re-identify
people directly, facial recognition can happen as a by-product if
the  training  data  involves  images  of  humans.  This  means  that
data  should  guarantee  the  anonymity  of  people  or  that  deep

learning models should not perform any unknown behind-the-
scenes facial recognition. 

Limitations of vehicle re-identification datasets
With  the  growing  introduction  of  publicly  available  vehicle

large-scale  datasets,  v-reID  has  increased  in  popularity.  Some
publicly available v-reID datasets include:  Comprehensive Cars
(CompCars)[27],  PASCAL  VOC[28],  PKU-VD1  and  PKU-VD2[29],
Vehicle-1M[30],  CityFlow[31],  VERI-Wild[32],  PKU  VehicleID[2],  and
VeRi-776[1].  In  this  paper,  the spotlight  is  on the VehicleID and
VeRi-776 datasets,  due to their relevance as widely recognized
benchmarks  in  the  field  of  v-reID.  Meanwhile,  VehicleID  is  a
large-scale  dataset  with  controlled  views,  VeRi-776  provides
real-world diversity.

The  VehicleID[2] dataset  contains  221,763  images  of  26,267
vehicle  images  captured  by  multiple  real-world  surveillance
cameras  in  a  small  city  in  China,  offering  one  of  the  largest
available  collections  for  v-reID.  This  dataset  focuses  primarily
on front and rear viewpoints. VeRi-776[1] is a vehicle re-identifi-
cation  dataset  which  contains  49,357  images  of  776  vehicles
from  20  cameras.  The  dataset  is  collected  in  the  real  traffic
scenario,  also  in  China.  In  contrast  to  VehicleID,  VeRi-776
presents  a  more  complex  and  realistic  dataset  by  including
varying  environmental  conditions,  such  as  different  times  of
day  and  diverse  camera  angles.  Samples  of  both  datasets  are
shown in Fig. 1.

VehicleID  and  VeRi-776  are  compared  in  terms  of  four  cate-
gories: resolution, privacy, noise, and views. 

Resolution
The images  captured by the different  cameras  are  in  higher

resolution  for  VehicleID  compared  to  VeRi-776.  This  is  impor-
tant for v-reID as every local feature is taken into consideration
when performing the re-identification task. The smallest detail,
such  as  the  size,  shape,  or  color  of  the  windshield  sticker  is
crucial. 

Privacy
Unfortunately, the high resolution has its flaws. In the case of

VehicleID, the faces of drivers and passengers are visible. This is
not privacy-compliant. Fig. 2 shows examples of VehicleID data
where faces are clearly visible when zooming in. This is an issue
if  data  were  leaked  and  distributed,  and  the  faces  of  people,
including  children,  could  be  accessed.  Furthermore,  the  AI
could learn the faces instead of the vehicle features by perform-
ing  facial  recognition  indirectly.  In  the  worst  scenario,  the  AI
could  be  performing  unjustified  surveillance  without  our
awareness. 

Noise
Some  images  in  VehicleID  have  red  writing  on  them,  see

samples in Fig. 2. The writing indicates the timestamp and trip-
related  information.  This  adds  additional  noise  to  the  reID
model  which  can  therefore  impact  its  performance  either  by
thinking that the red writings are essential to the reID process,
or  by  being  confused  and  deducing  that  it  has  nothing  to  do
with vehicles anymore. 

Views
Finally,  VehicleID  is  captured  by  an  unknown  number  of

cameras from two views (e.g. front and back), while the images
in VeRi-776 with the same identity have eight different appear-
ances captured from 20 different camera views. A reID dataset
should preferably contain vehicles from various perspectives. 

Privacy-compliant vehicle re-identification
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Image-to-image translation for vehicle re-
identification

Image-to-image  translation[33] involves  learning  a  mapping
function between two domains X and Y,  to generate an image
from  one  domain  to  another  domain.  Examples  include
converting  images  from  greyscale  to  color,  from  synthetic
objects to real objects, or photos to paintings. In v-reID, image-
to-image  translation  becomes  useful  in  two  cases:  (1)  when
training  data  is  scarce  and  needs  to  be  augmented,  or  (2)
implementing a model that can generalize, i.e., a model that is
trained  on  a  source  dataset X and  then  applied  on  a  target
detest Y,  where X and Y are  of  different  domains.  This  is  also
called  domain  adaptation  (DA)[34].  The  differences  in  domains
can  be  due  to  illumination,  view,  or  environment  changes,  or
different camera networks, types, settings and resolutions.

x ∈ X
y ∈ Y

Let X be  the  source  domain  and Y the  target  domain.  The
goal is  to construct a mapping function from X to Y,  i.e.,  given
an image ,  we want  to  function a  mapping function that
transforms x into .  Traditionally,  image-to-image  transla-
tion  techniques  needed  paired  data.  This  means  that  for  the
same examples in X,  the same examples in Y with the required
modifications  are  provided,  e.g.  a  dog  from  a  certain  position
and a drawing of the same dog in the same position. An exam-
ple  of  paired  image-to-image  translation  is  Pix2Pix[33].  While
paired  image-to-image  translation  produces  great  results,  the
requirement  for  training  data  is  very  limited  and  expensive  to
prepare, or even impossible depending on the field, e.g., v-reID.
As a  consequence,  Zhu et  al.[35] introduced CycleGAN which is
an  approach  to  unpaired  image-to-image  translation  built  on
the Generative Adversarial Network (GAN)[36].

Image-to-image  translation  techniques  have  been  widely
used  in  vehicle  reID[37−40].  Given  an  input  view  of  a  vehicle,
Zhou & Shao[37] generated cross-view vehicle images. Wang et
al.[38] and  Luo  et  al.[40] augmented  their  data  using  image-to-
image  translation  techniques,  such  as  SPGAN[41] and
CycleGAN[35],  while  Zhou  et  al.[39] employed  a  GAN-Siamese
network  to  transform  images  from  day-time  domain  to  night-
time domain, and vice versa. However, to the best of our knowl-
edge, no prior work has tackled the safety issue of the existing
datasets using image-to-image translation thus far.

Existing works transfer image styles to augment their data or
to adapt to the different domains. The above-mentioned short-
comings in terms of noise, views, and privacy for VehicleID can
limit the performance of reID models. To this end, we propose a
method to circumvent these issues related to the dataset.  This
is the very first attempt to tackle this topic. 

Proposed method

{xi}Ni=1 {y j}Mj=1
xi ∈ X y j ∈ Y

CycleGAN  is  an  image-to-image  translation  technique  that
does not require paired examples. This means that the training
data  does  not  need  to  be  related,  i.e.,  CycleGAN  requires  a
source set  and a target set  with no information on
which  matches  to  which .  This  flexibility  makes

 

a b

Fig. 1    Sample images of different vehicle models from (a) the VehicleID and (b) VeRi-776 datasets.

 

a

b

c

Fig.  2    The  pros  and  cons  of  the  VehicleID  dataset:  (a)  visible
faces, (b) noisy red time stamp, (c) only two directions. (The images
were captured in high quality).
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CycleGAN  particularly  well-suited  for  our  task  that  works  with
v-reID  datasets  that  do  not  have  a  direct  one-to-one  relation-
ship.  Additionally,  CycleGAN  has  been  widely  adopted  in
research due to its versatility in applications such as style trans-
fer,  domain  adaptation,  and  data  augmentation.  Its  open-
source  code  is  well-documented  and  easy  to  understand,
making  it  accessible  for  researchers  and  developers  to  imple-
ment and customise.

CycleGAN is constructed using GANs, and GAN is an unsuper-
vised technique that is built on two models: a generator model
and a discriminator model.  As the name suggests,  the genera-
tor  generates  outputs  from the domain,  and the discriminator
receives synthetic data from the generator and the real dataset.
The  discriminator  then  determines  whether  its  input  is  real  or
fake  (generated).  Both  models  are  trained  until  the  generator
has  learned  to  fool  the  discriminator  and  the  discriminator  is
not able to distinguish real from generated data.

{xi}Ni=1 xi ∈ X
{y j}Mj=1 y j ∈ Y

CycleGAN  involves  training  two  GANs,  i.e.,  training  two
generators and two discriminators simultaneously.  Let X and Y
be  two  domains  with  training  samples  ( )  and

 ( ).  The two generators  are G:  X  → Y  and F:  Y  → X .
Generator G tries  to  generate  images G(x) that  look  similar  to
images from domain Y.  Likewise, generator F aims to generate
images F(y) that  look  most  similar  to  images  from  domain X.
The two discriminators are DX and DY , where DY aims to distin-
guish between images {x} in X and the generated images {F(y)},
and DX aims to discern between {y} and {G(x)}.

The overall objective function involved in training consists of
two  adversarial  losses[36] and  a  cycle  consistency  loss[42].  The
adversarial losses are applied to both mapping functions G and
F,  and  match  the  distribution  of  the  generated  images  to  the
data distribution in the target domain:

LGAN (G,DY ,X,Y) = Ey∼pdata(y)

[
log (DY (y))

]
+

Ex∼pdata(x)

[
log (1−DY (G (x)))

]
(1)

LGAN (F,DX ,Y,X) = Ex∼pdata(x)

[
log (DX (x))

]
+

Ey∼pdata(y)

[
log (1−DX (G (y)))

]
(2)

minGmaxDYLGAN (G,DY ,X,Y)

where, x~pdata(x) and y~pdata(y) denote the data distributions of
X and Y,  respectively.  Generator G tries  to  minimize  Eqn  (1),
while  adversary DY aims  to  maximize  it,  i.e.,

.  Similarly,  generator F tries  to

minFmaxDXLGAN (F,DX ,Y,X)
minimize  Eqn (2),  while  the  adversary DX aims  to  maximize  it,
i.e., .

The cycle consistency loss aims to reduce the space of possi-
ble mapping functions, and therefore to encourage G and F to
be  bijections.  Zhu  et  al.[35] illustrated  this  property  with  an
example in translation:  if  a  sentence is  translated from English
to  French,  and  the  output  is  translated  back  to  English  from
French,  the  result  should  be  the  original  sentence[43].  It  indi-
cates that both mapping functions should be cycle-consistent,
i.e., x → G(x) → F(G(x)) ≈ x  (forward cycle consistency) and y →
F(y)  → G(F(y))  ≈  y  (backward  cycle  consistency).  The  cycle
consistency loss is then formulated as Eqn (3):

Lcyc (G,F) = Ex∼pdata(x)

[
∥F (G (x))− x∥1+Ey∼pdata(y)∥G (F (y))− y∥

1

]
(3)

The full objective function is:

L (G,F,DX ,DY ) =LGAN (G,DY ,X,Y)+
LGAN (F,DX ,Y,X)+λLcyc (G,F) (4)

λwhere,  controls  the  relative  importance  of  the  two  objectives.
Finally, the aim is to solve for Eqn (4):

G∗,F∗ = argminG,FmaxDX ,DYL (G,F,DX ,DY ) (5)

Details of CycleGAN are available in Zhu et al.[35].
In  the  context  of  our  work  and  for  the  sake  of  visualization,

Fig.  3 shows  how  CycleGAN  can  be  employed  to  translate
images from the synthetic domain to the real domain, and vice-
versa.  The  two  chosen  datasets  are  unpaired,  i.e.,  the  images
are  captured  at  different  locations  and  times.  This  means  that
we  do  not  have  the  exact  same  correspondence  in  both
datasets.  CycleGAN  consists  of  GAN1,  which  transfers  photos
from  the  real  domain  to  the  synthetic  domain,  and  GAN2,
transferring  images  from  the  synthetic  domain  to  generate
images  from  the  real  domain,  whilst  solving  Eqn  (5).  We  use
CycleGAN  to  transfer  images  from  VehicleID  to  VeRi-776  to
tackle the issues related to privacy, noise, and views mentioned
previously. 

Experiments

CycleGAN  is  trained  on  VeRi-776  and  VehicleID,  and
employed to  transfer  images  from VehicleID to  VeRi-776 style.

 

Real domain

GAN 1

VeRi-776

Synthetic domain

GAN 2

VehicleX

Fig. 3    CycleGAN model architecture transferring between VeRi-776 (real domain) and VehicleX (synthetic domain).
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This  section  presents  the  implementation  details  and  the
results generated from experiments VCGAN-A and VCGAN-B. 

Implementation details
Two experiments have been run using the default settings of

CycleGAN.  Both  were  trained  for  100  epochs  with  an  initial
learning  rate  of  0.0002,  followed  by  200  epochs  with  a  linear
learning rate decay. The default optimiser is Adam[44]. The input
images  were  scaled  to  256  ×  256  pixels  and  each  experiment
was trained on three NVIDIA A100 80GB GPUs.

The difference between the two experiments lies in the train-
ing  size,  as  shown  in Table  1.  VCGAN-A  is  trained  using  the
same  number  of  data  in  both  datasets,  while  VCGAN-B  is
trained using the entirety of both datasets. While a testing set is
not  required  for  the  training  of  CycleGAN,  it  is  beneficial  for
evaluating  the  model's  performance  on  unseen  data.  In  the
next  paragraphs,  examples  from  the  VehicleID  test  set  will  be
used  to  assess  the  performance  of  the  trained  models.  In  the
following  paragraphs,  VCGAN-A  and  VCGAN-B  will  also  be
referred to as 'A' and 'B' respectively for simplicity. 

Observations
The  properties  of  datasets  mentioned  previously  and  how

CycleGAN  addresses  them  are  described  in  this  subsection,
including four categories: resolution, privacy, noise, and views. 

Resolution
The resolution is crucial in the v-reID process. The higher the

visibility  of  the  details,  the  more  discriminant  features  can  be
extracted and can therefore aid the v-reID decision. As we train
CycleGAN  on  transforming  images  from  VehicleID  to  VeRi-776,

which  has  a  decreased  resolution  compared  to  VehicleID,  it  is
only logical that the images output by CycleGAN also present a
lower resolution. This could be problematic depending on what
features get lost. If we do not want to perform any license plate
or facial recognition, losing features related to the license plates,
faces, or camera descriptions, becomes an advantage. However,
if  the  lost  features  include  logos  or  windshield  stickers,  then
this can influence the performance of the v-reID model. 

Privacy
Privacy  is  an  important  factor  that  needs  to  be  addressed.

Even though the reID model is a black box, we need to ensure
that  no  facial  recognition  is  unintentionally  conducted.  As
shown in Fig. 4 (left), we notice that in experiments A and B, the
faces  are  blurred  out,  such  that  they  are  not  visible  anymore.
While the outputs of A are satisfactory, the transformed images
of  B  appear  much  smoother  (look  at  the  windshield,  where
there  are  fewer  'white  strokes').  CycleGAN  can  erase  the  faces
from the windshields. 

Noise
The  model  might  incorporate  the  red  timestamps  in  its  re-

identification  decision.  After  all,  these  timestamps  are  more
noise  than  anything  else.  One  could  circumvent  this  by  crop-
ping  the  image,  such  that  the  timestamps  are  not  visible
anymore.  While  this  would be possible for  some samples,  e.g.,
Fig.  4a (right),  this  wouldn't  work  for  others,  e.g., Fig.  4b–d
(right),  as  a  chunk  of  the  vehicle  would  then  be  cut  out.  The
results look promising when transforming the images using the
trained CycleGAN. The outputs in Fig. 4 (right) for A and B show
that  the  red  writing  is  completely  (Fig.  4a–c right),  or  partially
(Fig. 4d right) erased. 

Views
Finally,  the  cars  in  VehicleID  are  captured  from  two  views

(back and front), while VeRi-776 has more. This characteristic is
visible  in Fig.  5,  where  given  a  vehicle  input  from  the  front,
CycleGAN generates vehicles from different views: side or back.

 

Table 1.    Training data sizes for VCGAN-A and VCGAN-B.

VehicleID VeRi-776

VCGAN-A 37,778 37,778
VCGAN-B 113,346 37,778

 

VehicleID A B VehicleID A B

a

b

c

d

Fig. 4    Left: faces are blurred out, such that the privacy of the driver is ensured; Right: the timestamps in red are (partially) erased.
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CycleGAN managed to erase or blur out the faces of  people
as well as to remove the noisy red timestamps from the images.
This is beneficial as this renders the dataset anonymous as well
as  less  distractive.  On  the  other  hand,  the  resulting  images
are  of  lower  resolution,  and  potential  discriminative  features
get lost. 

Unexpected outcomes
Besides  our  observations,  we  summarize  additional

outcomes that can benefit the research. These outcomes were
unexpected and are worthy of mention. It is worth mentioning
that  this  is  not  an  exhaustive  list,  and  there  might  be  other
elements we failed to notice. 

Background
One  of  the  unexpected  outcomes  is  that  the  background,

such  as  the  lane  or  the  pedestrian  crossing  markings,  were
removed, as shown in Fig. 6 (left). This can aid the v-reID model
in focusing only on the vehicle rather than the background, as
the latter is useless for reID. 

Partial vehicles
Surprisingly,  CycleGAN  handled  cropped  vehicles  well.  As

shown in Fig. 6 (right), it can be observed that even though the
vehicles were partially captured due to their position or camera
glitch, CycleGAN managed to transform the vehicle only. 

I spy with my little eye
CycleGAN saw certain objects in specific types of images that

we  did  not  perceive  with  our  eyes,  as  shown  in Fig.  7.  Some
vehicles  in  red that  were captured from a specific  frontal  view
were transformed into a taxi  (Fig.  7a),  highlighting one poten-
tial  bias  of  the  dataset. Fig.  8a shows  four  images  taken  of
different  taxis.  We  don't  know  the  ratio  of  taxis  and  red  vehi-
cles. However, given the confusion by CycleGAN, the ratio must
be  on  the  higher  end.  VeRi-776  doesn't  have  many  images
captured during the nighttime. Hence, CycleGAN misinterprets
images  that  are  taken  at  night.  Depending  on  the  image,  two
scenarios result: a bush or an abstract image of the vehicle. On
the  one  hand,  when  there  are  some  variations  of  yellow  or
green on the bottom, CycleGAN detects bushes (Fig. 7b). As we

 

Fig. 5    Generated views by CycleGAN.

 

VehicleID A B VehicleID A B
a

b

c

d

Fig. 6    Left: background removal; Right: cropped vehicles still look like vehicles.
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notice,  both  VCGAN-A  and  VCGAN-B  transformed  the  rear
bumper into a bush. This transformation is due to the amount
of  certain  camera  views  in  VeRi-776  where  the  vehicles  are
hidden  behind  bushes,  as  shown  in Fig.  8b,  where  we  notice
the  bushes  on  the  bottom  of  the  images.  On  the  other  hand,
when these yellow patches are absent, CycleGAN struggles and
produces  an  output  that  does  not  make  much  sense  (Fig.  7c).
Finally,  yellow  street  markings  are  transformed  by  CycleGAN
into fences. Referring to Fig. 8a, we can deduce that this behav-
ior  is  due to some camera views that  are positioned such that
these fences are visible. Interestingly enough, CycleGAN added
something  we  did  not  expect:  a  license  plate,  see Fig.  4 (right
(c)), Fig. 5, and Fig. 6. This was unexpected, but could mean that
there  is  a  large  amount  of  data  in  VeRi-776  where  the  license
plates  have  not  been  blackened  out  completely.  Upon  check-
ing,  we  can  verify  this  observation. Fig.  8b clearly  shows  that
some  vehicles  in  VeRi-776  do  not  have  their  license  plates
blackened out.

CycleGAN  transformed  yellow-green  patches  into  bushes,
yellow  markings  into  fences,  added  license  plates,  and  trans-
formed  red  vehicles  into  taxis.  When  the  images  are  taken  at
night,  CycleGAN  produces  outputs  that  do  not  make  much
sense.  Rather  than  being  useful  for  v-reID,  these  observations
show that the source dataset has its drawbacks, notably a lack
of images taken during the night, occluded vehicles by bushes,
and most importantly, license plates that were not removed or
hidden.  This  also  means  that  we  could  go  the  opposite  way,
and  generate  vehicle  images  without  license  plates  or  images
in a night setting.

Multiple potential solutions can be explored to address these
unexpected outcomes that could negatively impact the quality
of  the  generated  dataset.  One  potential  solution  is  to  ensure

that  the  datasets  are  more  diverse;  however,  this  approach
goes  back  to  data  collection,  which  can  be  more  challenging
and  time-consuming.  Another  potential  solution  is  to  apply
preprocessing steps to remove or obscure license plates before
training,  which  would  prevent  the  model  from  adding  them
during transformations. Finally, domain adaptation techniques,
where transformations are more closely aligned with the target
domain  could  be  employed  to  better  control  the  outputs
generated by CycleGAN. 

Qualitative and quantitative comparison
In  this  subsection,  we  compare  VCGAN-A  and  VCGAN-B

quantitatively and qualitatively. 

Qualitative comparison
There is a trade-off between smoothness and details. Images

generated  by  VCGAN-A  fits  its  purpose,  however  VCGAN-B
does a better job overall.  Based on all  the previous figures,  we
deduce that VCGAN-B does a cleaner job in the sense that the
outputs turn out to be smoother and resemble less to synthetic
images  than  of  VCGAN-A.  Furthermore,  referring  to Fig.  9,

 

VehicleID A B

a

b

VehicleID A B

c

d

Fig. 7    I spy with my convoluted eyes: (a) a taxi, (b) a bush, (c) an abstract self portrait, (d) a fence.

 

a

b

Fig. 8    VeRi-776: samples of (a) taxis and yellow fence, and (b) vehicles captured behind bushes and non-blackened out license plates.

 

VehicleID A B

Fig.  9    Comparing  the  two  experiments:  the  outcomes  of  B  are
qualitatively more reliable than A.
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VCGAN-B can produce 'whole' vehicles, while VCGAN-A outputs
a deformed vehicle. 

Quantitative comparison
To  compare  both  experiments  numerically,  we  plot  the

generator,  discriminator,  and  forward  cycle  consistency  losses
(Fig.  10).  While  the  discriminator  and  cycle-consistency  losses
are  decreasing  by  each  epoch,  the  generator  loss  increases
from  epoch  120  on.  This  indicates  that  the  training  of  the
generator and discriminator is imbalanced, with the discrimina-
tor becoming too strong. Compared to VCGAN-A, the discrimi-
nator  loss  and  forward  cycle  consistency  loss  are  lower  for
VCGAN-B.  However,  the  generator  loss  shows  the  opposite
behavior. 

Discussion and conclusions

This  paper  is  the  first-of-its-kind  to  analyze  the  ethical
aspects and limitations of v-reID models as well as widely used
vehicle re-identification datasets. It is found that there is a lack
of  explainable  v-reID  works  and  that  existing  datasets  are  not
privacy  compliant  or  contain  biases  that  can  confuse  v-reID
models.  Due  to  the  black-box  properties  of  deep  neural
networks,  researchers  do  not  understand  the  internal  proce-
dures of how v-reID models perform their reasoning. Hence, we
need to ensure the following: training data should not contain:
(1)  any  face  of  drivers  and  passengers,  to  respect  people's
privacy  and  to  ensure  that  no  indirect  facial  recognition  is
performed, and (2) any artifact in images that do not originate
from  the  source  scene,  to  avoid  confusion  of  the  models.  It  is
found that VehicleID did not respect these characteristics since
some  samples  included  faces  that  were  visible  and  recogniz-
able, and others carried red writing.

To this end, CycleGAN was proposed to transfer images from
VehicleID  to  VeRi-776.  With  the  proposed  method,  we
managed  to  generate  samples  of  vehicle  images  where  faces
were  blurred  out  and  the  red  timestamps  were  removed.  The
experiments  produced  images  that  did  not  resemble  vehicles
anymore or added objects that were not present in the source
image (e.g., bushes, fences, or license plates). These limitations,
however, point out further data bias of VehicleID and VeRi-776
datasets,  such  as  the  lack  of  variety  in  images  or  non-hidden
license plates that should be further investigated.

Using  GAN-based  blurring  offers  advantages  over  simple
resolution reduction by preserving image quality and targeting

specific  areas.  Unlike  resolution  reduction,  which  can  degrade
the  entire  image,  GAN-based  methods  maintain  the  overall
details of the image. Additionally, GANs can precisely target the
face area, leaving other parts of the image, such as the vehicle
itself,  untouched,  which  is  not  possible  with  simple  resolution
reduction.

With  the  introduction  of  generative  models  such  as  Stable
Diffusion1  or  Midjourney  AI2,  vehicle  re-identification  data
generation  could  also  be  improved,  producing  better  results
than the  proposed method.  However,  our  proposed approach
is  more  manageable  and  smaller  in  terms  of  parameters  and
resources that are needed. Furthermore,  it  is  also more afford-
able  compared  to  existing  generative  models  as  no  external
server  is  needed  for  training.  It  should  be  noted  that  both
datasets  are  built  from  images  collected  in  China.  This  makes
these  datasets  a  bit  biased  towards  China  in  terms  of  people,
car  models,  backgrounds,  and direction of  traffic.  Additionally,
this  work  focuses  mainly  on two datasets:  VehicleID and VeRi-
776.  While  we  have  not  specifically  examined  other  v-ReID
datasets  for  similar  problems,  these  limitations  likely  exist  in
them as well.  High-resolution images could potentially  expose
faces, raising privacy issues if not carefully managed.

In future work, additional datasets will be inspected to iden-
tify any further limitations or challenges they may present, and
more  datasets  from  different  countries  and  areas  will  be  used
to  further  validate  the  proposed  method  regarding  efficiency
and  effectiveness.  Furthermore,  it  is  necessary  to  develop
proper  regulations  and  laws  to  ensure  the  legal  use  of  v-ReID
technologies[45]. 
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github.io/VeRi/) and VehicleID (www.pkuml.org/resources/pku-
vehicleid.html).
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