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Abstract

Battery electric trucks (BETs) have been regarded as an environmentally friendly mode of road freight transportation. However, since BETs have limited
driving ranges, the freight transportation companies experience the challenge of establishing reasonable freight transport schemes, where the operators of
freight transportation companies need to understand the energy consumption rate (ECR) of BETs and ensure that the transport tasks can be finished without
breaking down due to energy depletion. The accurate estimation of ECR is an effective method to alleviate the negative effects of limited driving range. To
this end, this study utilizes the BET operational data collected from real-world situations to investigate the estimation of ECR. A data-driven approach is
adopted to establish the nonlinear regression models for estimating the ECR of BETs, accompanied by its mathematical expression. The estimated
performance of the models is evaluated, and consequently, the cubic function model is selected by considering the complexity and robustness. Based
on the established estimation model, the economic driving speed of BETs is investigated. The results indicate that the economic driving speed of BETs is

52.02 km/h, and the corresponding ECR is 0.53 kWh/km.
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Introduction

The electrification of transportation represents one of the primary
trends in the future evolution of urban transportation systems.
Trucks, serving as the principal carriers of road freight transporta-
tion, are also embracing the development of electrification. Given
the fact that the carbon emissions caused by road freight trans-
portation account for more than 60% of the emissions of freight, it is
necessary to promote the electrification of trucks!'l. Thanks to the
rapid development of electric vehicle (EV) technology and policy
support, many cities have been witnessing the increasing scale of
battery electric trucks (BETs) in the freight transportation industry.
For example, the BETs in Beijing (the capital of China), have already
accounted for more than 20% of the trucks in freight transportation,
and their scale is still rapidly growing!?. In the foreseeable future,
the BET will become the main vehicle type for urban freight trans-
portation. However, unlike conventional oil-fueled trucks, BETs
typically have shorter driving ranges, posing challenges for freight
transportation companies. In order to establish a reasonable freight
transport scheme, the operators of freight transportation com-
panies need to understand the energy consumption rate (ECR) of
BETs and ensure that the transport tasks can be finished without
breaking down due to energy depletion. This need is particularly
crucial due to the dynamic nature of BET energy consumption. This
concept refers to the variability in energy consumption patterns
caused by fluctuating operational conditions such as speed
changes, driving behavior, battery charge state, and real-time envi-
ronmental factors. ECR directly affects driving range as it represents
energy consumption per unit of driving distance. In a real-world
situation, the ECR is influenced by various factors, and thus, it is diffi-
cult to accurately obtain the driving range by the calibrated ECR that
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is often measured under specified operating conditions and cycle
conditions. In addition, BETs in cities are mainly used for cargo, and
there are significant differences in operating modes and vehicle
characteristics compared to other types of vehicles, such as passen-
ger cars and buses, which further results in differences in the ECR. To
this end, special attention should be provided to the ECR estimation
for BETs by considering the impact of actual environments.

In recent years, with the development of transportation electrifi-
cation, a number of research studies have focused on the estima-
tion of energy consumption for EVs. A conventional approach for
energy consumption estimation is to explore the operating mecha-
nism of the vehicle by considering visible vehicle states. Such an
approach often aims to analyze the driving range under a certain
operating state. For example, Zhang et al. established a set of
systematic models for ECR estimation under different operation
modes from a physical and statistical perspectivel®l. Liu et al. intro-
duced the predictive control theory into the energy consumption
estimation for the EV battery™. Fiori et al. proposed a model to
compute the instantaneous energy consumption of EVs for real-
time eco-driving and eco-routing systemsPl. Miri et all%l and Xie
et al.”! further investigated the ECR using simulation-based models
by considering different parameters on the performance charac-
teristics of EVs. Doluweera et al. conducted a scenario-based study
to examine the battery energy consumption and utilized a hybrid
simulation method to model the EVs in the transport system(él. The
above-mentioned approaches attempted to use numerical models
to explore the relationship between visible vehicle states and ECR.
However, these approaches often neglected the impacts of real-
world operating environments on vehicle operation. As a matter of
fact, the operation process of EVs is affected by multiple invisible
factors, such as driver's driving habits and road network conditions,
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and thus, only relying on the visible state of EVs makes it hard to
ensure an accurate estimation of energy consumption in a certain
state.

With the development of data collection technology, many trans-
portation operators have the ability to gain a rich supply of real-
world data on vehicle operations. The data is able to record vehicle
operation features in the actual traffic environment, such as driving
speed and ECR. More importantly, some invisible factors can also be
indirectly reflected by the real-world data, which makes the vehicle
operation feature more realistic. Given the advantages of data,
several studies have investigated the energy consumption of EVs by
utilizing data-based approaches. For instance, Du et al. used the
grey neural network model to estimate the battery state of charge
of EVs considering rebound voltage. Li et al. provided a dynamic
data-driven model with Markov machine representation to estimate
the energy consumption of EV batteries!'?. Sheng & Xiao proposed
a fuzzy least square support vector machine to improve the estima-
tion accuracy of the battery state of charge for EVsl''l. Wang et al.
adopted ensemble machine learning methods to estimate the
battery energy consumption rate and further discussed its impacts
on the driving range of electric buses'?. Zhang et al. used the real-
world data collected from electric taxis to estimate the energy
consumption based on the machine learning method!'3l, How et al.
and Tian et al. investigated the battery energy consumption rates
of EVs using deep neural network-based approaches!'*'5l,
Chandran et al. and Manoharan et al. attempted to adopt multiple
machine-learning algorithms to estimate the energy consumption
rates of EVs and compare their performancel’®'7], Basso et al.
proposed a probabilistic Bayesian machine learning model to esti-
mate energy consumption for the use of EV routing problemsl'8l. Ji
et al. provided a logarithmic, linear model to estimate the energy
consumption for electric buses based on their operation datal’?l.

Note that, whilst the aforementioned works have shown some
achievements in the ECR estimation of EVs, there are still several
challenges that need to be overcome. For one thing, although exist-
ing literature has discussed the energy consumption of EVs, it
mainly focuses on passenger EVs, whose operating modes and vehi-
cle characteristics differ significantly from BETs. In real-world opera-
tions, several factors impact ECR estimation, including driving
behavior. Factors like acceleration, deceleration, and driving style
(e.g., aggressive or conservative driving) significantly affect energy
consumption. Load and road conditions: The vehicle's load (e.g.,
cargo weight) and road conditions (e.g., incline, traffic) affect ECR.
Battery aging: Over time, a battery's capacity and efficiency degrade.
Using real-world BET operation data, the data-driven method over-
comes the limitations of traditional model-based approaches. It
more accurately reflects BET operational states while capturing
dynamic influences like human factors and environmental con-
ditions. Moreover, existing studies have often used black box
methods to model ECR estimation, which usually has complex
parameters It is difficult to accurately obtain the mathematical
expression of the models, making it inconvenient for practical appli-
cations. In view of the above issues, this paper aims to use the BET
operation data to investigate the ECR of BETs operating in the actual
environment. The primary objective of this study is to establish a
data-driven model for ECR estimation of BETs based on the nonlin-
ear regression method, and a specific mathematical expression of
the model is provided. The proposed model is able to overcome the
limitations of the existing BET energy consumption estimation
models through the specific data-driven approach and nonlinear
regression, where the complex relationship between driving speed
and ECR can be better captured. In summary, the proposed model
offers a more nuanced, data-driven, and comprehensive approach
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to estimating ECR compared to existing models, making it a valu-
able tool for BET operational optimization and energy management.
Based on the proposed ECR estimation model, the economic driv-
ing speed is further discussed. Identifying the economical driving
speed can significantly assist logistics companies in reducing both
energy consumption and transportation costs while maintaining
optimal delivery times. Additionally, it provides drivers with valu-
able insights to make informed decisions that can help extend the
vehicle's range, particularly during long-distance trips.

Specifically, the principal contributions of this study are summa-
rized as follows. First, this research leverages the real-world data of
BET operations to explore the energy consumption patterns of these
vehicles. It overcomes the challenge that conventional estimation
models, usually built with data from passenger cars and buses,
frequently encounter difficulties in being effectively applied to BETs.
Second, a data-driven method is adopted to construct a nonlinear
regression model for estimating the ECR of BETs, along with its
mathematical formulation. The mathematical formulation can accu-
rately describe the relationship between driving speed and ECR and
combine speed decision-making to minimize energy consumption
with strong generality and scalability. Finally, following the valida-
tion of the model, the economic speed of BETs is verified to be
52.02 km/h, which can reduce the overall energy consumption of
the BETs and improve energy utilization efficiency. The results of this
study can offer decision-making support for freight transportation
companies in formulating transport plans customized for BETs.

Data description and processing

Data description

In this study, the real-time operation data of ten BETs with the
same specifications is used to investigate the ECR estimation. The
dataset for BET operation comprises a total of 471,102 original data
entries, encompassing a wide range of parameters related to BET
performance. This dataset includes 69 indicators, such as current,
voltage, driving speed, state of charge (SOC), and accumulated
mileage, recorded during the operation of the BETs. Although pre-
vious studies have indicated that factors such as slope and road
conditions can influence the energy consumption of electric vehi-
cles, recent data-driven research has identified speed as the
predominant factor affecting the energy consumption ratiol20211, |t
will be a major part of the subsequent calculations. The data collec-
tion focuses on BETs primarily engaged in daily commuting and
cargo transportation tasks, making their operational status and
performance crucial for analyzing charging induction issues. To
ensure the accuracy of the final experimental results, some factors of
BETs are limited: The BETs are equipped with lithium iron phos-
phate batteries, each with a capacity of approximately 82.5 kWh;
The load of the BETs during the data collection process is O; The data
collection section is urban traffic road. Although slope has a poten-
tial impact on the energy consumption of BET, considering the
dataset and operating conditions used, the influence of slope on
analysis results is relatively small. The collected real-world data
covers various driving environments and conditions, including driv-
ing conditions in cities and highways. In these data, vehicles mostly
travel on relatively flat road sections, and the proportion of slope
changes during operation is relatively low.

Before the data cleaning and extraction process, this section first
defines and explains the information contained within the dataset.
Driving speed and driving range correspond to the speed displayed
on the BET's instrument panel (in km/h) and the accumulated
mileage (in meters), respectively. Generally, these data exhibit conti-
nuity, providing a solid foundation for subsequent analysis and
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processing. The state of charge (SOC) refers to the current level of
battery power remaining, typically expressed as a percentagel?'l,
It is defined as the ratio of the remaining battery capacity to the
total battery capacity. An SOC of 0% indicates that the battery is
fully discharged, while an SOC of 100% signifies that the battery is
fully charged. The mathematical expression for SOC is represented
inEq (1):

E
SOC:E’XIOO% 1)

where, SOC represents the SOC of the BET, E, is the current battery
capacity (in kWh); Eis the nominal battery capacity (in kWh).

Data cleaning

The original data will inevitably be affected by the external envi-
ronment during the collection process, such as the disconnection of
the wireless network and the abnormality of the collection instru-
ment, which leads to data duplication, data abnormality, and miss-
ing data. Therefore, the original data should be cleaned before
further analysis to reduce the negative influence on the accuracy
and reliability of the estimation results.

Data duplication is a common issue found in the original dataset,
leading to an increase in redundant data, which in turn raises query
time and decreases both computing efficiency and data accuracy.
To address this problem, duplicate data entries within the original
dataset can be identified and removed using methods for extract-
ing and deleting redundant and repetitive data. This process
ensures the uniqueness and accuracy of the dataset.

Table 1 displays the repetitive data entries. In this table, it can be
observed that the driving data of the BET remains unchanged over
four consecutive rows, with values such as current and speed consis-
tently recorded as 0 and voltage remaining at 563, indicating the
presence of duplicate data.

The issue of data abnormality is evident in a small portion of the
SOC values, which have inexplicably changed to 0. During normal
driving and charging, the SOC should fluctuate continuously within
an effective range, and a true value of zero should not occur. As
shown in Fig. 1, the trends of SOC variation, when not accounting

Table 1. An example of duplicate data.
Current (A) Voltage (V) Driving speed (km/h) SOC (%) Mileage (m)
0 563 0 99 19560600
0 563 0 99 19560600
0 563 0 99 19560600
0 563 0 99 19560600
\ I H i
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Sample point index x10°
Fig.1 SOC trends before and after outliers are removed.
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for outliers, reflect the continuous changes in the overall SOC curve;
outliers with an SOC of 0 are highlighted with solid red circles. It can
be observed that the points on the curve where SOC drops to 0
represent abnormal spikes. To mitigate the impact of these abnor-
mal data on the overall analysis, a data deletion method can be
employed to extract and remove the entries with an SOC of 0 from
the dataset. After the removal of these abnormal data points, the
overall change curve becomes more coherent, and the potential for
error in data analysis is significantly reduced.

The issue of missing data occurs during the early stages of each
driving state of the BETs, primarily due to instability in the data
acquisition instrument or temporary interruptions in the data trans-
mission process, as shown in Table 2. To address this problem, a
method for supplementing the missing data can be employed.
Given that the frequency of missing data is low, the value of the
most recent non-missing data point would be used to fill in the
gaps. This approach not only preserves the accuracy and validity of
the original data but also facilitates subsequent calculations and
operations. Table 2 illustrates an example of missing data.

Data extraction

In the subsequent data processing process, the ECR estimation
model of BET will be established according to the driving data of
BETs. Therefore, it is necessary to separate the driving state and
charging state in the running data of BETs and analyze the driving
process separately. The main basis for distinguishing the driving
state and the charging state is the changing trend of SOC. Since the
BET alternately changes in the driving state from the charging state,
SOC also shows a cyclical change of declining, rising, and falling. If
the SOC shows a downward trend, it means that the BET is consum-
ing energy and is in a running state. If the SOC is on the rise, it
means that the BET is being charged and is in a charging state.
According to the criterion of SOC change trend, the data set of SOC
decreasing part is extracted, which is the data under the driving
state of BETSs.

It is important to note that the trends in SOC can exhibit fluctua-
tions and are not strictly monotonically increasing or decreasing.
This variability arises from minor errors in SOC detection, which can
cause a small number of data points within an overall declining or
rising trend to reverse the expected change. Figure 2 illustrates an
example of this abnormal situation. Therefore, when the SOC of the
current data point exceeds that of the previous data point during
the extraction of the driving state of the BETs, it is essential to
further assess whether this indicates a genuine transition to the

i H\ H

0 0.5 1 1.5 2 25 3 3.5

SOC (%)

Sample point index %10°
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Table2. Anexample of missing data.

Current (A) Voltage (V)  Driving speed (km/h)  SOC  Mileage (m)
NAN NAN NAN NAN NAN

0 562.60 0 99 19560500
5.20 560.90 1.20 99 19560500
NAN NAN NAN NAN NAN

charging state. This assessment should be based on subsequent
changes in SOGC; for instance, if the SOC remains in an upward trend
for a period following the data point in question. This approach
helps to prevent erroneous data points from compromising the
accuracy of state judgments.

The processed data includes segments exhibiting a decreasing
trend in SOC, as depicted in Fig. 3. Following data cleaning and
extraction, a total of 273,202 data points have been obtained, which
can be classified into 118 complete discharge processes. On aver-
age, each discharge process consists of approximately 2,000 data
points.

Methodology

Model framework design

Conventional factors such as road conditions, load, and aerody-
namics are often relatively consistent in the context of BET opera-
tions. As a result, driving speed emerges as the primary variable
influencing the calculation of economic driving speed. In a
controlled operational environment, other influencing factors are
often implicitly captured in the data, making speed the dominant
factor in estimating economic efficiency. The ECR of BETs is strongly
correlated with driving speed. By establishing an ECR estimation
model based on this relationship, energy consumption can be esti-
mated, given specific driving speeds and distances. This model not
only highlights the energy consumption characteristics of BETs
through mathematical formulas but also aids in identifying the most
economical driving speed, essentially determining the speed that
maximizes driving range in practical applications. This optimization
improves energy efficiency and plays a crucial role in subsequent
modeling enhancements.

After data processing, a total of 273,202 data points have been
obtained, which can be categorized into 118 complete discharge
processes, with each average discharge process containing approxi-
mately 2,000 data points. The processed data comprises multiple

90
85 L

80 L -

51 9

SOC (%)
[

701

65 | 1

100 200 300 400 500 600 700 800 900 1000
Sample point index

Fig.2 Anexample of SOC trend under abnormal conditions.
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complete discharge processes, with each complete discharge
process referred to as a data group.

To investigate the specific relationship between ECR and the driv-
ing speed of BETs, this section divides the processed data into
consecutive fixed datasets at specified intervals. For each dataset,
the average voltage, average driving speed, changes in SOC, and
changes in mileage are calculated. By analyzing these averages and
their variations, the energy consumed per kilometer for each dataset
at the corresponding average speed can be derived. The mathemat-
ical expression used to quantify the relationship between speed and
energy consumption is as follows:

p
_ Xru
g2zl @)
P
P
- Vi
y 2o ©)
P
ASOC =50C,-50C, @)
Ad =d,-d )
U-E-ASOC
AE = ——— (©)

where, {7 is the average voltage of a dataset (V); U; is the voltage j of a
dataset (V); p is the data set interval; v is the average driving speed of a
dataset (km/h); v; is the i-th speed of a dataset (km/h); ASOC is the
change value of SOC; SOC, is the first SOC of a dataset; SOC, is the p-th
SOC of a dataset; Ad is the change in distance (m); d, is the first mile of
a dataset (m); d, is the p-th mile of a dataset (m); AE; is a dataset at the
current average speed of driving per kilometer energy consumption
(kWh/km).

This section explains how to set the data group interval as a
parameter to facilitate data adjustments during subsequent pro-
cessing. The resulting datasets consist of the average driving speed
and ECR. To explore the relationship between average driving speed
and ECR, a nonlinear regression estimation method was utilized.
Nonlinear regression is a fundamental technique in mathematics
and statistics, aiming to establish a curve that effectively describes
the distribution trend of these data points based on existing obser-
vations. Its flexible fitting capabilities make it widely applicable
across various fields(?2,

However, it is noted that the dataset may contain multiple ECRs
corresponding to the same average driving speed, which can
complicate the nonlinear regression fitting process. To address this
issue, the one-to-many energy consumption values were analyzed,
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Fig.3 SOC decreasing trend of processed data.
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and similarities were found among them. Consequently, these
energy consumption values were averaged, and the calculated aver-
age was treated as the sole ECR corresponding to the specific speed.
This processing ensures that the corresponding relationship
between the two factors meets the requirements for subsequent
nonlinear regression fitting while enhancing the accuracy and effec-
tiveness of the data. The resulting scatter plot is presented in Fig. 4.

By observing Fig. 4, it can be noted that the data points are
primarily clustered around a curve; the function graph is smooth
and does not show a trend of rapid growth or decay. Exponential
fitting is generally used to describe situations where data grows
rapidly, or decays, logarithmic fitting is often used to describe situa-
tions where data growth gradually slows down, power-law relation-
ships are usually applicable to data in the form of power functions,
and neural networks are generally used for complex nonlinear
modeling, especially for complex and high-dimensional problems
with data changes. In contrast, a quadratic function or a higher-
order polynomial provides simpler, more computationally efficient,
and more interpretable models and can accurately capture the
changing trends of data, although the specific parameters require
further verification through subsequent calculations.

In this part, function fitting was performed on the scattered
points representing the average driving speed and ECR. The under-
lying mathematical principle of the function is based on least
squares curve fitting, which aims to find the best-fitting polynomial
by minimizing the residual sum of squares between the fitted poly-
nomial and the actual data points. After inputting the data points
and specifying the polynomial order, the function constructs the
corresponding Van der Monde matrix and employs the pseudo-
inverse operation of the matrix to solve the linear system using the
least squares method. This process identifies the polynomial coeffi-
cients that minimize the sum of the squared residuals, yielding the
final fitting polynomial.

It is important to highlight that when the speed is below 20 km/h,
the ECR tends to be significantly higher than average, which does
not accurately reflect the energy consumption of BETs. After exclud-
ing these anomalous data points, it was determined that the collec-
tion subjects in this data sample rarely operated at a constant speed
below 20 km/h. Instead, many BETs were mostly in the acceleration
or deceleration phases when traveling at speeds below this thre-
shold. In particular, during the motor's transitional phase, the
energy required to overcome resistance is substantial, resulting
in low ECRs. This leads to inflated results that do not objectively

25

20 30 40 50 60 70
Driving speed (km/h)
Fig.4 Scatter plot of the ECR and driving speed.
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represent the energy consumption of BETs at low and steady
speeds.

Therefore, in the nonlinear regression analysis, data points below
20 km/h are excluded from consideration, and the remaining data
points are utilized for function fitting. Specifically, the quadratic,
cubic, quartic, and quintic functions are selected as candidate model
frameworks based on initial observations from the scatter plot. Not
only do these functions resemble the scatter plot visually, but they
also provide clear mathematical expressions. The predicted ECRs at
different driving speeds can be visually assessed, allowing for an
understanding of how changes in speed influence ECRs through the
varying coefficients, thus offering high flexibility.

Subsequently, the fitting effects of the four functions are
compared to determine the most suitable model for the estimation
of energy consumption. The fitted curves of the frameworks from
the quadratic, cubic, quartic, and quintic functions are illustrated
in Fig. 5.

Parameter identification

The results of the analysis indicate that the four model frame-
works exhibit a satisfactory fit to the model. Furthermore, the intri-
cate relationships and trends within the data are more effectively
captured as the complexity of the model increases to a certain
threshold. Specifically, higher-order polynomial model frameworks
incorporate a greater number of parameters, thereby enhancing
their flexibility. In contrast, lower-order functions, while capable of
representing certain characteristics of the data, tend to be less
responsive to subtle variations.

It is important to acknowledge the potential for overfitting, which
can arise when the number of model frameworks is excessively
high!23], Overfitting is characterized by a model that demonstrates
strong performance on the training dataset but lacks predictive
accuracy when applied to unseen data. This occurs because, with an
abundance of model frameworks, the model may not only accu-
rately reflect the underlying trends within the data but also inadver-
tently capture noise and random errors present in the dataset. This
complexity poses challenges in distinguishing genuine patterns
from spurious fluctuations.

Moreover, employing higher-order model frameworks is associ-
ated with increased computational complexity, which can diminish
computational efficiency in subsequent analyses. Thus, it is crucial
to identify an optimal balance between model complexity and its
generalization capability when selecting an appropriate model
framework. In this context, the cubic model more effectively
captures the complex, nonlinear relationship between ECR and driv-
ing speed. Compared to simpler models like the quadratic function,
the cubic model offers a better fit to the observed data, which is
essential for accurately predicting ECR across varying driving condi-
tions. This improved fit ensures that the model accounts for subtle
variations in energy consumption that might be overlooked by less
flexible models. While the cubic model introduces additional
complexity compared to the quadratic model, it remains computa-
tionally efficient compared to higher-order models (such as quartic
or quintic). The cubic function strikes a balance between improved
fitting accuracy and computational efficiency, making it more practi-
cal for real-world applications where computational resources and
processing time may be limited. As such, this study prioritizes the
cubic function model to ensure the robustness of predictive perfor-
mance on new data while maintaining an improved fitting effect. To
implement the parameter identification for the selected cubic
model, this study employs the polyfit function in MATLAB. The poly-
fit function utilizes a least squares approach to determine the opti-
mal coefficients of a polynomial that best fits the given dataset,
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Fig. 5 Fitted curves of the model frameworks. (a) Quadratic function fitting, (b) Cubic function fitting, (c) Quartic function fitting, (d) Quintic function

fitting.

which has been widely used in data-based models[24. Specifically,
for the cubic model discussed in this paper, a cubic polynomial is
used to establish the relationship, where the driving speed data
serves as the input variable and the observed ECR as the output vari-
able. This method effectively minimizes the squared error between
the observed and predicted values, ensuring an optimal fit while
maintaining computational efficiency. The resulting polynomial
coefficients provide a precise mathematical representation of the
nonlinear relationship between ECR and driving speed, facilitating
accurate predictions under varying driving conditions.

Table 3 presents the parameter values corresponding to the four
model frameworks.

Results and discussion

Model verification

The datasets of driving speed and ECR of the BETs are divided into
training and test groups. The training group is used to establish a
curve describing the data distribution trend by the nonlinear regres-
sion method, and the test set is used to verify the model's accuracy.

Table 3. Parameter values of each model framework.

Specifically, 75% of the data points are selected as the training
group, while the remaining 25% of them are regarded as the test
group to verify the performance of the trained models, which is
common to ensure that the model has high accuracy and effective-
ness in fitting polynomials and evaluating model performancel'2l,
The estimation models underwent rigorous validation to ensure
their capacity to accurately represent the intrinsic relationship
between driving speed and ECR. Furthermore, during actual road
driving, the driving speed of BET is often variable because the driv-
ing speed can be influenced by road conditions. Thus, it is difficult to
accurately estimate ECR using only a fixed speed throughout an
entire trip. However, specific intervals can be identified, which refer
to segments of the journey where the driving speed remains rela-
tively constant for a certain period. Within these specific intervals,
the speed stabilizes with minimal fluctuations, allowing for the esti-
mation of ECR by superimposing values across this range. While
maintaining a constant speed over the entire trip is difficult, there
are distinct phases where the vehicle's speed can be treated as fixed.
Thus, the energy consumption estimated by these estimation
models effectively reflects real-world data patterns. A flow chart

Model framework Quintic coefficient Quartic coefficient

Cubic coefficient

Quadratic coefficient Linear coefficient Constant term

Quadratic 0.0005 -0.0672 2.7038
Cubic —0.000013 0.0025 -0.1505 3.5024
Quartic 0.0000004 —0.00009 0.0071 -0.2765 5.0188
Quintic 0 0.000004 —-0.0004 0.0202 -0.5375 7.0127
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illustrating the model verification process is presented in Fig. 6. In
the figure, n denotes the maximum number of intervals during the
travelling process; V(i) is the speed during the i-th interval; M1(i) and
M2(i) are the energy consumption when a BET operates between
the starting and ending points of the i-th interval; AM(i) is the
section energy consumption during the i-th interval.

To comprehensively and objectively evaluate the performance of
the models, three evaluation criteria are employed, including the
root mean square error (RMSE), the coefficient of determination (R?,
and the root mean square error of the estimation on the test set
(RMS E). These criteria served as the basis for determining the most
suitable fitting function for the model. The formulas for calculating
these evaluation metrics are presented as follows.

n 532
RMSE = —Z"=‘(yn’ 5 7
S 0=
RP=1-Z2=1M Y 8
Z?:] (Yi_)_’l)z ( )

n 2
RMSE = \/M ©®

where, y; is the i-th observation value; 3 is the i-th predicted value of
the model; n is the number of observations; y, is the mean of all
observations; 3" is the model estimates the i-th value of the test set.

The RMSE serves as a reliable metric for quantifying the deviation
between predicted and observed values. A smaller RMSE indicates a
reduced discrepancy between the predicted values and the actual
observations, thereby reflecting a higher accuracy of the model's
predictions. The R2 quantifies the model's fit to the data by measur-
ing the proportion of variability in the data that is explained by the
model. R? values range from 0 to 1; a value closer to 1 signifies a
superior fit of the model to the data, while a value closer to 0 indi-
cates a limited capacity of the model to interpret the data. In addi-
tion to assessing the fitting performance on the training dataset, the
estimation accuracy on the test dataset is also a crucial criterion for
evaluating the practical utility of the model. The evaluation method
for the test set is consistent with that used for the RMSE of the
model. The results of the computations and analyses are presented
in Table 4.

As seen in the table, the values of RMSE and RMSE for the models
are all lower than 0.1. The R? values are larger than 0.9. These results
indicate that the accuracy of the models is relatively high. The
models have an acceptable estimation effect. Overall, the

Start

M, (i) = M(V(D)
My(0) = MV(i + 1))

I
AM(@) = My() — M, (D)
¥

sum = sum + AM(i)

=
+

Fig.6 Flow chart for model verification.
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accuracy of the ECR estimation model using real-world data is
ensured through several steps, including data preprocessing, data
grouping and feature extraction, model validation, and evaluation
of model robustness. By employing these rigorous methods, this
study ensures that the ECR estimation model is both accurate and
reliable for real-world BET operations, offering a valuable tool for
improving energy efficiency and operational performance.

Economic driving speed
Economical driving speed refers to the driving speed that causes
ECR to reach its minimum value, which can be obtained by using the
ECR estimation model. In this section, the cubic function model is
used to analyze the relationship between ECR and driving speed to
obtain the economical speed. The expression of the ECR estimation
model based on cubic function is shown as follows.
y = -0.000013v* +0.0025v> — 0.1505v + 3.5024 (10

where, y and v represent the ECR and driving speed, respectively.

By utilizing the ECR estimation model, the economical driving
speed can be explored. Figure 7 provides the change trends of ECR
with driving speed under the estimation model. It can be seen from
the figure that the economical driving speed can be captured by
calculating the valley value of the model. Consequently, it is
found that the economic driving speed of BET can be calculated as
52.02 km/h, and the corresponding ECR is 0.53 kWh/km.

Conclusions

Accurately estimating ECR is an important issue for BET operation,
which is very useful for determining transport strategies and allevi-
ating range anxiety during trips. Using the BET operation data
collected from real-world situations, this study adopts the data-
driven approach to establish the nonlinear regression models for
estimating the ECR of BETs, accompanied by its mathematical
expression. To be specific, four model frameworks are designed to
model the ECR estimation, and the results indicate that the cubic

Table 4. Metric values for the evaluation of the model frameworks.

Model framework RMSE R?

RMSE

0.0818
0.0767
0.0762
0.0760

0.9144
0.9247
0.9258
0.9261

0.0856
0.0823
0.0629
0.0831

Quadratic function
Cubic function
Quartic function
Quintic function

147
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0.5 . . . .
20 30 40 50 60 70

Driving speed (km/h)
Fig.7 Change trends of ECR with driving speed.
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function model is selected considering the complexity and robust-
ness. In addition, the ECR estimation model is used to explore the
economic driving speed of BETs, and the driving speed with mini-
mum ECR value can be obtained. The results indicate that the
economic driving speed of BET is 52.02 km/h, and the correspond-
ing ECRis 0.53 kWh/km.

It is worth noting that the dataset used in this study is based on a
fixed set of BET models that are highly representative and widely
used in the current market. However, some crucial factors like load
and wind speed were not recorded during the data collection
process and, therefore, were not included in the current analysis. In
future work, the study intends to address this limitation by incorpo-
rating these variables into the dataset and the modeling process. In
addition, the usage lifespan of batteries may also have potential
impacts on their capacity and discharge efficiency. Built upon the
proposed models, the effects of battery degradation on the ECR will
be considered in future studies. Furthermore, the ECR estimation
model would be improved by introducing multivariable regression
or machine learning models to incorporate diverse predictors to
further improve estimation accuracy.
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