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Abstract
Electric  vehicles  (EVs)  promise  significant  advancements,  including  high  energy  efficiency  and  the  facilitation  of  grid-stabilizing  technologies

such as  vehicle-to-grid.  However,  their  increased adoption introduces  challenges  such as  elevated congestion,  compromised safety,  and grid

instability.  These  challenges  stem  from  differences  in  acceleration  and  deceleration  patterns  between  EVs  and  internal  combustion  engine

vehicles (ICEVs), mismatches between charging station demand and grid supply, and potential cyberattacks on the communications of EVs with

charging stations and local grids. To address these issues, novel mathematical and machine-learning models have been developed. These models

incorporate both simulated and real-world traffic flow data, charging station distribution and utilization data, and in-vehicle energy management

and  driver  assistance  data.  The  outcomes  include  optimally  planned  routes  for  EVs  to  destinations  and  charging  stations,  stabilized  power

distribution  systems  during  peak  hours,  enhanced  security  in  EV-station-grid  communication,  more  energy-efficient  storage  systems,  and

reduced  range  anxiety  for  EV  drivers.  This  paper  systematically  reviews  the  emerging  impacts  of  EVs  on  evolving  transportation  systems,

highlighting  the  latest  developments  in  these  areas  and  identifying  potential  directions  for  future  research.  By  reviewing  these  specific

challenges and solutions, this paper aims to contribute to the development of more efficient and sustainable electrified transportation systems.
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Introduction

Electric vehicles (EVs) are gaining market share over internal
combustion engine vehicles (ICEVs) due to their higher energy
efficiency,  superior  energy  conversion,  regenerative  braking
technology,  and  the  ability  to  support  grid-stabilizing  techno-
logies  like  Vehicle-to-Grid  (V2G)[1−3].  The  transition  from  ICEVs
to  EVs  influences  driver  behavior  and  route  choices[4,5],  there-
by  impacting  transportation  systems.  The  differences  in  accel-
eration and deceleration patterns between EVs and ICEVs raise
concerns regarding congestion and safety[6]. Furthermore, inte-
grating  EVs  into  smart  grids via V2G  technology[1] presents
additional  challenges,  such  as  its  impact  on  urban  mobility.
This paper examines recent advancements in these areas, with
a  particular  focus  on  mathematical  and  machine  learning
models,  and  identifies  critical  gaps  and  future  research
directions.

The  increasing  presence  of  EVs  on  roads  not  only  directly
impacts  traffic  patterns  but  also  interacts  with  smart  grids,
introducing  potential  cyber  vulnerabilities  due  to  extensive
communication  technology  use.  Research  indicates  that  EVs,
whether  alone  or  in  conjunction  with  ICEVs  during  morning
commutes,  can  cause  traffic  congestion[2].  One  study  found
that  a  15%  and  30%  increase  in  EV  usage  led  to  an  8.7%  and
12.1%  annual  rise  in  waiting  periods[7],  respectively,  highlight-
ing the congestion impact of EVs on traditional traffic systems.
However,  other studies have proposed potential  solutions.  For
instance,  separating  traffic  flows  and  implementing  optimal

tolling  could  reduce  the  additional  congestion  caused  by  the
growing market penetration rate (MPR) of EVs[2]. Additionally, a
traffic  control  model  incorporating  traffic  lights  and  a  flow
model  based  on  total  time  spent  has  been  implemented  to
identify  congested areas,  ensuring smoother  traffic  flow,  mini-
mizing  energy  consumption,  and  reducing  emissions[8].  The
adoption  of  micro-mobility  options  for  shorter  trips  has  also
been  suggested.  A  case  study  in  Seattle  (USA)  estimated  that
replacing  a  significant  portion  of  short  car  trips  with  micro-
mobility  options  could  reduce  traffic  congestion  by  up  to
18%[9].

Beyond normal commuting conditions, areas near EV charg-
ing stations are prone to traffic congestion due to factors such
as  the  availability  of  parking  slots,  charging  plugs,  and  charg-
ing rates[7].  Hence,  the positioning,  sizing,  and coordination of
charging  stations  play  crucial  roles  in  mitigating  the  induced
congestion,  which  can  spill  over  to  adjacent  road  networks.
This  issue  is  considered  as  a  multi-dimensional  optimization
problem[10] and was addressed using queueing theory to deter-
mine the optimal number of  charging outlets needed to mini-
mize  wait  times  and  optimize  station  utilization.  Compared  to
concurrent  models,  the  proposed  scheme  demonstrated  a
notable  40%  increase  in  customer  satisfaction  and  a  45%
improvement  in  charging  station  utilization.  A  study  using
queuing theory with an M/M/C model for fast charging stations
(FCS)  indicated  potential  improvements,  showing  a  40%
increase in EV user satisfaction and a 45% boost in FCS utiliza-
tion  through  optimized  allocation  and  sizing[10].  Additionally,
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integrating EVs into smart grids, especially those incorporating
renewable  energy  sources  (RES),  can  alter  charging  patterns,
thereby influencing overall traffic flow by potentially changing
when and where EVs are on the move. Since EVs spend most of
their  time being idle,  they can fulfill  surges  in  energy demand
during peak hours through V2G technology, potentially reduc-
ing  congestion  near  charging  stations  by  encouraging  charg-
ing  during  off-peak  hours  through  lower  electricity  rates  and
through  earning  by  plugging  in  the  vehicles[11−13].  However,
the  increasing  integration  of  EVs  into  smart  grids  also  raises
cybersecurity  concerns.  These  concerns  are  substantiated  by
potential  attacks  on  the  growing  connections  between  EVs,
charging infrastructures, and smart grids[14−16].

Traffic  flow models  are  crucial  for  understanding the effects
of increasing EV market penetration and for finding solutions to
address  these  effects.  Recent  models  have  focused  on  the
unique driving behaviors of EVs compared to traditional ICEVs.
For  example,  the  micro-traffic  model  proposed  by  Xu  et  al.[17]

considered  the  distinct  acceleration  and  braking  patterns  of
EVs  in  both  free-flow  and  stop-and-go  traffic.  Compared  to
behavioral  models,  it  provided  additional  insights  into  vehicle
energy  consumption  in  complex  and  congested  scenarios.  To
direct EVs to their destinations or appropriate charging stations
and  thereby  manage  traffic  congestion,  route  planning  can
serve  as  an  effective  solution.  For  instance,  Sebai  et  al.[18]

proposed  a  scheme  for  planning  EV  routes  that  accounts  for
dynamic  traffic  phenomena,  road  topologies,  and  charging
station locations. This scheme provided predictive flow identifi-
cation  based  on  previous  trajectory  data  to  plot  energy-effi-
cient  maps.  The  algorithm  was  tested  in  real-world  scenarios
and demonstrated efficiency in planning optimal routes for EVs.

In  addition,  Yang et  al.[19] proposed a  microscopic  model  to
simulate the impacts of charging station location on traffic flow
and  charging  load,  subsequently  developing  a  joint  planning
model  that  integrates  real-world  traffic  network  data  with
power distribution planning to balance traffic  assignment and
reduce congestion. Other studies have examined the impact of
EVs on pedestrian safety, finding that they have a higher risk of
collisions  due  to  their  quiet  operation  － 31.5%  higher  in  one
study[20] and up to 30% higher in noisy environments and 10%
higher in quieter ones in another[21].  This suggests that adding
alert sounds to EVs may improve pedestrian awareness[22].

While  traditional  analytical  and  optimization  methods  have
improved  traffic  efficiency,  recent  studies  use  machine  learn-
ing (ML)  to  better  plan  EV routing and charging.  For  example,
Jin et al.[23] used a Deep-Q Network (DQN) in a deep reinforce-
ment  learning  framework  to  optimize  route  planning  in
dynamic  environments.  Another  study  combined  Gaussian
processes  with  optimization  techniques  to  predict  where  to
place charging infrastructure[24]. ML-based schemes for manag-
ing charging demand can also help reduce peak hour conges-
tion by encouraging off-peak charging[25,26]. Additionally, accu-
rately  estimating an EV's  state-of-charge (SoC)  is  important  for
predicting  its  range;  Praveena  &  Manoj[27] developed  a  neural
network model to improve SoC prediction accuracy.

Limited reviews on the impacts of EVs have primarily focused
on addressing challenges such as  range anxiety,  grid stabiliza-
tion,  and  driver  safety  through  innovative  technologies  like
smart  sizing  and  allocation  of  charging  infrastructure,  predic-
tive SoC,  and V2G[28−30].  The present study complements exist-
ing literature in the following ways:

• This paper systematically reviews the impacts of EVs on vari-
ous  aspects  of  the  evolving  transportation  system,  including
travel  behavior,  traffic  congestion,  routing,  and charging plan-
ning,  cybersecurity,  among  others,  with  an  overarching  repre-
sentation shown in Fig. 1.

•  It  provides  a  thorough  summary  and  analysis  of  the  latest
research  advancements  in  traffic  flow  models,  EV-grid  inte
gration,  transportation  safety  and  security,  and  experimental
data  collection,  considering  the  growing  presence  of  EVs  on
the roads.

•  By  reviewing  the  current  state  of  the  field  and  identifying
promising future research directions, this study aims to inspire
new  insights  into  mitigating  the  potential  adverse  impacts  of
widespread EV adoption and enhancing the efficiency and reli-
ability of future transportation systems. 

Impacts of EVs on evolving traffic flow

As  the  MPR  of  EVs  increases,  their  impacts  on  traffic  flow,
charging  infrastructure,  grid  stability,  and  associated  cyberse-
curity  concerns  are  becoming  more  pronounced[7,10,14−16,31].
Figure 2 provides an overview of the impacts of EVs in compari-
son with ICEVs, while the subsequent subsections elaborate on
these  impacts,  highlighting  future  research  directions  to
enhance the efficacy of existing technologies where necessary.
Table  1 familiarizes  the  readers  with  the  list  of  important
acronyms that will be used throughout the subsequent discus-
sions, and Table 2 summarizes the relevant studies that discuss
the impacts of EVs on emerging traffic flow. 

Impacts of EVs on microscopic and
macroscopic traffic flow

Microscopic  and  macroscopic  traffic  flows  exhibit  distinct
characteristics.  Microscopic  flow  examines  individual  vehicle
behavior,  whereas  macroscopic  flow  considers  overall  traffic
dynamics.  EVs  significantly  impact  traffic  flows  at  both  the
microscopic and macroscopic levels due to their  unique accel-
eration and deceleration patterns compared to ICEVs. EVs typi-
cally accelerate faster from a stop, affecting stop-and-go traffic
dynamics.  Although  ICEVs  are  slower  initially,  they  tend  to
accelerate  quickly  to  match  EV  speeds,  potentially  disrupting
the flow in mixed traffic scenarios[6]. Fernandes et al.[32] investi-
gated  the  environmental  and  traffic  performance  implications
of integrating shared, electric, and automated vehicles into the
transportation system. The study developed a simplified model
to  estimate  CO2 and  NOX emissions  at  both  individual  and
system levels. It concluded that, in the context of an increasing
MPR  of  EVs,  these  vehicles  are  notably  more  efficient  at  lower
speeds  compared  to  higher  speeds.  Additionally,  EVs  have
been shown to be energy-efficient due to regenerative braking
and  optimized  part-load  operation  in  congested  urban  condi-
tions,  achieving  up  to  13%  energy  savings  compared  to
ICEVs[33].  The  study  also  indicates  that  EVs  experience  greater
gains  from  congestion  reduction  compared  to  ICEVs,  further
demonstrating their potential for improved efficiency in evolv-
ing traffic scenarios.

In  addition,  Wang  et  al.[2] used  a  microscopic  energy  con-
sumption model to assess the impacts of increased EV MPR on
traffic  congestion,  considering  the  variable  exit  flow  rate  of  a
morning  commute  model.  They  concluded  that  congestion  is
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EVs’ interaction with ICEVs, charging
infrastructure and smart grids
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Fig.  1    The  increasing  adoption  of  EVs  can  pose  challenges  on  the  existing  transportation  network.  These  stem  from  discrepancies  in
acceleration/deceleration  patterns  of  EVs  and  ICEVs,  disparities  between  charging  station  demands  and  grid  supplies,  or  even  from  the
cybersecurity of EVs' internal communication and external communication with charging stations and local grids. The figure on the left shows
possible decision-making points of EVs while being part of a smart grid network. The figure on the top right illustrates a car-following scenario
involving  EVs  based  on  mathematical  modeling.  The  figure  on  the  bottom  right  demonstrates  a  hypothetical  case  of  ML  application  in
determining the optimal route to a charging station.
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Fig. 2    Illustration of the comparative impacts that EVs and ICEVs have on the transportation system. (a) shows two hypothetical values for the
accelerations of EVs and ICEVs. The higher acceleration value of EVs enables them to quickly catch up with the vehicle in front during stop-and-
go traffic, facilitating traffic smoothing. In contrast, ICEVs, with their comparatively slower acceleration, take longer to catch up (d), leading to
ripple effects in traffic wave propagation. (b) illustrates how EVs, through their integration into smart grids and optimal allocation of charging
stations,  may  impact  the  equilibrium  distribution  of  vehicles  on  the  road  (compared  to  (e)).  The  leaf  connected  to  an  electric  plug  symbol
indicates that this approach is environmentally friendly by accommodating renewable energy sources and reducing carbon emissions. While
EVs offer certain benefits to the transportation system, they may be more vulnerable to cyber threats, such as CAN bus attacks and false data
injection attacks, compared to ICEVs (c) and (f), which requires additional safety precautions.
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inevitable  in  mixed  or  all-EV  scenarios.  However,  a  staggered
arrival  time  for  EVs  and  ICEVs  can  mitigate  this,  modeled  by
parameters  like  the  extra  congestion  period  (ECP)  and  total
extra  congestion  delay  (TECD).  Both  ECP  and  TECD  are  elimi-
nated  at  MPR  values  of  approximately  0.718  and  0.836,  res-
pectively.  Moreover,  an  optimal  toll  paradigm,  ensuring  both
EVs  and  ICEVs  spend  the  same  trip  time,  can  eliminate
congestion[2].  In  mixed  traffic  scenarios,  Zhang  et  al.[31]

employed an improved cellular automaton model, considering
the  unique  acceleration  and  deceleration  patterns  of  EVs  and
ICEVs.  This  model  handled  mixed  traffic  better  than  previous
models,  showing  that  increased  EV  penetration  reduces  con-
gestion  and  improves  safety  near  critical  density.  However,  at
high  EV  penetration  rates,  congestion  fluctuates,  and  traffic
safety decreases compared to homogeneous traffic.
 

EV-grid integration: potential impacts on
traffic patterns

This subsection discusses how the interplay between power
systems and EVs can impact the entire transportation network.
An overview of  the main ideas is  illustrated in Fig.  3.  The inte-
gration  of  EVs  and  smart  grids  significantly  affects  traffic
dynamics by altering charging patterns and road availability[34].
Increased EV adoption places additional demand on local grids,
leading  to  instability,  particularly  during  peak  hours  like  early
evening.  This  can  cause  congestion  near  charging  stations,
spilling over to adjacent roads and intersections, affecting over-
all  traffic  flow[35].  Some  additional  studies  have  assessed  the
impact of large-scale EV integration on grid stability and traffic
congestion[35−38]. For example, Tang & Wang[35] concluded that
increased  EV  charging  demand  leads  to  higher  congestion
levels and nodal voltage deviation, particularly during evening
peaks, which are 160% higher than morning peaks. Congestion
near  charging  stations  may  persist  even  with  V2G  due  to
uneven station distribution or off-peak charging demand.

However, the proper integration of EVs with smart grids can
help  mitigate  these  issues.  Acting  as  mobile  energy  storage
systems,  EVs  can  store  renewable  energy  and  supply  it  to  the
grid  during  peak  hours,  thereby  alleviating  extra  demand[12].
V2G technology, supported by predictive control mechanisms,
further  curtails  grid  instability[11].  Tang  &  Wang[35] suggested
nodal time-of-use and traffic congestion pricing to dynamically
shift  EV  loads,  altering  charging  and  driving  behaviors.  Simi-
larly,  the  dynamic  pricing  methodology  proposed  by  Zhou  et
al.[34] can alter the charging trends of EV drivers through hourly
forecasts  of  traffic  flow  and  RES  generated  energies  while
suggesting  optimal  routes  to  various  charging  stations.  This
paradigm  is  also  claimed  to  be  efficient  in  reducing  traffic
congestion  to  some  degree  during  both  peak  and  off-peak
hours.  Complementing  these  studies,  Zhang  et  al.[31] demon-
strated that increasing the MPR of EVs and adopting V2G tech-
nology significantly  improves grid  and EV reliability,  especially
when MPR ranges from 20% to 60%. In addition, Chen et al.[36]

treated the charging network as a cyber-physical system while

 

Table 1.    List of acronyms.

Acronym Full form

QoE Quality-of-Experience
SoC State-of-Charge
SoH State-of-Health
ACC Adaptive Cruise Control

ADAS Advanced Driver Assistance System
CAN Controller Area Network
DQN Deep-Q-Network
DRL Deep Reinforcement Learning
EV Electric Vehicle

FCS Fast Charging Station
GCN Graph Convolutional Network
GPS Global Positioning System
ICEV Internal Combustion Engine Vehicle
MDP Markov Decision Process
ML Machine Learning

MPR Market Penetration Rate
PDS Power Distribution System
RES Renewable Energy Source
RL Reinforcement Learning

V2G Vehicle-to-Grid

 

Table 2.    Impacts of EVs, EV-grid integration, and their cybersecurity on transportation systems.

Study Impact/concern presented Solution proposed (in case of negative impacts)

Zare et al.[6] The differences in acceleration/deceleration patterns
between EVs and ICEVs in stop-and-go traffic lead to
disruptions[6].

Proposed the EVM car-following model to better assess the EV-ACC
behavior in those traffic scenarios, creating future research
opportunities to mitigate the disruption[6].

Wang et al.[2],
Zhang et al.[31]

Whether in a mixed EV or all-EV scenario, congestion
during morning commuting persists[2].

Staggering the arrival times of EVs, or implementing an optimal
tolling paradigm, can help alleviate or eliminate congestion[2].

Fluctuations in congestion and degradation of traffic
safety occurs only at higher EV MPRs[31].

Increased EV penetration reduces congestion and improves safety at
critical density levels[31].

Zhou et al.[8] The integration of EVs and smart grids significantly
affects traffic dynamics by altering charging patterns
and road availability[8].

Dynamic pricing based on hourly forecasts of traffic flow and RES
generated energy can reduce traffic congestion during both peak
and off-peak hours[34].

Mishra et al.[11],
Rizvi et al.[12],
Tang & Wang[35],
Chen et al.[36]

Increased EV charging demand leads to higher
congestion levels and nodal voltage deviations[35].

Nodal time-of-use pricing and traffic congestion pricing can be used
to dynamically shift EV loads[35].

Congestion near charging stations may persist even
with V2G due to uneven station distribution or off-
peak charging demand[35].

EVs can act as mobile energy storage for RES and supply energy to
the grid during peak hours, thereby alleviating excess demand[12].
EV charging can facilitate load balancing by transferring energy
among power grids[36].
Large-scale V2G adoption can promote off-peak charging and peak-
hour discharging, potentially alleviating congestion by altering the
availability of cars on the road[11].

Avatefipour et al.[39],
Acharya et al.[40],
Dey & Khanra[41],
Gunduz & Das[45]

CAN bus attacks[39] can cause accidents; false data
injection attacks can manipulate vital information
such as battery health or charging status[40,41,45].

ML model for CAN bus anomaly detection[39].
Algorithms combining system dynamics knowledge with
measurements[41].

Electric vehicle impacts on transportation systems
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coupling it to the transportation network and smart grid. Then,
an  algorithm  was  proposed  to  schedule  EV  charging  in  a  way
that would balance the load across unbalanced power grids by
transferring  energy  between  them.  Additionally,  widespread
V2G  adoption  is  expected  to  alter  EV  charging  behavior,  pro-
moting off-peak charging to reduce utility  costs  and discharg-
ing during peak hours, potentially earning revenue and alleviat-
ing peak-hour congestion[11]. 

Cybersecurity concerns
EVs,  like  other  vehicles,  use  controller  area  network  (CAN)

bus structures for internal communication[39].  Their integration
into  charging  infrastructure  and  smart  grids  necessitates  fre-
quent  data  exchanges,  posing  cybersecurity  threats  at  various
data  points  within  these  communications[40−42].  This  section
discusses  the  vulnerabilities  inherent  in  these  systems,  the
potential  impacts  of  cyberattacks  on  traffic  flow,  and  explores
viable solutions to mitigate these risks. 

Security vulnerabilities and impacts on traffic flow
The  internal  communication  among  electronic  components

within  an  EV,  similar  to  other  vehicles,  is  facilitated  by  a  CAN
bus. However, the CAN bus protocol lacks message authentica-
tion, making it vulnerable to malicious actors. Attackers access-
ing  the  CAN  bus  can  alter  data  to  manipulate  or  disable  EV
functionalities,  potentially  causing  accidents  or  sudden
changes in driving behavior, significantly impacting traffic flow,
especially  with high EV density[39].  Additionally,  EVs integrated
into smart grids exchange data with charging stations and local
grids  using  protocols  like  ISO  15118  for  station-to-vehicle
communication[43] and  SCADA  (supervisory  control  and  data
acquisition)  for  station-to-grid  monitoring[44].  These  communi-
cations  expose  EVs  to  information  disclosure  and  tampering
during charging. Cyberattacks, such as false data injection, can

manipulate  vital  information  like  battery  health  or  charging
status[40,41,45].  This  can  result  in  grid  instability,  unexpected
charging  delays,  or  stops,  causing  congestion  near  the  charg-
ing stations as other EVs wait in line. 

Potential solutions
The vulnerabilities discussed above underscore the need for

robust  security  measures  to  protect  EVs  and  ensure  smooth
traffic flow. Some exemplary approaches include: 

CAN bus security
The ML model  developed by Avatefipour et  al.[39] is  capable

of  detecting  anomalies  in  the  CAN  bus,  potentially  identifying
and preventing cyberattacks. The authors also developed a bat
algorithm  to  optimize  the  ML  model's  efficiency  and  perfor-
mance, ultimately ensuring better security. 

Charging station security
The risk assessment framework proposed by Shirvani et al.[42] can

address  cybersecurity  concerns at  charging stations through utiliz-
ing  personalized  criteria  and  the  STRIDE  (spoofing,  tampering,
repudiation,  information disclosure,  denial  of  service,  the elevation
of privilege) threat model to evaluate vulnerabilities. 

Smart grid security
The STRIDE threat model[40] can also be used to assess secu-

rity weaknesses in smart grid components and communication
protocols, ensuring standardization across the EV ecosystem. 

Data security
Blockchain  technology[46,47] can  secure  EV  charging  data

exchanges between charging stations and smart grids, making
tampering difficult through timestamped and hashed data lists. 

Attack detection
The dynamic attack detection algoriths developed by Dey &

Khanra[41] overcome  the  limitations  in  existing  static  attack

 

Demand responsive
EV charging rates
(50 kW–350 kW)

Traffic data
extracted to

feed to PDSs

Extra load:
EV discharges

Fig.  3    Illustration of  the interactions  between power  systems and transportation networks,  with  a  primary  focus  on EVs.  Acting as  mobile
energy storage devices, EV integration into power grids can accommodate the uncertainty of renewable energy sources (RES) such as solar and
wind.  This stored energy can be fed back to the power grid during peak energy demands through V2G technology,  thereby facilitating grid
stability. Additionally, charging stations can contribute to grid stability by regulating the charging rates of EVs in a demand-responsive manner.
Furthermore, integrating traffic network data with power distribution network data can optimize FCS allocation and route planning, as well as
dynamically adjust charging schedules to reduce congestion.
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detection  algorithms  by  combining  system  dynamics  know-
ledge and measurements. 

Traffic flow models for EVs: adapting to a new
era

As the MPR of EVs continues to rise[2], and given their unique
driving patterns within mixed traffic environments[6], there is an
urgent  necessity  for  the  development  of  new  traffic  flow
models  that  address  the  issues  and  concerns  posed  by  the
increasing  presence  of  EVs  on  the  roads.  To  this  need,
researchers  are  actively  developing  novel  models  and  adapt-
ing existing models to accommodate the new traffic dynamics
introduced  by  EVs[6,10,17−19,48].  The  following  subsections
discuss the models in detail,  and before diving into the associ-
ated  future  research  directions, Table  3 summarizes  the  main
ideas of these models. 

Strengths and limitations of existing traffic flow
models for EVs

Despite  significant  contributions  from  researchers  in  accu-
rately  modeling  EV-induced  traffic  dynamics  and  providing
measures to mitigate the concerning impacts of the increasing
MPR  of  EVs,  substantial  opportunities  for  improvement  and
adaptation  remain.  The  following  are  some  promising  traffic
flow models, along with their major strengths and limitations. 

EV behavioral model[17]

This  study  introduces  a  detailed  traffic  flow  model  for  EVs,
taking  into  account  their  unique  acceleration  and  deceleration
patterns.  This  approach  is  important  for  better  understanding
how  EVs  behave  in  traffic,  especially  in  congested  situations
where  their  distinct  characteristics  are  most  noticeable.
Although the model shows good performance in heavy traffic, it

behaves  similarly  to  simpler  models  in  free-flowing  traffic.  This
similarity  suggests  that  a  simpler  model  might be just  as  effec-
tive in these conditions, which could be worth investigating. 

EV route planning with real-time traffic prediction[18]

This  study  improves  existing  traffic  flow  models  by  using
real-time data (like incidents and congestion) and road features
(such as slopes) to optimize routes.  Although it  considers real-
time  data  and  factors  affecting  individual  EVs,  it  does  not
account for how EVs interact with overall traffic. Including other
factors like driver behavior, different vehicle types, and weather
conditions could provide a more complete picture of EV traffic
dynamics. 

Bi-level dynamic charging scheduling model[48]

This  study  suggests  a  combined  approach  to  manage  both
traffic  flow  and  power  grid  stability.  By  using  real-time  traffic
data  to  optimize  EV  charging  schedules,  it  aims  to  efficiently
manage charging loads and reduce wait times. The focus is on
day-ahead power system scheduling, but integrating real-time
power  grid  dynamics  could  make  the  model  more  effective.
Since  the  study  uses  a  hypothetical  system,  validating  it  with
real-world data would make the findings stronger. 

Optimal FCS allocation and sizing model[10]

This  study  aims  to  optimize  the  placement  of  FCS  to  maxi-
mize EV user satisfaction and station utilization. It uses a queu-
ing  algorithm  to  determine  the  best  FCS  size,  reducing  user
wait  times.  However,  the  model  does  not  include  traffic  flow
data, limiting its ability to assess how FCS placement and queu-
ing affect overall traffic patterns. 

Traffic-aware joint planning model for FCS[19]

This  study  improves  on  previous  work  by  integrating  traffic
network  data  into  a  combined  planning  model  for  power

 

Table 3.    Traffic flow models to address emerging questions and concerns related to EVs.

Study Model Main ideas

Xu et al.[17] EV Behavioral Model To consider the unique acceleration and deceleration patterns of EVs to better
understand their behavior in congested traffic.

Sebai et al.[18] EV Route Planning with Real-Time Traffic
Prediction

To use real-time data, such as incidents and congestion, along with road
features like slopes, to optimize routes for EVs.

Li et al.[48] By-Level Dynamic Charging Scheduling
Model

To utilize real-time traffic data and day-ahead power system scheduling to
optimize EV charging schedules, thereby efficiently managing charging loads
and reducing wait times.

Guler[10],
Yang et al.[19]

Optimal FCS Allocation and Sizing
Model[10]

To use a queueing algorithm to determine the optimal FCS size that maximizes
EV user satisfaction and station utilization while reducing user wait times[10].

Traffic-Aware Joint Planning Model for
FCS[19]

To improve on the study by Guler[10] by integrating traffic network data into a
combined planning model for PDS and FCS to efficiently balance traffic flow
and reduce congestion[19].

Liu et al.[20],
Karaaslan et al.[21]

Pedestrian Traffic Safety Models[20,21] Liu et al.[20] used a logistic regression model to analyze factors such as
pedestrian traffic and road type, finding that EVs, due to their quiet operation,
are 31.5% more likely to collide with pedestrians or cyclists.
Karaaslan et al.[21], using a simulation model, concluded that EVs are at a 30%
higher risk of colliding with pedestrians in noisy environments and a 10%
higher risk in quieter environments, compared to ICEVs.

Zare et al.[6] Electric Vehicle Model To better assess the EV-ACC behavior in stop-and-go traffic and ultimately to
mitigate the disruptions using these vehicles.

Ozkan et al.[51] Green Wave Control Model To anticipate road traffic, regulate vehicle speed within a predetermined range,
and ultimately reduce energy usage while extending the range of EVs.

He et al.[52] Real-Time Traffic Prediction Model To consider the impacts of lane changing on the evolution of traffic states to
optimally control the speeds of EV eco-driving to maximize energy efficiency.

Li et al.[53] Communication-Efficient Distributed
Pricing Model[53]

To account for uncertainties in RES while simultaneously distributing power
and pricing, and managing traffic flow assignments[53]

Čičić &
Canudas-De-Wit[54]

EV Virtual Power Line Model[54] To dynamically adjust charging prices and rates at charging stations based on
the concept of virtual power lines for EVs[54].

Li et al.[55] Reliability Evaluation Model To accurately describe the spatiotemporal characteristics of PDS that
incorporate microgrids to facilitate the integration of EVs into vehicle-sharing
networks.

Electric vehicle impacts on transportation systems
 

Ahmed & Wang Digital Transportation and Safety 2024, 3(4): 220−232   Page 225 of 232



distribution systems (PDS), and FCS. The method helps balance
traffic flow and reduce congestion. It also tests the results using
real data from two systems, making the model more relevant to
real-world  situations.  However,  it  doesn't  account  for  the
effects  of  new  technologies  like  V2G  on  EV  charging  patterns,
which  could  limit  its  effectiveness  in  infrastructure  that  uses
such technology. 

Pedestrian traffic safety models[20,21]

These studies  examine how adopting EVs affects  pedestrian
safety  using  different  models.  For  example,  one  study  used  a
logistic regression model to analyze factors like pedestrian traf-
fic  and  road  type[20],  finding  that  EVs  are  31.5%  more  likely  to
collide  with  pedestrians  or  cyclists,  possibly  because  they  are
quieter. Another study used simulations to show that EVs have
a  higher  risk  of  pedestrian  collisions  compared  to  ICEVs[21] －
30%  higher  in  noisy  environments  and  10%  higher  in  quieter
ones. However, the crash data in the first study is from 2011 to
2018, which may not reflect recent trends in EV adoption. Addi-
tionally,  neither  study  considers  different  types  of  EVs,  which
might have different noise levels and safety features. 

Adapting models to account for emerging EVs
In  the  microscopic  traffic  simulation  model  presented  in  a

previous  study[17],  particular  focus  was  placed  on  the  unique
acceleration and deceleration patterns exhibited by EVs. This is
a  useful  approach  as  it  enhances  the  understanding  of  EV
behavior  within  traffic  networks,  especially  in  congested
scenarios  where  these  distinctive  characteristics  have  signifi-
cant  implications[17].  With  the  increasing  presence  of  EVs  on
roadways,  the  potential  impact  of  advanced  driver  assistance
systems (ADAS) such as ACC on traffic flow dynamics becomes
more  pronounced.  This  underscores  the  necessity  for  models
that  not  only  account  for  EV-specific  traits  but  also  anticipate
future  ADAS  adoption  trends.  Zare  et  al.[6] developed  an  EVM
that  strides  toward  addressing  these  needs  by  capturing  the
unique behavioral  patterns  of  EVs  compared to  ICEVs.  Beyond
car-following  behaviors  and  ADAS  influences,  maximizing  the
efficiency  of  EVs  is  critical  for  optimizing  traffic  flow  as  their
penetration  rates  grow.  Technologies  such  as  regenerative
braking  are  integral  to  EV  efficiency  enhancements.  For
instance,  Ziadia  et  al.[49] focused  on  strategies  that  optimize
energy  recovery  while  considering  driver  comfort.  Unlike
conventional  approaches  that  solely  aim  to  maximize  energy
capture,  this  study  integrated  naturalistic  regeneration  perfor-
mance aligned with driver behavior preferences. By employing
machine  learning  techniques  to  predict  braking  patterns  and
optimize  deceleration  profiles,  the  approach  enhances  effi-
ciency while maintaining user acceptance. This underscores the
significance  of  incorporating  driver-centric  strategies  along-
side traffic flow modeling to effectively enhance the overall effi-
ciency and integration of EVs in complex traffic scenarios.

Other  innovative  measures  to  enhance  the  efficiency  of  EVs
in mixed traffic scenarios include energy-efficient route choices.
For  example,  Deshpande  et  al.[50] proposed  a  model  that
employs real-time data from traffic lights to guide surrounding
traffic  along  the  most  energy-efficient  trajectories.  This
approach can reduce energy consumption and mitigate range
anxiety in EVs. Similarly, Ozkan et al.[51] developed a green wave
control  strategy,  which  anticipates  road  traffic  and  regulates
vehicle  speed  within  a  predetermined  speed  frame.  This  tech-
nique  can  lead  to  significant  energy  savings  and  ensure  an

extended  range  for  EVs.  In  addition,  lane-changing  behavior
was incorporated into a standard traffic flow model to enhance
traffic  prediction,  thereby  enabling  more  efficient  eco-driving
controls for EVs[52].

In addition, as the MPR of EVs continues to increase, there is a
growing  need  for  integrating  RES  into  smart  grids  to  manage
rising  energy  demand  and  to  alleviate  congestion  near  charg-
ing stations. To address this, Li et al.[53] proposed a data-driven
optimization model that simultaneously distributes power and
pricing  while  managing  traffic  flow  assignments.  This  model
also accounts for uncertainties in renewable energy generation
through  a  robust  optimization  framework.  Additional  innova-
tive  technologies  for  regulating  the  grid  and  shifting  power
transmission  include  virtually  controlled  power  plants  and
power lines. For instance, Čičić & Canudas-De-Wit[54] utilized a
similar  technique  and  proposed  an  EV  virtual  power  lines
concept  to  dynamically  adjust  charging  prices  and  rates  at
charging stations. This approach can modify charging patterns
and reduce peak  demand periods,  thereby alleviating conges-
tion near charging stations.  Finally,  leveraging the potential  of
EVs  in  vehicle-sharing  networks,  Li  et  al.[55] integrated  an
improved  charging  load  model  with  the  Gauss-Markov  mobil-
ity model to accurately describe the spatiotemporal character-
istics  of  PDS  incorporating  microgrids.  This  integration  can
enhance  the  efficiency  of  charging  load  transfer  throughout
the network, further reducing peak demand periods. 

Future research directions

While  the  studies  mentioned  above  have  made  important
contributions to modeling and managing emerging traffic flow
in  the  context  of  EVs,  there  remain  ample  opportunities  for
further  improvement and future research.  For  instance,  the EV
behavioral  model[17] demonstrates  the  effectiveness  of  micro-
scopic  traffic  flow  models  by  considering  unique  EV  accelera-
tion  and  deceleration  patterns.  However,  the  added  com-
plexity  of  these  models  may not  be  necessary  under  free-flow
conditions.  Future  research could  explore  simpler  models  that
achieve similar performance under free-flow traffic while main-
taining a detailed approach for congested scenarios. It is crucial
that  the  models  developed  are  not  oversimplified.  For  exam-
ple,  the  one proposed by  Zare  et  al.[6] only  covers  ACC;  future
studies should consider incorporating more ADAS. Additionally,
this  model  was  tested  only  on  a  simulated  string  of  EVs
equipped  with  ACC.  Further  research  should  investigate  the
model's  performance  in  more  realistic  scenarios,  considering
interactions with non-ACC vehicles, lane changes, and merging
conditions[56].

On the other hand, studies such as the one carried out by Li
et  al.[48] highlight  the  potential  of  combining  traffic  flow  and
power  grid  models.  However,  this  approach  relies  on  day-
ahead  power  system  scheduling,  which  may  not  sufficiently
capture the evolving dynamics of the real grid. Future research
could focus on integrating real-time power grid data for  more
flexible  and  responsive  charging  scheduling  optimization.
Considering  the  potential  of  integrating  traffic  flow  data  with
grid and charging infrastructure data, Yang et al.[19] developed
an  effective  approach  to  incorporate  traffic  flow  information
into  an  integrated  model  for  PDS  and  FCS  planning.  This
approach  ensures  smoother  traffic  flow  while  planning  for
the  necessary  infrastructure.  This  study  paves  the  way  for
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exploring  innovative  technologies  such  as  V2G  systems  to
create a more balanced EV-PDS-FCS ecosystem.

Future  research could  also  explore  how the proposed route
planning algorithm by Sebai  et  al.[18] can be further  expanded
to  incorporate  real-time  charging  station  availability  informa-
tion  for  more  efficient  route  optimization.  Additionally,  the
route planning process could consider individual driver prefer-
ences, such as preferred driving styles or charging priorities, to
add an extra layer of sophistication. While Guler[10] proposed an
approach  for  optimal  FCS  allocation  and  sizing,  it  could  be
enhanced  by  using  the  methodologies  developed  by  Yang  et
al.[19] and  incorporating  microscopic  information  such  as  indi-
vidual driving patterns.

In  addition,  Ziadia  et  al.[49] proposed  a  novel  regenerative
braking  strategy  to  improve  the  overall  efficiency  of  EVs.
However,  it  is  also  important  to  explore  the  integration  of
driver-centric  strategies  like  regenerative  braking  into  existing
traffic flow models for greater efficiency improvements. A simi-
lar approach was proposed by Deshpande et al.[50] to enhance
EV efficiency in mixed traffic scenarios. However, this study did
not  consider  battery  models  and  state-of-health  (SoH)  estima-
tion  in  the  eco-driving  algorithm  to  maximize  battery  effi-
ciency.  Similarly,  the  energy  savings  scheme  of  Ozkan  et  al.[51]

could be further extended by incorporating a battery manage-
ment  system,  and  its  robustness  could  be  examined  across
more diverse scenarios.

Finally, there are numerous opportunities for grid-level opti-
mization to facilitate the integration of EVs and RES into smart
grids  while  minimizing  adverse  impacts.  Although  Li  et  al.[53]

incorporated  a  distributed  pricing  strategy  to  enhance
demand-supply management and optimize traffic  flow assign-
ments, their approach could benefit from considering the opti-
mal  placement  of  charging  stations  to  minimize  congestion
and  maximize  utilization.  Li  et  al.[55] also  made  significant
efforts  to  understand the impact  of  EV sharing on distribution
networks  with  microgrids.  However,  it  would  be  beneficial  to
explore  the  potential  of  implementing  dynamic  pricing

strategies  for  shared  EVs  to  optimize  charging  behavior  and
reduce peak load on the grids. In comparison to these studies,
the  EV  virtual  power  lines  concept  with  its  dynamic  charging
rates and pricing options, as presented by Čičić & Canudas-De-
Wit[54],  shows  considerable  promise.  A  potential  improvement
would be to incorporate traffic management strategies to opti-
mize  EV  routing  and  charging  based  on  dynamic  grid  condi-
tions.  Further  enhancements  could  be  achieved  by  examining
how  dynamic  pricing  and  incentives  affect  EV  driver  behavior
and charging patterns, thus facilitating the optimization of grid
utilization. 

Machine learning applications for optimizing
EV integration into transportation networks

With the rise in EV adoption within traffic networks, there is a
concurrent  increase  in  the  generation  of  real-time  traffic  flow
data[2,23],  presenting  a  unique  opportunity  to  optimize  the
increasingly  diverse  traffic  environment.  ML  models  provide  a
robust framework to leverage this data either independently or
in  conjunction  with  mathematical  models[23−25,57].  In  this  sec-
tion,  we  explore  the  successful  applications  of  ML  in  address-
ing  several  critical  challenges  in  evolving  transportation
systems  involving  EVs:  optimizing  route  planning  for  EVs,
managing  demand  at  charging  stations,  efficiently  managing
energy  use  alleviating  range  anxiety,  and  integrating  automa-
tion  for  smoother  traffic  flow.  Finally, Table  4 provides  a
summary  of  the  key  implementations  of  the  ML  models
discussed in the following three subsections. 

Optimal route planning for EVs
Complementary  to  traditional  methods,  ML  can  take  into

account  factors  such as  real-time traffic  conditions,  availability
of  charging  stations,  and  driver  preferences  when  planning
routes.  For  instance,  Basso  et  al.[58] introduced  an  ML-based
approach  to  address  the  EV  routing  problem.  Their  method
employs  a  Bayesian  model  to  predict  energy  consumption

 

Table 4.    Machine learning applications for optimizing EV integration into transportation networks.

Study ML model used Purpose of the model used

Basso et al.[58,59] Bayesian Model[58] To predict energy consumption variations across different route choices,
enabling the most efficient selection of routes that offer lower energy
consumption and increased reliability[58].

Safe Reinforcement Learning (SRL)[59] To solve the dynamic stochastic EV routing problem through offline learning of
stochastic customer requests and energy consumption, allowing for predictive
and safe online route planning that minimizes energy usage and prevents
battery depletion[59].

Lin et al.[60] Deep Reinforcement Learning (DRL) To solve the EV routing problem with time windows for commercial EV fleets.
Jin et al.[23] Deep Q-Network (DQN) To effectively handle large-scale complex traffic network data and to facilitate

the application of Markov decision processes in route planning problems.
Li et al.[63] Graph Convolutional Network (GCN) To predict charging demand and optimize charger placement and resource

allocation strategies while taking into account the market the market
penetration of EVs.

Zhang et al.[64] Density-Based Spatial Clustering of
Applications with Noise (DBSCAN) and
Artificial Neural Network (ANN)

To facilitate charging infrastructure planning and scheduling through urban
charging load forecasting, considering trip patterns and network
characteristics.

Mohammad et al.[61],
Golsefidi et al.[24],
Abdalrahman &
Zhuang[66],
Chen et al.[67]

Convolutional long short-term memory
(ConvLSTM), Bidirectional ConvLSTM,
and Gaussian Process Regression (GPR)

To capture spatio-temporal features in energy demand data from charging
stations across cities and to predictively expand EV charging infrastructure.

Praveena et al.[27] Artificial Neural Network (ANN) To accurately predict an EV's SoC[27].
Yang et al.[69] To estimate SoH using data directly extracted from EV batteries[69].
Chaoui et al.[68] Deep Reinforcement Learning (DRL) To optimize battery health in EVs by strategically managing the SoC of multiple

energy storage devices to extend battery lifespan.
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variations  across  different  route  choices,  enabling  more  effi-
cient  selection  of  routes  with  lower  energy  consumption  and
increased  reliability.  In  a  subsequent  study,  they  applied  safe
reinforcement learning (RL) to solve the dynamic stochastic EV
routing  problem  (DS-EVRP)[59].  This  approach  incorporates
offline  learning  of  stochastic  customer  requests  and  energy
consumption  through  Monte  Carlo  simulations,  allowing  for
predictive  and  safe  online  route  planning  that  minimizes
energy  usage  and  prevents  battery  depletion.  The  effective-
ness  of  this  approach  is  demonstrated  through  realistic  traffic
simulations, highlighting its potential to enhance the efficiency
and  reliability  of  EV  operations.  Prior  to  Basso  et  al.[59],  a  DRL
framework was developed by Lin et al.[60] to solve the EV rout-
ing  problem  with  time  windows  (EVRPTW)  in  commercial  EV
fleets. Their framework incorporates an attention model, utiliz-
ing a pointer network and graph embedding layer to formulate
a stochastic policy. Training is conducted using policy gradient
with  rollout  baseline,  resulting  in  significant  improvements  in
solving  large-scale  EVRPTW  instances  compared  to  existing
methods.  Given  the  complexity  of  traffic  networks  and  the
volume of  data they generate,  a  route planning approach was
proposed  by  Jin  et  al.[23] using  DQN,  a  DRL  algorithm,  to
dynamically manage MDP in such environments. This approach
aims to optimize route planning while effectively handling the
vast amounts of data originating from traffic networks. 

Demand response management for charging
infrastructure

Building on route planning,  this  section focuses  on how ML
can  enhance  the  optimization  of  charging  infrastructure  by
predicting  EV  demand  based  on  traffic  flow  patterns  and
enabling  flexible  charging  schedules.  For  example,  Moham-
mad  et  al.[61] evaluated  the  Quality-of-Experience  (QoE)  for
public  EV  charging  stations,  which  effectively  assesses  user
satisfaction and optimizes  station utilization.  Such metrics  can
serve  as  inputs  to  ML  models  trained  on  recent  real-world
datasets  to  forecast  long-term  charging  station  loads[62].  Li  et
al.[63] proposed  a  market-based  approach  for  optimal  EV
charger  planning  using  a  multi-relation  graph  convolutional
network  (GCN)  to  predict  charging  demand  and  optimize
charger placement and resource allocation strategies. Zhang et
al.[64] developed an ML model for urban charging load forecast-
ing,  incorporating  trip  patterns  and  network  characteristics  to
optimize  charging  infrastructure  planning  and  scheduling.
Orzechowski et al.[65] introduced a method for medium-term EV
charging  demand  forecasting,  integrating  weather  conditions
and  forecasting  demand  for  multiple  stations  and  the  entire
network.  Mohammad  et  al.[61] proposed  convolutional  long
short-term  memory  (ConvLSTM)  and  bidirectional  ConvLSTM
models to capture spatio-temporal features in energy demand
data  from  charging  stations  across  cities.  Mejdi  et  al.[25] pre-
sented an online grid-level model predictive control system for
predicting  EV  charging  demand  and  mitigating  grid  impacts.
Palaniyappan  &  Vinopraba[26] explored  ML  models  for  short-
term  electricity  consumption  forecasting  and  dynamic  pricing
to manage peak demand. Other studies underscore the poten-
tial  to  integrate  spatiotemporal  data  like  traffic  flow  patterns
into  ML  models  for  improved  demand  forecasting  and  opti-
mized charging strategies[24,66,67]. Finally, to address the escalat-
ing  charging  demand  due  to  the  increasing  MPR  of  EVs,
Golsefidi  et  al.[24] integrated  Gaussian  processes  with

optimization  techniques  to  predictively  expand  EV  charging
infrastructure. 

Energy management and range anxiety mitigation
ML also plays a vital  role in estimating the remaining stored

energy and managing EV battery usage during planned routes,
thereby mitigating range anxiety during travel. Alongside accu-
rately  estimating  the  state-of-charge  (SoC),  maintaining  satis-
factory  battery SoH is  essential  for  ensuring  long-term  EV
performance  and  addressing  range  anxiety  concerns.  For
instance,  Praveena  &  Manoj[27] proposed  a  hybrid SoC estima-
tion model for EVs that integrates machine learning with math-
ematical  modeling.  This  neural  network-based SoC estimation
model  enhances  accuracy  in  predicting  an  EV's SoC,  a  critical
factor  for  estimating  its  driving  range.  Meanwhile,  Chaoi  et
al.[68] introduced a DRL approach for optimizing battery health
in  EVs  by  strategically  managing  the SoC of  multiple  energy
storage  devices  to  extend  battery  lifespan.  Additionally,  Yang
et  al.[69] developed  a  neural  network-based  method  for SoH
estimation  using  data  directly  extracted  from  EV  batteries.
Furthermore,  Yang  et  al.[70] devised  an  ML-based SoH estima-
tion model tailored for real-world EVs, which considers changes
in ohmic internal resistance as a key indicator of SoH degrada-
tion,  thereby  offering  reliable SoH assessment  and  driving
range prediction.

In  addition  to  accurately  identifying  the SoC and SoH of  EV
batteries  using  ML  models,  research  has  investigated  their
connection  with  range  anxiety  among  EV  users,  which  signifi-
cantly  impacts  EV-induced  congestion.  For  instance,  Wang  et
al.[71] demonstrated  that  in-vehicle  information  systems  that
display  the  remaining  EV  range  adjusted  by SoH can  substan-
tially alleviate drivers' range anxiety compared to systems lack-
ing  this  information.  Akasapu  &  Singh[72] further  explored  the
role  of  in-vehicle  information  in  mitigating  range  anxiety  by
proposing  a  method  that  utilizes  current SoC to  suggest  opti-
mal  driving  speeds,  thereby  maximizing  travel  distance.
Beyond examining the effects of SoC and SoH on range anxiety,
studies  have  explored  alternative  approaches  to  address  this
concern.  For  example,  Chakraborty  et  al.[73] introduced  the
peer-to-peer  car  charging  (P2C2)  concept,  enabling  charging
while  in  motion  to  reduce  reliance  on  fixed  charging  stations.
Song  &  Hu[74] focused  on  understanding  driver  behavior  by
employing  an  ensemble  learning  model  to  identify  at  what
battery  level  EV  drivers  typically  recharge  their  vehicles.  The
model  integrates  factors  such  as  traffic  conditions,  charging
station  availability,  and  spatiotemporal  information  of  charg-
ing  events.  Furthermore,  Zhang  et  al.[75] suggested  that  faster
charging  could  potentially  alleviate  anxiety  by  increasing SoC,
although this effect is influenced by variables such as tempera-
ture  and charging station availability.  Hence,  investigating the
underlying  relationships  between  anxiety  and  charging  deci-
sions remains a critical area for further research. 

Collection and utilization of real-world EV data

As  EVs  become  more  prevalent  in  our  transportation
network,  concerns  regarding  their  effects  on  traffic  flow  are
increasingly  being discussed.  An effective  way to  examine the
realistic  impacts  of  EVs is  by leveraging real-world data,  which
can  be  fed  into  appropriate  mathematical  and  machine  learn-
ing  models  to  understand  how  these  models  will  perform  in
EV-integrated  traffic.  To  this  end,  multiple  studies  have  been
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conducted to develop EV data collection methods,  supporting
further research utilizing data from real-world experiments.

Different  approaches  have  been  developed  for  EV  data
collection.  For  instance,  Ziryawulawo  et  al.[76] proposed  a
method  that  utilized  an  in-vehicle  device  to  collect  data  from
the CAN or local interconnect network (LIN) bus and wirelessly
store  that  data  in  an  EV  driving  database  through  general
packet  radio  service  (GPRS)  and  the  internet.  Analysis  of  this
database provided insights into driving patterns, driving cycles,
and  control  strategies  of  EVs  in  real-world  traffic  scenarios.  A
more  recent  study[77] leveraged  the  global  navigation  satellite
system  (GNSS),  GPRS,  and  other  auxiliary  sensors  to  collect  in-
vehicle diagnostic data. This system, with its real-world data on
EV driving patterns, including acceleration, braking, and speed
profiles,  is  useful  for  refining  traffic  flow  models,  leading  to
more accurate traffic simulations and predictions. Additionally,
the  system  can  identify  congestion  points  or  areas  of  high  EV
concentration,  providing  insights  into  optimizing  traffic  signal
timings and suggesting alternative routes.

Range  anxiety  and  charging  infrastructure  remain  critical
barriers  to  widespread  EV  adoption.  To  address  these  chal-
lenges,  significant  efforts  have  been  made  to  understand  and
optimize  EV  usage  patterns.  For  example,  Ping  et  al.[78]

proposed  a  real-time  microscopic  EV  driving  data  collection
method. This method considered microscopic driving phenom-
ena  such  as  instantaneous  speed  and  acceleration,  and  EV
states such as battery SoC. The resulting model showed signifi-
cant  improvements  in  assessing  energy  consumption  during
deceleration,  with  slight  uplifts  during  acceleration  and  cruis-
ing. Zhuang et al.[79] complemented these efforts by collecting
data from a systematic driving setup and developed a method-
ology  for  constructing  representative  urban  driving  cycles,
providing  a  foundation  for  accurate  energy  consumption
modeling.  Additionally,  Svendsen  et  al.[80] collected  energy
consumption data from 201 actual trips of an EV. This data was
then mapped against the actual speed profiles of the EV to gain
insights into how driving behavior impacts battery drainage. To
further  improve  EV  efficiency  and  range,  Zhang  &  Yao[81]

focused  on  collecting  voltage  information  from  individual
lithium-ion  battery  cells,  gathered  through  a  sensing  layer
within the battery pack. The data was then transmitted via the
CAN bus to the central control unit to facilitate monitoring the
health and balance of individual battery cells.

Despite  the  rapid  increase  in  EV  adoption,  there  is  a  lack  of
training  datasets  for  developing  ML  models.  Zhao  et  al.[82]

introduced  physical  rationality  in  data  augmentation  to  ex-
pand  driving  trip  datasets,  thereby  facilitating  data-driven
approaches.  The  study  demonstrated  that  synthesizing  trip
patterns  with  rational  physical  context  leads  to  promising  im-
provements in energy consumption predictions. To address the
charging  infrastructure  challenge,  previous  studies[83,84] have
integrated driving data with charging profiles.  Specifically,  Lee
&  Wu[83] conducted  a  three-year  study  across  eight  European
countries, monitoring the charging and driving patterns of EVs
on  a  monthly  basis.  This  data  is  useful  for  determining  the
appropriate  locations  and  quantities  of  charging  stations  for
future  deployment.  Yang  &  Zhang[84] employed  a  stochastic
modeling approach to generate synthetic EV driving and charg-
ing  profiles  using  real-world  global  positioning  system  (GPS)
data.  This  approach  captures  the  uncertainty  in  EV  behavior
and  facilitates  analyses  of  aggregated  power  demand  and
charging station optimization.

To accurately  assess  the impacts  of  large-scale  EV adoption,
Ma et al.[85] analyzed real-world data from over 40 private EVs in
Beijing  (China).  The  study  examined  factors  such  as  charging
habits, trip distances, and energy consumption to facilitate the
strategic  placement  of  charging  stations  and  assist  in  manag-
ing  the  impact  of  broader  EV  adoption  on  electricity  grids.
Another  study  conducted  in  Shanghai  (China),  a  city  with  one
of  the  highest  numbers  of  EVs,  provided  further  insights  into
the  real-world  driving  behavior  of  EVs[86].  The  experimental
data  revealed  charging  patterns  with  a  peak  around  9:00  PM
and  a  preference  for  urban  charging  spots.  These  insights
are  valuable  for  optimizing  the  placement  of  charging
infrastructure.

In  addition  to  the  optimal  allocation  of  charging  stations,
optimal  route  planning  plays  a  significant  role  in  mitigating
EV-induced  congestion.  Brady  &  O'Mahony[87] presented  a
model  integrated  with  real-world  data  for  energy-efficient
route  planning  for  EVs.  By  predicting  energy  consumption  on
various  roads  and  prioritizing  low-energy  paths,  the  model
offers  a  potential  solution for  optimizing traffic  flow.  The inte-
gration  of  real-world  data  enhances  the  model's  accuracy,
making it a promising tool for future EV route optimization and
congestion mitigation.

Apart  from  optimal  routing,  range  anxiety  is  another  major
concern  for  large-scale  EV  adoption[88,89].  De  Cauwer  et  al.[90]

utilized real-world driving data from electric taxis to develop a
more precise energy consumption prediction model using ML.
The results significantly improve prediction accuracy over tradi-
tional approaches, paving the way for optimized battery sizing,
energy-efficient route planning, and improved charging infras-
tructure  operation.  Motivated  by  both  charging  infrastructure
limitations  and  range  anxiety,  Pevec  et  al.[91] used  real-world
traffic  data  to  develop  a  more  precise  link-level  energy  con-
sumption model for EVs, advancing EV adoption through appli-
cations such as eco-routing systems. 

Conclusions and recommendations

Based on a review of the literature concerning the emerging
impacts  of  EVs  on  evolving  traffic  flow,  as  well  as  the  existing
mathematical  and ML models  aimed at  assessing and mitigat-
ing these impacts, it is evident that the widespread adoption of
EVs will pose challenges for transportation systems with emerg-
ing cyber-physical characteristics. However, with methodologi-
cal  and  technological  advancements,  it  is  possible  to  mitigate
EV-induced  congestion,  stabilize  grid  systems  during  peak
hours, and address associated cybersecurity concerns.

There  is  significant  potential  for  dynamic  electricity  usage
pricing  and  V2G  technology  to  encourage  off-peak  charging,
thereby mitigating both congestion near charging stations and
grid  instability  during  peak  hours.  Further  improvements  in
traffic  conditions  can  be  achieved  through  the  integration  of
real-time  EV  data  into  traffic  management  systems  and  the
development of advanced demand response strategies for EVs.
Additionally,  ML  applications  have  the  potential  to  address
cybersecurity  concerns related to EVs'  internal  communication
and  their  external  communication  with  charging  stations  and
local  grids,  thereby preventing undesired charging delays  and
grid  instabilities.  Overall,  there  are  extensive  opportunities
for  both  mathematical  and  ML  models  to  address  various
EV-related  concerns,  including  route  planning,  demand
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management,  resource  allocation,  and  the  personalization  of
driver assistance systems. 
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