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Abstract
Traffic state data, such as speed, density, volume, and travel time collected from ubiquitous roadway detectors require advanced network level

analytics  for  forecasting  and  identifying  significant  traffic  patterns.  This  paper  leverages  diverse  traffic  state  datasets  from  the  Caltrans

Performance Measurement System (PeMS) hosted on the open benchmark and achieved promising performance compared to well-recognized

spatial-temporal prediction models. Drawing inspiration from the success of hierarchical architectures in various Artificial Intelligence (AI) tasks,

cell  and  hidden  states  were  integrated  from  low-level  to  high-level  Long  Short-Term  Memory  (LSTM)  networks  with  the  attention  pooling

mechanism, similar to human perception systems. The developed hierarchical structure is designed to account for dependencies across different

time scales, capturing the spatial-temporal correlations of network-level traffic states, and enabling the prediction of traffic states for all corridors

rather than a single link or route. The efficiency of the designed hierarchical LSTM is analyzed by ablation study, demonstrating that the attention-

pooling mechanism in both cell and hidden states not only provides higher prediction accuracy but also effectively forecasts unusual congestion

patterns. Data and code are made publicly available to support reproducible scientific research.
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Introduction

Traffic state information is a critical component of advanced
traveler  information  systems  (ATIS),  which  has  been  exten-
sively  used  for  route  guidance  and  mode  choice.  Short-term
traffic  state  (less  than  60-min  time  horizon)  prediction  models
are  essential  for  trip  planning,  as  they  forecast  traffic  condi-
tions in the near future to help users avoid unexpected delays.
Continuous  and  updated  traffic  state  data  enables  mobility
management centers and commercial navigation apps to effec-
tively adjust their forecasts of network congestion for travelers.
From  the  users'  perspective,  predictive  traffic  information  is
used to select routes, travel modes, and departure times based
on  perceived  certainty.  From  the  system  perspective,  predict-
ing  traffic  states  allow  mobility  system  engineers  to  evaluate
the  potential  benefits  of  various  response  strategies  under
different circumstances.

Traffic  conditions  are  influenced  by  the  imbalance  between
traffic  demand and supply,  traffic  control  measures,  accidents,
as  well  as  external  factors  such  as  weather  conditions  and
emergencies.  Traditional  time  series  models  rely  heavily  on
preprocessing and feature engineering, which is advantageous
when the  data  volume is  small.  However,  traditional  statistical
prediction  methods,  with  their  limited  number  of  parameters,
require frequent retraining and are thus inefficient for applica-
tion  across  entire  roadway  networks.  Recurrent  neural  net-
works  (RNNs)  address  these limitations with automatic  feature
extraction  capabilities.  To  mitigate  the  issues  of  gradient
exploding/vanishing,  gated  mechanisms  have  been  proposed

in  popular  RNN  architectures.  The  challenge  of  transportation
spatial-temporal  prediction  lies  not  only  in  complex  temporal
dependencies  but  also  in  capturing  and  modeling  intricate,
nonlocal,  and  nonlinear  spatial  dependencies  between  traffic
conditions at various locations. Graph Neural Networks (GNNs)
tackle  traffic  network-level  prediction  challenges  in  capturing
and  modeling  complex  spatial  dependencies  that  traditional
methods struggle with. However, their ability to learn dynamic
graphs  relies  on  feature  engineering  to  build  different  node/
edge attributes for making informed predictions.

Existing  traffic  prediction  models  using  LSTM  as  the  back-
bone typically employs a stacked architecture without cell-state
and  hidden-state  hierarchical  feature  extraction  capabilities.
We  proposed  a  hierarchical  pooling  module  to  capture  infor-
mation  from  different  time  steps,  akin  to  the  human  per-
ception  system  that  consolidates  low-level  inputs  into  high-
level  abstractions,  enhancing  robustness  and  accuracy.  The
HierAttnLSTM  (Hierarchical-Attention-LSTM)  model  introduces
a  novel  hierarchical  pooling  module  that  distinctly  processes
hidden states and cell states across LSTM layers, enhancing the
capture of  complex temporal  patterns.  Hidden states from the
lower  layer  are  pooled  to  form  new  input  sequences  for  the
upper layer,  enabling multi-scale temporal  processing and the
creation of  higher-level  abstractions.  Uniquely,  the  model  also
pools  cell  states  from both lower  and upper  layers,  facilitating
the integration of long-term dependencies and ensuring crucial
information  is  preserved  across  the  hierarchy,  resulting  in  a
more  robust  and  effective  modeling  of  intricate  temporal
relationships.  This  dual  pooling  mechanism  creates  a  more
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robust connection between the layers, allowing for better infor-
mation  flow  and  more  effective  learning  of  complex  temporal
dependencies.

The  motivation  behind  developing  a  hierarchical  LSTM
model  for  traffic  state  prediction  stems  from  the  observation
that  intelligent  perceptual  tasks,  such  as  vision  and  language
modeling, benefit from hierarchical representations. Features in
successive  stages  become  increasingly  global,  invariant,  and
abstract.  This theoretical  and empirical  evidence suggests that
a  multi-stage  hierarchy  of  representations  can  improve  per-
formance  in  understanding  complex  patterns  and  making
accurate  predictions.  The  hierarchical  attention-pooling-based
LSTM  model  is  designed  to  learn  representations  at  multiple
levels of abstraction. Lower levels of the hierarchy capture local
features  and  dependencies  over  short  time  intervals,  while
higher levels capture more global and long-term patterns. This
design  enables  the  model  to  understand  complex  temporal
relationships, recurring traffic patterns, and other factors affect-
ing traffic states. 

Literature review
 

Traffic forecasting models
The  field  of  traffic  forecasting  has  evolved  significantly  over

the years, reflecting advancements in data analysis and compu-
tational techniques. Initially, traditional statistical methods were
employed to predict traffic patterns, which were built on hand-
engineered  task-specific  parameters  include  linear  regression
methods[1,2],  ARIMA[3,4],  Kalman  filter[5−7],  Hidden  Markov
Models  (HMMs)[8],  and  dynamic  Bayesian  networks[9].  As  tech-
nology progressed, machine learning algorithms gained promi-
nence,  offering  improved  accuracy  and  the  ability  to  handle
more  complex  data.  Machine  Learning  methods  include
Random  Forests[10],  support  vector  regression[11,12],  k-Nearest
Neighbor  (KNN)  Methods[13].  The  congestion  map-based
method[14] combines  historical  data  with  real-time  data  to
predict  travel  time.  The  historical  data  were  classified  with
Gaussian  Mixture  Model  and  K-means  algorithm  to  estimate
congestion propagation using consensual days. Dynamic linear
models (DLMs) were designed[15] to approximate the non-linear
traffic  states.  The  DLMs  assume  their  model  parameters  are
constantly  changing  over  time,  which  is  used  to  describe  the
Spatial-temporal characteristics of temporal traffic data.

The advent of deep learning marked a significant milestone,
with  Convolutional  Neural  Networks  (CNNs)  and  Recurrent
Neural Networks (RNNs) demonstrating remarkable capabilities
in capturing spatial and temporal dependencies in traffic data.
Those  data-driven  approaches  don't  require  location-specific
info  or  strong  modeling  assumptions,  which  can  fit  into  the
constantly  evolving  temporal  data  analysis  techniques.  A
Stacked Auto Encoder (SAE)[16] deep learning method for traffic
flow  prediction  that  leverages  stacked  autoencoders  to  learn
generic  traffic  flow  features,  demonstrating  superior  perfor-
mance  compared  to  traditional  methods.  The  CRS-ConvLSTM
model[17] enhances  short-term  traffic  prediction  by  identifying
critical  road  sections  through  a  spatiotemporal  correlation
algorithm  and  using  their  traffic  speeds  as  input  to  a  Conv-
LSTM  network.  The  DMVST-Net[18] enhances  taxi  demand
prediction  by  integrating  temporal  (LSTM),  spatial  (local  CNN),
and  semantic  views  to  capture  complex  non-linear  spatial-
temporal  relationships  in  large-scale  taxi  demand  data,

outperforming  existing  methods  that  consider  spatial  and
temporal  aspects  independently.  The  Sequence-to-sequence
(Seq2Seq)  RNN-based  approaches  can  go  beyond  the  uni-
variate  forecasting  that  outputs  network  scale  travel  time
prediction.  A  stacked  bidirectional  LSTM[19] for  network-level
traffic forecasting that handles missing values with imputation
units.  Given  the  success  of  the  Attention  mechanism  in  many
fields,  this  study[20] integrated  the  attention  mechanism  with
the LSTM model to construct the depth of LSTM and model the
long-range dependence.

More  recently,  Spatial-Temporal  Graph  Neural  Networks
(GNNs) have emerged as powerful tools for modeling the inher-
ent  network  structure  of  transportation  systems,  while  atten-
tion-based  architectures  have  shown  promise  in  focusing  on
the  most  relevant  features  for  prediction.  DCRNN[21] models
traffic  flow  as  a  diffusion  process  on  a  directed  graph,  captur-
ing  spatial  dependencies  through  bidirectional  random  walks
and  temporal  dependencies  using  an  encoder-decoder  archi-
tecture.  The  Graph  WaveNet[22] architecture  addresses  limita-
tions  in  spatial-temporal  graph  modeling  by  employing  an
adaptive dependency matrix to capture hidden spatial relation-
ships  and  utilizing  stacked  dilated  1D  convolutions  to  handle
long  temporal  sequences.  The  ASTGCN[23] model  enhances
traffic  flow  forecasting  by  incorporating  three  independent
components  to  capture  recent,  daily  periodic,  and  weekly-
periodic dependencies with spatial-temporal attention mecha-
nisms.  The  GCGA[24] addresses  the  real-time  traffic  speed  esti-
mation  problem  with  limited  data,  leveraging  graph  convolu-
tion  and  generative  adversarial  networks  to  effectively  extract
spatial  features  and  generate  accurate  traffic  speed  maps.
STSGCN  model[25] improves  spatial-temporal  network  data
forecasting  by  simultaneously  capturing  complex  localized
spatial-temporal  correlations  and  heterogeneities  through  a
synchronous  modeling  mechanism  and  multiple  time-period
modules.  The  LSGCN[26] framework  enhances  both  long-term
and short-term traffic  prediction by  integrating a  novel  cosAtt
graph attention network with graph convolution networks in a
spatial gated block, combined with gated linear units convolu-
tion.  The  GMAN[27] enhances  long-term  traffic  prediction  by
utilizing an encoder-decoder architecture with multiple spatio-
temporal  attention  blocks  and  a  transform  attention  layer.
SimST[28] replaces  computationally  expensive  Graph  Neural
Networks  (GNNs)  with  efficient  spatial  context  injectors.  This
STPGNN[29] introduces  a  pivotal  node  identification  module,  a
pivotal graph convolution module, and a parallel framework to
effectively  capture  spatio-temporal  traffic  features  on  both
pivotal and non-pivotal nodes.

Researchers  have  also  explored  hybrid  approaches  (e.g.,
DNN-BTF[30],  ST-GAT[31],  Frigate[32]),  combining  different  me-
thodologies to leverage their respective strengths and address
the multifaceted nature of traffic dynamics. Transformer-based
models[33−35],  Reinforcement  Learning[36],  ODE-based[37,38],  and
Generative Adversarial Networks (GANs)[39] were also applied to
spatial-temporal  traffic  forecasting  tasks.  This  ongoing  evolu-
tion reflects the continuous effort to improve the accuracy and
reliability  of  traffic  state  forecasting  models,  crucial  for  effec-
tive traffic management and urban planning. 

Hierarchical spatial-temporal modeling
Hierarchical  deep  learning  architecture  is  a  widely  adopted

framework  for  spatial-temporal  data  analysis,  which  has  been
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applied in many vision and language learning tasks[40]. Inspired
by  the  success  of  pyramid  feature  extraction  in  computer
vision, researchers have tried similar approaches for time series
data modeling and many results have shown great benefits by
employing  multiscale  scheme  for  efficient  video-summariza-
tion  applications.  By  incorporating  temporal  structure  with
deep  ConvNets  for  video  representation  for  video  content
analysis,  Hierarchical  Recurrent  Neural  Encoder  (HRNE)[41] is
proposed  that  can  efficiently  exploit  video  temporal  structure
to  model  the  temporal  transitions  between  frames  as  well  as
the transitions between segments.  The Temporal Shift  Module
(TSM)  was  proposed[42] for  hardware-efficient  video  streaming
understanding.  TSM  model  has  three  main  advantages:  low
latency  inference,  low  memory  consumption,  and  multi-level
fusion.  A  spatial-temporal  action  detection  and  localization
model[43] using a  Hierarchical  LSTM and achieved the state-of-
the-art in spatial-temporal video analysis, which is a basic func-
tional  block  for  a  holistic  video  understanding  and  human-
machine  interaction.  The  multi-resolution  convolutional  auto-
encoder  (MrCAE)  architecture[44] models  the  Spatial-temporal
dynamics  using  a  progressive-refinement  strategy.  A  multi-
scale  convolutional  LSTM  network  (MultiConvLSTM)[45] was
implemented for travel demand and Origin-Destination predic-
tions. Their experiments on real-world New York taxi data have
shown  that  the  MultiConvLSTM  considers  both  temporal  and
spatial  correlations  and  outperforms  the  existing  methods.  A
deep  hierarchical  LSTM  network[46] for  video  summarization
(DHAVS)  extracts  spatial-temporal  features  and  applies  an
attention-based  hierarchical  LSTM  module  to  capture  the
temporal  dependencies  among  video  frames.  Hierarchical
spatial-temporal  modeling  was  explored  in  smart  manufactur-
ing  in  characterizing  and  monitoring  global  anomalies  to
improve  higher  product  quality[47].  The  Hierarchical  Informa-
tion  Enhanced  Spatio-Temporal  (HIEST)[48]prediction  method
improves traffic  forecasting by modeling sensor dependencies
at regional and global levels, using Meta GCN for node calibra-
tion  and  cross-hierarchy  graph  convolution  for  information
propagation.

Vision  and  language  understanding  task  is  deemed  the
benchmark  for  evaluating  progress  in  artificial  intelligence.
Given  the  impressive  performance  of  hierarchical  features
learning in various vision-language understanding applications,
in  the  next  section,  we  propose  a  novel  hierarchical  LSTM
model for the short-term travel time prediction task. Compared
to existing LSTM-based models that only modify the data input
layers  for  feature  extraction;  our  newly  designed  hierarchical
LSTM model breaks the interconnections within the 'black box'
neural  networks.  In  contrast  to  GNN  models,  the  present
method  is  a  plug-and-play  solution  that  requires  no  feature
engineering efforts. 

Methods
 

Preliminary
In this section, the key components and variants of the build-

ing  LSTM  unit  is  briefly  described.  LSTM  is  modified  from  the
vanilla RNN (Recurrent Neural  Network)  model to enhance the
capability  of  long-term  temporal  dependence  for  sequential
feature  extraction.  LSTM  has  shown  great  performance  on
many  language  tasks  or  time-varying  data  modeling.  The

classic  LSTM  cell  has  led  to  several  variants  by  adding  new
modifications,  such as  ConvLSTM[49],  Grid  LSTM[50],  and Eidetic
LSTM[51].  Three  main  gates  were  collectively  used  for
progressively  updating  the  output:  Input  Gate,  Output  Gate,
and  Forget  Gate.  The  key  feature  of  LSTM  is  the  Cell  State,
which  works  as  the  memory  pipe  to  transmit  the  long-term
memory  stored  in  the  previous  state  to  the  current  state.  The
input  and  forget  gates  are  used  as  knobs  to  determine  which
information  needs  to  be  deleted  or  added  to  the  cell  state.
Equation (5) describes how the current cell state adds or forgets
information  with  the  forget  gate  and  the  input  gates.  The
output  gate  takes  the  inputs,  newly  updated  long-term
memory,  and  previous  short-term  memory  to  compute  a  new
hidden state/short-term memory. The LSTM unit model (Fig. 1)
used  in  this  paper  is  iterated  as  follows  (lowercase  for  vectors
(bold) and scalars; uppercase for matrix):

it = σ(Wixxt +bii+Wihht−1+bhi) (1)
ft = σ(W f xxt +bi f +W f hht−1+bh f ) (2)

ot = σ(Woxxt +bio+Wohht−1+bho) (3)
gt = ∅(Wgxxt +big+Wghht−1+bhg) (4)

ct = ft ⊙ ct−1+ it ⊙gt (5)
ht = ot ⊙∅ (ct) (6)

σ
∅

⊙

where, ft is  forget  gate  at  timestamp t, ct is  the  cell  state  at
timestamp t,  and ot is  the  output  gate  at  timestamp t. 
represents a sigmoid operation and  represents tanh activation
function.  is the Hadamard product. W is the weight matrix that
conducts  affine  transformation  on  the  input xt and  hidden  state
ht.  Matrices  are  depicted  with  capital  letters  while  vectors  with
non-capital bold letters. 

Cell and hidden states attention pooling

S l−1
i S l−1

i+k
CS l

n

PS l
n

Figure 2 illustrates the dual attention pooling module, a key
innovation  in  the  hierarchical  LSTM  architecture.  This  module
computes  a  spatial-temporal  representation  of  network  travel
time  over  an  extended  duration,  analogous  to  pooling  opera-
tions in CNNs. The superscript l and l−1 represent layer number.
The subscript i,i+1,...,i+k represents  sequential  inputs.  n−1 and
n  are  timesteps  for  the  upper-layer  LSTM.  The  process  begins
with  input  states  from  the  lower  layer  (  to )  and,
uniquely  for  cell  states,  the  upper  layer  ( ,  shown  by  the
dashed  red  line).  Each  input  undergoes  an  affine  transforma-
tion,  followed  by  a  softmax  operation  to  generate  adaptive
weights.  These  weights  are  then  used  to  create  a  weighted
combination  of  the  original  states,  producing  the  final  Pooled
State ( ). This mechanism effectively increases the temporal
receptive  field  by  creating  a  compact  representation  of  batch
sequential inputs.

While  hidden  states  (solid  paths)  are  processed  using  only
information from the lower layer,  cell  states  (dashed red path)
uniquely  incorporate  information  from  both  the  current  and
previous  layers.  This  dual  approach  allows  the  model  to
balance  the  preservation  of  long-term  dependencies  with  the
creation of  hierarchical  temporal  abstractions.  By  processing a
window  of k time  steps  from  the  lower  layer,  the  module
achieves  temporal  aggregation,  enabling  the  upper  layer  to
capture more complex temporal patterns. The adaptive weight-
ing  through  softmax  allows  the  model  to  focus  on  the  most
relevant information across different time steps and states. This
sophisticated  mechanism  enables  our  hierarchical  LSTM  to
effectively  model  complex  temporal  dependencies  at  various
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scales,  making  it  particularly  suited  for  predicting  network
travel times where patterns may exist at both fine-grained and
coarse-grained temporal resolutions.

A more detailed explanation of its implementation and inte-
gration follows. 

Affine transformation
Each  input  state  (cell  and  hidden)  is  transformed  using  an

affine transformation to compress the information in each state
vector  into  a  scalar  value.  With  an  affine  transformation,  each
cell  state  (CS)  and  hidden  state  (HS)  vector  will  be  converted
into a single number:

uHS l−1
i+t = A f f ine

(
HS l−1

i+t

)
(7)

uCS l
n−1 = A f f ine

(
CS l

n−1

)
(8)

uCS l−1
i+t = A f f ine

(
CS l−1

i+t

)
(9)

CS l
n−1

CS l−1
i+t

where,  the prefix u denotes  a  natural  number  obtained through
Affine  Transformation.  refers  to  the  cell  state  of  the
previous time step in the current layer l.  refers to cell state

HS l−1
i+tof lower layer l−1 at timestep i+t.  refers to a hidden state in

the lower layer l−1, at timestep i+t. 

Softmax weighting

uCS l
n uHS l−1

i+t uCS l−1
i+t

The  transformed  values  are  then  passed  through  a  softmax
function  to  compute  weight  factors.  This  step  determines  the
relative  importance of  each state  in  the pooling process.  After
affine  transformation,  the , ,  and  will  be
sent to Softmax to compute weight factors.

vHS l−1
i+t =

exp
(
uHS l−1

i+t

)
exp(
∑t=K

i=1 uHS l−1
i+t )

(10)

vCS l−1
i+t =

exp
(
vCS l−1

i+t

)
exp
(
uCS l

n−1

)
+
∑t=K

t=1 exp
(
uCS l−1

i+t

) (11)

vCS l
n−1 =

exp
(
uCS l

n−1

)
exp
(
uCS l

n−1

)
+
∑t=K

i=1 exp
(
uCS l−1

i+t

) (12)

where,  the  prefix v denotes  the  weight  factor  for  corresponding
Cell  States  and  Hidden  States  after  Softmax  operation.  The
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Fig. 1    LSTM unit.
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Fig. 2    Attention pooling module for hierarchical LSTM. Note the distinct treatment of cell states (dashed red path) incorporating both layers,
vs hidden states using only the lower layer.
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original  state  vectors  will  be  multiplied  by  their  corresponding
weight  factors  and  summed  to  produce  the  pooled  cell  state
(PCS) and pooled hidden state (PHS) in the next subsections. 

Hidden state attention pooling
The  hidden  states  from  the  lower  layer  LSTM  are  processed

through an attention mechanism to create a pooled represen-
tation:

PHS l
n =
∑t=K

t=1
vHS l−1

i+t *HS l−1
i+t (13)

PHS l
n

vHS l−1
i+t

HS l−1
i+t

where,  is  the  pooled  hidden  state  (PHS)  for  the  nth  time
step of the lth layer.  is the attention weight for the hidden
state at time step i+t of the (l−1)th layer.  is the hidden state
at time step i+t of the (l−1)th layer. K is the number of time steps
considered in the pooling window.

This  pooled  hidden  state  serves  as  the  input  to  the  upper
layer  LSTM,  allowing  it  to  process  a  more  compact  and  infor-
mative representation of the lower layer's output. 

Cell state attention pooling
The  cell  states  from  both  layers  are  pooled  using  a  similar

attention mechanism,  but  with a  critical  difference - the inclu-
sion of the upper layer's previous cell state:

PCS l
n = vCS l

n−1*CS l
n−1+

∑t=K

t=1
vCS l−1

i+t *CS l−1
i+t (14)

PCS l
n

vCS l
n−1

CS l
n−1 vCS l−1

i+t

CS l−1
i+t

where,  is the pooled cell state for the nth time step of the lth

layer.  is the attention weight for the previous cell state of
the lth layer.  is the previous cell state of the lth layer. 
is  the  attention  weight  for  the  cell  state  at  time  step i+t of
the  (l−1)th layer.  is  the  cell  state  at  time  step i+t of
the (l−1)th layer.

This unique pooling of cell  states allows the model to main-
tain long-term dependencies  from the lower layer.  Integrating
this  information  with  the  existing  long-term  memory  of  the
upper layer will create a more comprehensive representation of
the overall temporal context. 

Upper layer LSTM update
The  top  layer  LSTM  is  updated  with PCS and PHS by  the

following equations:
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Integration with multi-layer LSTM
The  integrated  structure  of  the  proposed  HierAttnLSTM

model  is  shown  in Fig.  3.  In  the  present  implementation,  all
spatial  nodes are  processed simultaneously  as  the initial  input
and  generate  predictions  for  all  nodes  across  the  prediction
time window.  For  the hierarchical  structure,  a  dynamic  group-
ing  mechanism  that  adapts  to  the  input  sequence  length  is
employed. The stride for grouping lower layers to higher layers
is  calculated  using  a  custom  function  that  ensures  an  appro-
priate balance between detail preservation and computational
efficiency.

The  lower  layer  LSTM  forms  the  foundation,  processing  the
entire  input  sequence  and  generating  hidden  states  and  cell
states  for  each  time  step.  Building  upon  this,  the  attention
pooling  mechanism  comes  into  play,  applying  its  innovative
approach  to  a  window  of K time  steps  from  the  lower  layer,
while also incorporating the previous cell state from the upper
layer.  This  crucial  step  leads  to  the  upper  layer  LSTM,  which
utilizes the pooled states (PCS and PHS)  as  its  inputs.  By doing
so,  the  upper  layer  effectively  processes  a  more  compact,  yet
information-rich representation of the lower layer's output. This
hierarchical  structure  facilitates  temporal  abstraction,  allowing
the  upper  layer  to  capture  longer-term  dependencies  and
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Fig. 3    Hierarchical Attention LSTM (HierAttnLSTM).
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abstract  temporal  patterns  that  might  be  less  apparent  in  the
lower layer's more granular output.

The bottom layer  processes the entire time sequence,  while
the upper layer computes the pooled hidden states with latent
variables.  The  cell  states  that  represent  the  longer  memories
from both bottom and top layer LSTMs are aggregated by the
attention  pooling  to  generate  new  cell  states  for  top-layer
LSTM.  Following  the  hierarchical  pooled  LSTMs,  the  model
incorporates  a  self-attention  layer  for  dimension  reduction,
further  distilling  the  hierarchically  processed  features.  The
output  from  this  attention  layer  is  then  fed  into  a  fully
connected  layer  for  final  prediction.  This  structure  allows  the
hidden states  from the lower-level  LSTM to  serve  as  new time
sequences  for  the  top-level  LSTM,  while  the  cell  states  of  the
top-layer  LSTM  are  computed  as  a  function  of  both  the  previ-
ous  layer  and  its  own  states.  Through  this  sophisticated  inter-
play  of  layers,  attention  mechanisms,  and  state  handling,  the
HierAttnLSTM model achieves a multi-scale approach to spatial
and  temporal  information  processing,  adeptly  capturing
complex patterns at various levels of abstraction. 

Experiment
 

Dataset
The  dataset  is  collected  from  Caltrans  Performance  Mea-

surement  System  (PeMS),  an  online  system  that  continuously
gathers  real-world  sensor  data,  offering  a  comprehensive  and
up-to-date representation of traffic conditions[52].  PEMS' public
accessibility and widespread use in similar traffic systems allow
for  easy  generalization  of  model  results,  increasing  the  practi-
cal  impact  to  a  broader  range  of  real-world  applications.  The
PeMS-Bay, PeMSD4, and PeMSD8 datasets standardized by the
LibCity[53] benchmark  were  used.  LibCity  aims  to  provide
researchers with a reliable experimental tool and a convenient
development  framework,  ensuring  standardization  and  repro-
ducibility  in  the  field  of  traffic  forecasting.  In  this  study,  the
structure  of  LibCity  atomic  files  were  adopted  and  normaliza-
tion  applied  as  the  primary  preprocessing  step,  without
performing  any  filtering  or  data  imputation.  The  datasets
PEMSD4,  PEMSD8,  and  PEMS-BAY  provides  diverse  traffic  data
for  prediction  tasks.  PEMSD4  covers  307  nodes  over  16,992
timesteps from January to February 2018, with flow, speed, and
occupancy  data.  PEMSD8  includes  170  nodes  over  17,856
timesteps from July to August 2016, also with flow, speed, and
occupancy  data.  PEMS-BAY  is  the  largest,  with  325  nodes  and

52,116 timesteps from January to May 2017, focusing solely on
speed  data.  While  these  publicly  available  datasets  cover  flow
and speed, they lack travel time data, which was addressed by
downloading  an  additional  PEMS-Bay  dataset  for  travel  time
prediction testing from January 2020 to October 2021. 

Data exploratory analysis
Traffic  sensor  data  provides  a  comprehensive  view  of  varia-

tions  in  the monitored area,  revealing clear  patterns  based on
time  of  day,  day  of  the  week,  and  month  of  the  year.  These
insights  can  inform  traffic  management  strategies  and  help
individuals  plan  their  travel  more  efficiently.  The  PEMS-BAY
area  travel  time  data  from  2020  reveals  interesting  patterns
across  different  time  scales.  Monthly  averages  show  relatively
consistent  median  travel  times  throughout  the  year,  with
slightly more variability in the early months and lower times in
the  middle  of  the  year.  The  monthly  data  suggests  some
seasonal effects,  with winter months showing more variability.
This could be due to weather conditions or holiday-related traf-
fic  patterns.  Daily  patterns  demonstrate  clear  rush  hour  peaks
on  weekdays,  with  Friday  evenings  experiencing  the  highest
travel  times.  Weekends  exhibit  a  distinct  pattern  with  less
pronounced  morning  peaks  and  generally  lower  travel  times
compared to weekdays (see Fig. 4).

The main feature of time series is autocorrelation (AC), which
is the correlation for the data with itself at previous timestamps.
It is the assumption of time series forecasting models and helps
us  reveal  the  underlying  patterns.  The  partial  autocorrelation
function (PACF) is similar to the ACF except that it displays only
the correlation between two observations. Additionally, analyz-
ing the ACF and PACF in conjunction is necessary for choosing
the  appropriate  model  for  our  time  series  prediction.  A  very
high  autocorrelation  in  travel  time  data  has  been  identified
after  calculating  autocorrelation  and  partial  autocorrelation
because traffic  conditions 5 min ago will  most  likely  affect  the
current  travel  time.  As  time  increases,  the  correlation  declines
more and more (see Fig. 5). 

Implementation details
A  comprehensive  approach  is  applied  for  hyperparameter

tuning,  systematically  exploring  different  combinations  of
hidden  sizes  (64,  128,  256),  number  of  layers  (2,  3,  4),  and
attention  hops  (2,  3,  4),  among  other  parameters.  For  each
combination,  the  implementation  creates  a  configuration
dictionary with specific model parameters. The training process
is  managed  through  an  executor  configuration  file,  which

 

Fig. 4    Monthly and daily travel time pattern in PEMS district 4 data.
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specifies  key  training  parameters.  The  designed  model  is
trained  on  a  Google  Cloud  A100  GPU,  a  maximum  of  100
epochs with early stopping after 5 epochs of no improvement,
and the use of the Adam optimizer with a MultiStepLR learning
rate  scheduler.  The  configuration  also  sets  up  logging,  model
saving,  and  evaluation  criteria.  This  comprehensive  setup,
implemented  using  the  LibCity  library,  enables  a  systematic
exploration  of  the  model's  hyperparameter  space,  allowing
researchers to identify the most effective configuration for their
specific task while maintaining consistency in the training envi-
ronment and methodology. After completing the hyperparam-
eter  tuning  process,  the  best-performing  model  configuration
was identified with a hidden size of  128,  3 layers,  and 3 atten-
tion  hops.  This  optimal  configuration  likely  provides  the  best
balance of model complexity and performance for the specific
task at hand. Two performance metrics are used to evaluate the
model’s  performance.  Mean  Absolute  Error  (MAE)  is  used  to
measure  model  accuracy.  Root  Mean  Square  Error  (RMSE)  is
sensitive to model stability.

RMS E =

√
1

N*C

∑C

j=1

∑N

i=1

(
T̂i, j (t)−Ti, j (t)

)2
(21)

MAE =
1

N*C

∑C

j=1

∑N

i=1

∣∣∣T̂i, j (t)−Ti, j (t)
∣∣∣ (22)

Ti, j (t) T̂i, j (t)where,  and  are  the  predicted  and  ground  truth
travel  time for  corridor j at  timestamp i. C is  the total  number of
corridors. N is  the  total  number  of  timestamps  in  the  output
window. 

Results
 

Traffic flow prediction
The  performance  of  the  HierAttnLSTM  model  on  both

PEMSD4  (Table  1)  and  PEMSD8  (Table  2)  datasets  demon-
strates significant improvements over existing baseline models
for  traffic  flow forecasting.  Across  all  forecast  horizons  (15,  30,
45,  and  60  min),  HierAttnLSTM  consistently  outperforms  the
other  12  models  in  both Mean Absolute  Error  (MAE)  and Root
Mean  Square  Error  (RMSE)  metrics.  For  PEMSD4,  the  model
achieves  MAE  values  ranging  from  9.079  to  9.168  and  RMSE
values  from  22.574  to  22.884  across  different  time  steps,
substantially outperforming the next best model, AGCRN.

Similarly,  for  PEMSD8,  HierAttnLSTM  shows  remarkable
performance  with  MAE  values  between  8.375  and  9.427,  and

 

Fig. 5    Travel state data autocorrelation analysis.

 

Table 1.    PEMSD4 traffic flow forecasting.

Model
3 step (15-min) 6 step (30-min) 9 step (45-min) 12 step (60-min)

MAE RMSE MAE RMSE MAE RMSE MAE RMSE

HierAttnLSTM 9.079 22.766 8.933 22.574 9.076 22.884 9.168 22.844
AGCRN[55] 18.132 29.221 18.834 30.464 19.377 31.310 19.851 31.965
GWNET[22] 17.692 28.516 18.574 29.888 19.247 30.895 19.956 31.848
MTGNN[54] 17.925 28.837 18.760 30.296 19.349 31.334 20.135 32.510
GMAN[27] 18.790 29.549 19.538 30.805 20.189 31.765 20.865 32.575
STGCN[56] 19.146 30.301 20.133 31.886 20.830 33.056 21.567 34.200
GRU[57] 22.441 36.286 22.506 36.342 22.571 36.415 22.583 36.447
Seq2Seq[58] 22.585 36.475 22.581 36.348 22.762 36.554 23.163 36.988
DCRNN[21] 19.581 31.125 21.467 34.067 23.152 36.665 24.864 39.228
STG2Seq[60] 23.006 35.973 23.251 36.227 23.744 36.822 24.935 38.330
AE[59] 23.999 37.942 24.024 37.990 24.401 38.446 25.025 39.289
ASTGCN[23] 20.530 31.755 22.971 35.033 24.982 38.170 27.495 41.776
TGCN[61] 21.678 34.635 23.962 37.777 26.340 41.045 29.062 44.794

Proposed model results are highlighted in bold.
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RMSE  values  between  20.356  and  22.715.  The  improvements
are  particularly  striking  for  shorter-term  predictions,  with  the
3-step (15-min) forecast showing nearly 50% reduction in MAE
for PEMSD4 and about 38% for PEMSD8 compared to the next
best  models.  These  results  indicate  that  HierAttnLSTM
achieves  state-of-the-art  performance  in  traffic  flow  forecast-
ing,  offering  substantial  gains  in  prediction  accuracy  across
different datasets and forecast horizons. 

Traffic speed prediction
The  results  for  PEMS-BAY  (Table  3)  traffic  speed  prediction

reveal  that  graph-based  models  like  GWNET,  MTGNN,  and
DCRNN  outperforms  the  HierAttnLSTM  model  across  all  fore-
cast horizons.  The variation in the model's performance across
different  scenarios  can  be  attributed  to  preprocessed  and
normalized. Our experiments revealed that the choice of scaler
(e.g.,  0−1  normalization, −1  to  1  normalization,  or  standard
normal  scaling)  can  lead  to  notable  performance  variations.
While HierAttnLSTM shows consistent performance across time
steps,  it  doesn't  match  the  accuracy  of  several  graph-based
models  on  this  complex  dataset.  This  outcome  highlights  a
promising  future  research  direction:  combining  graph  models
with  the  Hierarchical  Attention  LSTM  approach.  Such  a  hybrid

model  could  potentially  leverage  the  strengths  of  both  archi-
tectures,  addressing  the  current  limitations  on  datasets  with
complex  spatial  relationships  and  improving  performance  on
large-scale traffic networks like PEMS-BAY. 

Comparative analysis
The prediction results (Fig. 6) for the PEMSD4 traffic flow data

demonstrate the model's strong performance in capturing both
spatial  and  temporal  patterns  across  325  nodes  and  300  time
steps.  The  error  distribution  (Fig.  7)  shows  a  symmetric,  bell-
shaped  curve  centered  around  zero,  indicating  unbiased
predictions with most errors falling within a small range of −50
to  +50  units.  This  is  further  supported  by  the  visual  similarity
between  the  ground  truth  and  prediction  heatmaps,  which
both  display  consistent  horizontal  streaks  of  higher  intensity
likely representing busier roads or peak traffic times. The differ-
ence heatmap predominantly  shows light  grey areas,  confirm-
ing  the  overall  accuracy  of  the  predictions,  with  only  sporadic
spots  of  light  red  and  blue  indicating  occasional  over- or
under-predictions.  Certain  nodes  exhibit  more  variation  in
prediction  accuracy,  visible  as  horizontal  streaks  in  the  differ-
ence  heatmap,  suggesting  that  some  locations  or  road  types
present greater challenges for the model. Additionally, isolated

 

Table 2.    PEMSD8 traffic flow forecasting.

Model
3 step (15-min) 6 step (30-min) 9 step (45-min) 12 step (60-min)

MAE RMSE MAE RMSE MAE RMSE MAE RMSE

HierAttnLSTM 8.375 20.356 9.204 22.518 9.427 22.715 9.215 22.320
GWNET[22] 13.486 21.615 14.349 23.375 15.039 24.773 15.672 25.855
AGCRN[55] 14.146 22.241 14.962 24.055 15.675 25.445 16.427 26.557
MTGNN[54] 14.001 21.988 14.883 23.624 15.707 24.873 16.583 26.128
STGCN[56] 15.166 23.615 16.188 25.401 16.971 26.556 17.819 27.818
GMAN[27] 15.158 23.021 15.924 24.553 16.725 25.738 17.837 27.141
DCRNN[21] 15.139 23.476 16.619 25.982 17.960 28.009 19.345 30.058
Seq2Seq[58] 19.186 31.220 19.326 31.446 19.618 31.772 19.894 32.117
GRU[57] 19.992 32.276 20.126 32.569 20.274 32.853 20.461 33.200
STG2Seq[60] 18.217 27.334 19.479 29.289 20.432 30.617 21.445 32.130
ASTGCN[23] 16.433 24.878 18.547 27.919 20.357 30.206 22.284 32.706
AE[59] 22.266 35.562 22.209 35.557 22.335 35.696 22.865 36.269
TGCN[61] 17.348 25.934 19.109 28.846 21.007 31.524 23.417 34.694

Proposed model results are highlighted in bold.

 

Table 3.    PEMS-BAY traffic speed forecasting.

Model
3 step (15-min) 6 step (30-min) 9 step (45-min) 12 step (60-min)

MAE RMSE MAE RMSE MAE RMSE MAE RMSE

GWNET[22] 1.317 2.782 1.635 3.704 1.802 4.154 1.914 4.404
MTGNN[54] 1.331 2.797 1.657 3.760 1.831 4.214 1.954 4.489
DCRNN[21] 1.314 2.775 1.652 3.777 1.841 4.301 1.966 4.600
AGCRN[55] 1.368 2.868 1.686 3.827 1.845 4.265 1.966 4.587
STGCN[56] 1.450 2.872 1.768 3.742 1.941 4.140 2.057 4.355
GMAN[27] 1.521 2.950 1.828 3.733 1.998 4.107 2.115 4.321
ASTGCN[23] 1.497 3.024 1.954 4.091 2.253 4.708 2.522 5.172
HierAttnLSTM 2.493 5.163 2.496 5.177 2.779 5.494 2.587 5.340

GRU[54] 2.491 5.204 2.508 5.288 2.535 5.384 2.575 5.510
Seq2Seq[58] 2.443 5.108 2.446 5.144 2.493 5.259 2.581 5.470
AE[59] 2.570 5.302 2.573 5.288 2.627 5.392 2.724 5.608
STG2Seq[60] 2.192 4.231 2.424 4.826 2.604 5.266 2.768 5.650
TGCN[61] 2.633 5.288 2.739 5.525 2.906 5.875 3.103 6.314

Proposed model results are highlighted in bold.
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bright  spots  in  the  difference  heatmap  indicate  occasional
large  errors,  though  these  are  rare.  The  model's  performance
remains  consistent  across  the  entire  time  range,  showing  no
obvious degradation over time.

With a hidden state size of 64, HierAttnLstm(64) maintains a
relatively modest model size of 1.58 MB, shown in Table 4. This
places it  in the middle range of  model  complexities,  compara-
ble  to  GWNET  but  with  superior  performance.  Increasing  the

 

Fig. 6    Spatial temporal traffic flow prediction results compared to ground truth.

 

Fig. 7    Distribution of traffic flow prediction errors.
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hidden state size to 128 results in a larger model (3.08 MB) and
yields  less  than 2% improvement.  This  marginal  gain suggests
that the smaller version (64 hidden states) might be more cost-
effective  for  most  applications.  Notably,  both versions  of  Hier-
AttnLstm outperform the other baselines significantly in terms
of  MSE,  despite  some  models  like  STGCN  having  substantially
larger parameter counts (1,476,003) and model sizes (5.63 MB),
which  indicates  that  HierAttnLstm  achieves  a  better  trade-off
between model complexity and predictive accuracy.
 

Ablation study

In the ablation study, the effectiveness of the proposed Hier-
AttnLSTM model was evaluated against baseline deep learning

models  for  travel  time  prediction.  Additional  data  extracted
from  PEMS-BAY  were  downloaded  with  our  scraping  tool,  as
public  benchmarks  lack  travel  time  prediction  datasets,  the
designed  LSTM  model  was  compared  to  vanilla  LSTM  models
(unidirectional  Stacked  LSTM  and  Bidirectional  Stacked  LSTM)
implemented  without  the  attention  pooling  layer  for  Hidden
and  Cell  States.  The  baseline  models  process  spatial-temporal
input data, with travel time information from all corridors fed at
each  time  step.  This  comparison  aims  to  isolate  the  impact  of
the  Attention  Pooling  Layer  in  our  HierAttnLSTM  model,
demonstrating  its  contribution  to  performance  in  travel  time
prediction tasks.

j {ttT−23
j , ttT−22

j , . . . , ttT
j } j ∈ [1,C]

T +δt ttT+δt
1 , ttT+δt

2 , . . . , ttT+δt
C }

Given  all C corridors  in  the  study  area  and  5-minute  resolu-
tion  data,  the  previous  2-hour  travel  time  records  of  corridor

 are  denoted  as  ( ).  The  deep

learning  model  output  is  the  travel  time  at  future  time  stamp
 for all  corridors { .  The training,  vali-

dation,  and  testing  datasets  were  randomly  generated  with
sample sizes of 12,000 (60%), 4,000 (20%), and 4,000 (20%).

The  present  model  has  shown  considerably  better  predic-
tion  results  than  existing  LSTM-based  travel  time  prediction
results (Table 5). In Fig. 8, sample travel time prediction results
from  different  prediction  horizons  are  presented  for  a  one-
week  period.  Our  proposed  model  demonstrates  significant
advantages  over  two  other  LSTM-based  baselines,  after

 

Table 4.    PEMS-BAY traffic speed forecasting.

Model Parameter count Size (MB)

MSTGCN 169596 0.65
DCRNN 372483 1.42
GWNET 410484 1.57
HierAttnLstm(64) 415107 1.58
ASTGCN 556296 2.12
AGCRN 745160 2.84
HierAttnLstm(128) 806917 3.08
STGCN 1476003 5.63
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Fig. 8    One week travel time prediction samples on self-downloaded PEMS-BAY dataset.
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removing the Hierarchical  Attention Pooling. More specifically,
the HierAttnLSTM can correctly predict the high spikes in travel
time in the extended future,  which is  often the most desirable
functionality  of  a  travel  time  prediction  model.  While  the
comparable  models  tend  to  underestimate  the  unexpected
congestion and fall  short  of  predicting the sudden spikes.  The
hierarchical  attention  pooling  enhanced  the  spatial-temporal
receptive  fields  of  different  levels  of  LSTM  units,  which
augmented  the  model's  capacity  for  capturing  unusual  traffic
patterns.  The result  indicates that adding hierarchical  informa-
tion  with  attention  pooling  to  distill  the  cell  states  of  LSTMs
could successfully improve the travel time forecasting accuracy. 

Conclusions

The  ability  to  learn  hierarchical  representations  automa-
tically  from  the  data  makes  the  Hierarchical-Attention-LSTM
traffic  state  prediction  model  a  powerful  tool  for  developing
accurate  and  robust  travel  information  prediction  systems.
From the model design perspective,  this  paper adds hierarchi-
cal  feature  pooling  to  the  multi-layer  LSTM  and  demonstrates
superior  prediction  accuracy.  The  proposed  Cell  and  Hidden
states  pooling  architecture  ensures  that  only  important  fea-
tures are forwarded from lower to higher layers, mimicking the
multiscale  information  abstraction  of  the  human  brain  and
adaptable to other spatial-temporal learning tasks. The present
approach  redesigns  the  internal  structure  of  multi-layer  LSTM
by  introducing  attention-pooling,  which  allows  the  model  to
better  focus  on  relevant  information  through  novel  attention-
pooling modules. The attention mechanism selectively empha-
sizes or downplays hidden and cell states based on their impor-
tance for  predictions,  comprehensively  leveraging information
stored  in  LSTM  cells  and  improving  retention  of  important
contextual information over time.

Importantly,  the  model  was  tested  on  different  traffic  state
prediction tasks: traffic flow, speed, and travel time, using both
publicly  accessible  datasets  and  our  scraped  dataset.  This
comprehensive  evaluation  demonstrates  the  model's  versa-
tility  and  effectiveness  across  various  traffic  prediction
challenges. Furthermore, a thorough analysis through ablation
studies  was  conducted,  clearly  demonstrating  the  effective-
ness of adding Dual Pooling to multilayer LSTM. This validation
reinforces  the  key  innovation  of  the  present  approach  and  its
contribution  to  improved  performance.  Testing  results  show
the proposed model  exhibits  the capability  to  predict  unusual
spikes  in  travel  time  caused  by  traffic  congestion.  This  crucial
finding  indicates  better  generalization  to  unseen  data  and
more reliable predictions in real-world scenarios.

For  future  research,  exploring  additional  roadway  informa-
tion  with  Graph-based  methods  could  further  enhance  the
translation  of  multi-source  data  inputs  into  more  abstract

representations, potentially leading to even more accurate and
robust traffic prediction systems. 
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