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Abstract
Battery  electric  trucks  (BETs)  have been regarded as  an environmentally  friendly  mode of  road freight  transportation.  However,  since  BETs  have limited

driving ranges, the freight transportation companies experience the challenge of establishing reasonable freight transport schemes, where the operators of

freight transportation companies need to understand the energy consumption rate (ECR) of BETs and ensure that the transport tasks can be finished without

breaking down due to energy depletion. The accurate estimation of ECR is an effective method to alleviate the negative effects of limited driving range. To

this end,  this  study utilizes the BET operational  data collected from real-world situations to investigate the estimation of ECR.  A data-driven approach is

adopted  to  establish  the  nonlinear  regression  models  for  estimating  the  ECR  of  BETs,  accompanied  by  its  mathematical  expression.  The  estimated

performance  of  the  models  is  evaluated,  and  consequently,  the  cubic  function  model  is  selected  by  considering  the  complexity  and  robustness.  Based

on the established estimation model, the economic driving speed of BETs is investigated. The results indicate that the economic driving speed of BETs is

52.02 km/h, and the corresponding ECR is 0.53 kWh/km.
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 Introduction

The electrification of transportation represents one of the primary
trends  in  the  future  evolution  of  urban  transportation  systems.
Trucks,  serving  as  the  principal  carriers  of  road  freight  transporta-
tion,  are  also  embracing  the  development  of  electrification.  Given
the  fact  that  the  carbon  emissions  caused  by  road  freight  trans-
portation account for more than 60% of the emissions of freight, it is
necessary  to  promote  the  electrification  of  trucks[1].  Thanks  to  the
rapid  development  of  electric  vehicle  (EV)  technology  and  policy
support,  many  cities  have  been  witnessing  the  increasing  scale  of
battery  electric  trucks  (BETs)  in  the  freight  transportation  industry.
For example, the BETs in Beijing (the capital of China), have already
accounted for more than 20% of the trucks in freight transportation,
and  their  scale  is  still  rapidly  growing[2].  In  the  foreseeable  future,
the  BET  will  become  the  main  vehicle  type  for  urban  freight  trans-
portation.  However,  unlike  conventional  oil-fueled  trucks,  BETs
typically  have  shorter  driving  ranges,  posing  challenges  for  freight
transportation companies. In order to establish a reasonable freight
transport  scheme,  the  operators  of  freight  transportation  com-
panies  need  to  understand  the  energy  consumption  rate  (ECR)  of
BETs  and  ensure  that  the  transport  tasks  can  be  finished  without
breaking  down  due  to  energy  depletion.  This  need  is  particularly
crucial due to the dynamic nature of BET energy consumption. This
concept  refers  to  the  variability  in  energy  consumption  patterns
caused  by  fluctuating  operational  conditions  such  as  speed
changes, driving behavior,  battery charge state,  and real-time envi-
ronmental factors. ECR directly affects driving range as it represents
energy  consumption  per  unit  of  driving  distance.  In  a  real-world
situation, the ECR is influenced by various factors, and thus, it is diffi-
cult to accurately obtain the driving range by the calibrated ECR that

is  often  measured  under  specified  operating  conditions  and  cycle
conditions. In addition, BETs in cities are mainly used for cargo, and
there  are  significant  differences  in  operating  modes  and  vehicle
characteristics compared to other types of vehicles, such as passen-
ger cars and buses, which further results in differences in the ECR. To
this end, special attention should be provided to the ECR estimation
for BETs by considering the impact of actual environments.

In  recent  years,  with the development  of  transportation electrifi-
cation,  a  number  of  research  studies  have  focused  on  the  estima-
tion  of  energy  consumption  for  EVs.  A  conventional  approach  for
energy consumption estimation is to explore the operating mecha-
nism  of  the  vehicle  by  considering  visible  vehicle  states.  Such  an
approach  often  aims  to  analyze  the  driving  range  under  a  certain
operating  state.  For  example,  Zhang  et  al.  established  a  set  of
systematic  models  for  ECR  estimation  under  different  operation
modes from a physical  and statistical  perspective[3].  Liu  et  al.  intro-
duced  the  predictive  control  theory  into  the  energy  consumption
estimation  for  the  EV  battery[4].  Fiori  et  al.  proposed  a  model  to
compute  the  instantaneous  energy  consumption  of  EVs  for  real-
time  eco-driving  and  eco-routing  systems[5].  Miri  et  al.[6] and  Xie
et al.[7] further investigated the ECR using simulation-based models
by  considering  different  parameters  on  the  performance  charac-
teristics  of  EVs.  Doluweera  et  al.  conducted a  scenario-based study
to  examine  the  battery  energy  consumption  and  utilized  a  hybrid
simulation method to model the EVs in the transport system[8].  The
above-mentioned  approaches  attempted  to  use  numerical  models
to  explore  the  relationship  between  visible  vehicle  states  and  ECR.
However,  these  approaches  often  neglected  the  impacts  of  real-
world operating environments on vehicle operation. As a matter of
fact,  the  operation  process  of  EVs  is  affected  by  multiple  invisible
factors, such as driver's driving habits and road network conditions,
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and  thus,  only  relying  on  the  visible  state  of  EVs  makes  it  hard  to
ensure  an  accurate  estimation  of  energy  consumption  in  a  certain
state.

With the development of data collection technology, many trans-
portation  operators  have  the  ability  to  gain  a  rich  supply  of  real-
world data on vehicle operations. The data is able to record vehicle
operation features in the actual traffic environment, such as driving
speed and ECR. More importantly, some invisible factors can also be
indirectly reflected by the real-world data, which makes the vehicle
operation  feature  more  realistic.  Given  the  advantages  of  data,
several studies have investigated the energy consumption of EVs by
utilizing  data-based  approaches.  For  instance,  Du  et  al.  used  the
grey  neural  network  model  to  estimate  the  battery  state  of  charge
of  EVs  considering  rebound  voltage[9].  Li  et  al.  provided  a  dynamic
data-driven model with Markov machine representation to estimate
the energy consumption of EV batteries[10].  Sheng & Xiao proposed
a fuzzy least square support vector machine to improve the estima-
tion  accuracy  of  the  battery  state  of  charge  for  EVs[11].  Wang  et  al.
adopted  ensemble  machine  learning  methods  to  estimate  the
battery  energy  consumption rate  and further  discussed its  impacts
on the driving range of electric buses[12]. Zhang et al. used the real-
world  data  collected  from  electric  taxis  to  estimate  the  energy
consumption based on the machine learning method[13].  How et al.
and  Tian  et  al.  investigated  the  battery  energy  consumption  rates
of  EVs  using  deep  neural  network-based  approaches[14,15].
Chandran et  al.  and Manoharan et  al.  attempted to  adopt  multiple
machine-learning  algorithms  to  estimate  the  energy  consumption
rates  of  EVs  and  compare  their  performance[16,17].  Basso  et  al.
proposed  a  probabilistic  Bayesian  machine  learning  model  to  esti-
mate energy consumption for the use of EV routing problems[18].  Ji
et  al.  provided  a  logarithmic,  linear  model  to  estimate  the  energy
consumption for electric buses based on their operation data[19].

Note  that,  whilst  the  aforementioned  works  have  shown  some
achievements  in  the  ECR  estimation  of  EVs,  there  are  still  several
challenges that need to be overcome. For one thing, although exist-
ing  literature  has  discussed  the  energy  consumption  of  EVs,  it
mainly focuses on passenger EVs, whose operating modes and vehi-
cle characteristics differ significantly from BETs. In real-world opera-
tions,  several  factors  impact  ECR  estimation,  including  driving
behavior.  Factors  like  acceleration,  deceleration,  and  driving  style
(e.g.,  aggressive  or  conservative  driving)  significantly  affect  energy
consumption.  Load  and  road  conditions:  The  vehicle's  load  (e.g.,
cargo  weight)  and  road  conditions  (e.g.,  incline,  traffic)  affect  ECR.
Battery aging: Over time, a battery's capacity and efficiency degrade.
Using real-world BET operation data,  the data-driven method over-
comes  the  limitations  of  traditional  model-based  approaches.  It
more  accurately  reflects  BET  operational  states  while  capturing
dynamic  influences  like  human  factors  and  environmental  con-
ditions.  Moreover,  existing  studies  have  often  used  black  box
methods  to  model  ECR  estimation,  which  usually  has  complex
parameters  It  is  difficult  to  accurately  obtain  the  mathematical
expression of the models, making it inconvenient for practical appli-
cations.  In view of the above issues,  this paper aims to use the BET
operation data to investigate the ECR of BETs operating in the actual
environment.  The  primary  objective  of  this  study  is  to  establish  a
data-driven model for ECR estimation of BETs based on the nonlin-
ear  regression  method,  and  a  specific  mathematical  expression  of
the model is provided. The proposed model is able to overcome the
limitations  of  the  existing  BET  energy  consumption  estimation
models  through  the  specific  data-driven  approach  and  nonlinear
regression,  where the complex relationship between driving speed
and ECR can be  better  captured.  In  summary,  the  proposed model
offers  a  more  nuanced,  data-driven,  and  comprehensive  approach

to  estimating  ECR  compared  to  existing  models,  making  it  a  valu-
able tool for BET operational optimization and energy management.
Based  on  the  proposed  ECR  estimation  model,  the  economic  driv-
ing  speed  is  further  discussed.  Identifying  the  economical  driving
speed  can  significantly  assist  logistics  companies  in  reducing  both
energy  consumption  and  transportation  costs  while  maintaining
optimal  delivery  times.  Additionally,  it  provides  drivers  with  valu-
able  insights  to  make informed decisions  that  can help  extend the
vehicle's range, particularly during long-distance trips.

Specifically,  the  principal  contributions  of  this  study  are  summa-
rized as follows.  First,  this research leverages the real-world data of
BET operations to explore the energy consumption patterns of these
vehicles.  It  overcomes  the  challenge  that  conventional  estimation
models,  usually  built  with  data  from  passenger  cars  and  buses,
frequently encounter difficulties in being effectively applied to BETs.
Second,  a  data-driven  method  is  adopted  to  construct  a  nonlinear
regression  model  for  estimating  the  ECR  of  BETs,  along  with  its
mathematical formulation. The mathematical formulation can accu-
rately describe the relationship between driving speed and ECR and
combine  speed  decision-making  to  minimize  energy  consumption
with  strong  generality  and  scalability.  Finally,  following  the  valida-
tion  of  the  model,  the  economic  speed  of  BETs  is  verified  to  be
52.02  km/h,  which  can  reduce  the  overall  energy  consumption  of
the BETs and improve energy utilization efficiency. The results of this
study  can  offer  decision-making  support  for  freight  transportation
companies in formulating transport plans customized for BETs.

 Data description and processing

 Data description
In  this  study,  the  real-time  operation  data  of  ten  BETs  with  the

same  specifications  is  used  to  investigate  the  ECR  estimation.  The
dataset for BET operation comprises a total of 471,102 original data
entries,  encompassing  a  wide  range  of  parameters  related  to  BET
performance.  This  dataset  includes  69  indicators,  such  as  current,
voltage,  driving  speed,  state  of  charge  (SOC),  and  accumulated
mileage,  recorded during the  operation of  the  BETs.  Although pre-
vious  studies  have  indicated  that  factors  such  as  slope  and  road
conditions  can  influence  the  energy  consumption  of  electric  vehi-
cles,  recent  data-driven  research  has  identified  speed  as  the
predominant  factor  affecting  the  energy  consumption  ratio[20,21].  It
will be a major part of the subsequent calculations. The data collec-
tion  focuses  on  BETs  primarily  engaged  in  daily  commuting  and
cargo  transportation  tasks,  making  their  operational  status  and
performance  crucial  for  analyzing  charging  induction  issues.  To
ensure the accuracy of the final experimental results, some factors of
BETs  are  limited:  The  BETs  are  equipped  with  lithium  iron  phos-
phate  batteries,  each  with  a  capacity  of  approximately  82.5  kWh;
The load of the BETs during the data collection process is 0; The data
collection section is urban traffic road. Although slope has a poten-
tial  impact  on  the  energy  consumption  of  BET,  considering  the
dataset  and  operating  conditions  used,  the  influence  of  slope  on
analysis  results  is  relatively  small.  The  collected  real-world  data
covers various driving environments and conditions, including driv-
ing conditions in cities and highways. In these data, vehicles mostly
travel  on  relatively  flat  road  sections,  and  the  proportion  of  slope
changes during operation is relatively low.

Before the data cleaning and extraction process, this section first
defines  and explains  the information contained within  the dataset.
Driving speed and driving range correspond to the speed displayed
on  the  BET's  instrument  panel  (in  km/h)  and  the  accumulated
mileage (in meters), respectively. Generally, these data exhibit conti-
nuity,  providing  a  solid  foundation  for  subsequent  analysis  and
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processing.  The  state  of  charge  (SOC)  refers  to  the  current  level  of
battery  power  remaining,  typically  expressed  as  a  percentage[21].
It  is  defined  as  the  ratio  of  the  remaining  battery  capacity  to  the
total  battery  capacity.  An  SOC  of  0%  indicates  that  the  battery  is
fully  discharged,  while  an  SOC of  100% signifies  that  the  battery  is
fully  charged.  The  mathematical  expression  for  SOC  is  represented
in Eq (1):

S OC =
Et

E
×100% (1)

where, SOC represents  the  SOC  of  the  BET, Et is  the  current  battery
capacity (in kWh); E is the nominal battery capacity (in kWh).

 Data cleaning
The original  data will  inevitably be affected by the external envi-

ronment during the collection process, such as the disconnection of
the  wireless  network  and  the  abnormality  of  the  collection  instru-
ment,  which leads to data duplication,  data abnormality,  and miss-
ing  data.  Therefore,  the  original  data  should  be  cleaned  before
further  analysis  to  reduce  the  negative  influence  on  the  accuracy
and reliability of the estimation results.

Data duplication is a common issue found in the original dataset,
leading to an increase in redundant data, which in turn raises query
time  and  decreases  both  computing  efficiency  and  data  accuracy.
To  address  this  problem,  duplicate  data  entries  within  the  original
dataset  can  be  identified  and  removed  using  methods  for  extract-
ing  and  deleting  redundant  and  repetitive  data.  This  process
ensures the uniqueness and accuracy of the dataset.

Table 1 displays the repetitive data entries. In this table, it can be
observed that the driving data of the BET remains unchanged over
four consecutive rows, with values such as current and speed consis-
tently  recorded  as  0  and  voltage  remaining  at  563,  indicating  the
presence of duplicate data.

The issue of data abnormality is evident in a small portion of the
SOC  values,  which  have  inexplicably  changed  to  0.  During  normal
driving and charging, the SOC should fluctuate continuously within
an  effective  range,  and  a  true  value  of  zero  should  not  occur.  As
shown  in Fig.  1,  the  trends  of  SOC  variation,  when  not  accounting

for outliers, reflect the continuous changes in the overall SOC curve;
outliers with an SOC of 0 are highlighted with solid red circles. It can
be  observed  that  the  points  on  the  curve  where  SOC  drops  to  0
represent  abnormal  spikes.  To  mitigate  the  impact  of  these  abnor-
mal  data  on  the  overall  analysis,  a  data  deletion  method  can  be
employed to extract and remove the entries with an SOC of 0 from
the  dataset.  After  the  removal  of  these  abnormal  data  points,  the
overall change curve becomes more coherent, and the potential for
error in data analysis is significantly reduced.

The  issue  of  missing  data  occurs  during  the  early  stages  of  each
driving  state  of  the  BETs,  primarily  due  to  instability  in  the  data
acquisition instrument or temporary interruptions in the data trans-
mission  process,  as  shown  in Table  2.  To  address  this  problem,  a
method  for  supplementing  the  missing  data  can  be  employed.
Given  that  the  frequency  of  missing  data  is  low,  the  value  of  the
most  recent  non-missing  data  point  would  be  used  to  fill  in  the
gaps. This approach not only preserves the accuracy and validity of
the  original  data  but  also  facilitates  subsequent  calculations  and
operations. Table 2 illustrates an example of missing data.

 Data extraction
In  the  subsequent  data  processing  process,  the  ECR  estimation

model  of  BET  will  be  established  according  to  the  driving  data  of
BETs.  Therefore,  it  is  necessary  to  separate  the  driving  state  and
charging state  in  the  running data  of  BETs  and analyze  the  driving
process  separately.  The  main  basis  for  distinguishing  the  driving
state and the charging state is the changing trend of SOC. Since the
BET alternately changes in the driving state from the charging state,
SOC also  shows a  cyclical  change of  declining,  rising,  and falling.  If
the SOC shows a downward trend, it means that the BET is consum-
ing  energy  and  is  in  a  running  state.  If  the  SOC  is  on  the  rise,  it
means  that  the  BET  is  being  charged  and  is  in  a  charging  state.
According to the criterion of SOC change trend, the data set of SOC
decreasing  part  is  extracted,  which  is  the  data  under  the  driving
state of BETs.

It is important to note that the trends in SOC can exhibit fluctua-
tions  and  are  not  strictly  monotonically  increasing  or  decreasing.
This variability arises from minor errors in SOC detection, which can
cause  a  small  number  of  data  points  within  an  overall  declining  or
rising trend to  reverse  the  expected change. Figure  2 illustrates  an
example of this abnormal situation. Therefore, when the SOC of the
current  data  point  exceeds  that  of  the  previous  data  point  during
the  extraction  of  the  driving  state  of  the  BETs,  it  is  essential  to
further  assess  whether  this  indicates  a  genuine  transition  to  the

 

Table 1.    An example of duplicate data.

Current (A) Voltage (V) Driving speed (km/h) SOC (%) Mileage (m)

0 563 0 99 19560600
0 563 0 99 19560600
0 563 0 99 19560600
0 563 0 99 19560600

 

Fig. 1    SOC trends before and after outliers are removed.
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charging  state.  This  assessment  should  be  based  on  subsequent
changes in SOC; for instance, if the SOC remains in an upward trend
for  a  period  following  the  data  point  in  question.  This  approach
helps  to  prevent  erroneous  data  points  from  compromising  the
accuracy of state judgments.

The  processed  data  includes  segments  exhibiting  a  decreasing
trend  in  SOC,  as  depicted  in Fig.  3.  Following  data  cleaning  and
extraction, a total of 273,202 data points have been obtained, which
can  be  classified  into  118  complete  discharge  processes.  On  aver-
age,  each  discharge  process  consists  of  approximately  2,000  data
points.

 Methodology

 Model framework design
Conventional  factors  such  as  road  conditions,  load,  and  aerody-

namics  are  often  relatively  consistent  in  the  context  of  BET  opera-
tions.  As  a  result,  driving  speed  emerges  as  the  primary  variable
influencing  the  calculation  of  economic  driving  speed.  In  a
controlled  operational  environment,  other  influencing  factors  are
often  implicitly  captured  in  the  data,  making  speed  the  dominant
factor in estimating economic efficiency. The ECR of BETs is strongly
correlated  with  driving  speed.  By  establishing  an  ECR  estimation
model based on this relationship,  energy consumption can be esti-
mated,  given specific  driving speeds and distances.  This model not
only  highlights  the  energy  consumption  characteristics  of  BETs
through mathematical formulas but also aids in identifying the most
economical  driving  speed,  essentially  determining  the  speed  that
maximizes driving range in practical applications. This optimization
improves  energy  efficiency  and  plays  a  crucial  role  in  subsequent
modeling enhancements.

After  data  processing,  a  total  of  273,202  data  points  have  been
obtained,  which  can  be  categorized  into  118  complete  discharge
processes, with each average discharge process containing approxi-
mately  2,000  data  points.  The  processed  data  comprises  multiple

complete  discharge  processes,  with  each  complete  discharge
process referred to as a data group.

To investigate the specific relationship between ECR and the driv-
ing  speed  of  BETs,  this  section  divides  the  processed  data  into
consecutive  fixed  datasets  at  specified  intervals.  For  each  dataset,
the  average  voltage,  average  driving  speed,  changes  in  SOC,  and
changes in mileage are calculated. By analyzing these averages and
their variations, the energy consumed per kilometer for each dataset
at the corresponding average speed can be derived. The mathemat-
ical expression used to quantify the relationship between speed and
energy consumption is as follows:

Ū =
∑p

i=1 Ui

p
(2)

v̄ =
∑p

i=1 vi

p
(3)

∆S OC = S OC1−S OC2 (4)

∆d = dp−d1 (5)

∆Et =
Ū ·E ·∆S OC

∆d
(6)

Ū
v̄

∆

∆

∆

where,  is the average voltage of a dataset (V); Ui is the voltage i of a
dataset (V); p is the data set interval;  is the average driving speed of a
dataset  (km/h); vi is  the i-th  speed  of  a  dataset  (km/h); SOC is  the
change value of SOC; SOC1 is the first SOC of a dataset; SOCp is the p-th
SOC of a dataset; d is the change in distance (m); d1 is the first mile of
a dataset (m); dp is the p-th mile of a dataset (m); Et is a dataset at the
current  average  speed  of  driving  per  kilometer  energy  consumption
(kWh/km).

This  section  explains  how  to  set  the  data  group  interval  as  a
parameter  to  facilitate  data  adjustments  during  subsequent  pro-
cessing. The resulting datasets consist of the average driving speed
and ECR. To explore the relationship between average driving speed
and  ECR,  a  nonlinear  regression  estimation  method  was  utilized.
Nonlinear  regression  is  a  fundamental  technique  in  mathematics
and  statistics,  aiming  to  establish  a  curve  that  effectively  describes
the distribution trend of these data points based on existing obser-
vations.  Its  flexible  fitting  capabilities  make  it  widely  applicable
across various fields[22].

However,  it  is  noted  that  the  dataset  may  contain  multiple  ECRs
corresponding  to  the  same  average  driving  speed,  which  can
complicate the nonlinear regression fitting process.  To address this
issue,  the  one-to-many  energy  consumption  values  were  analyzed,

 

Table 2.    An example of missing data.

Current (A) Voltage (V) Driving speed (km/h) SOC Mileage (m)

NAN NAN NAN NAN NAN
0 562.60 0 99 19560500
5.20 560.90 1.20 99 19560500
NAN NAN NAN NAN NAN

 

Fig. 2    An example of SOC trend under abnormal conditions.

 

Fig. 3    SOC decreasing trend of processed data.
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and  similarities  were  found  among  them.  Consequently,  these
energy consumption values were averaged, and the calculated aver-
age was treated as the sole ECR corresponding to the specific speed.
This  processing  ensures  that  the  corresponding  relationship
between  the  two  factors  meets  the  requirements  for  subsequent
nonlinear regression fitting while enhancing the accuracy and effec-
tiveness of the data. The resulting scatter plot is presented in Fig. 4.

By  observing Fig.  4,  it  can  be  noted  that  the  data  points  are
primarily  clustered  around  a  curve;  the  function  graph  is  smooth
and  does  not  show  a  trend  of  rapid  growth  or  decay.  Exponential
fitting  is  generally  used  to  describe  situations  where  data  grows
rapidly, or decays, logarithmic fitting is often used to describe situa-
tions where data growth gradually slows down, power-law relation-
ships are usually applicable to data in the form of power functions,
and  neural  networks  are  generally  used  for  complex  nonlinear
modeling,  especially  for  complex  and  high-dimensional  problems
with  data  changes.  In  contrast,  a  quadratic  function  or  a  higher-
order  polynomial  provides  simpler,  more  computationally  efficient,
and  more  interpretable  models  and  can  accurately  capture  the
changing  trends  of  data,  although  the  specific  parameters  require
further verification through subsequent calculations.

In  this  part,  function  fitting  was  performed  on  the  scattered
points representing the average driving speed and ECR. The under-
lying  mathematical  principle  of  the  function  is  based  on  least
squares curve fitting, which aims to find the best-fitting polynomial
by minimizing the residual sum of squares between the fitted poly-
nomial  and  the  actual  data  points.  After  inputting  the  data  points
and  specifying  the  polynomial  order,  the  function  constructs  the
corresponding  Van  der  Monde  matrix  and  employs  the  pseudo-
inverse operation of the matrix to solve the linear system using the
least squares method. This process identifies the polynomial coeffi-
cients that  minimize the sum of  the squared residuals,  yielding the
final fitting polynomial.

It is important to highlight that when the speed is below 20 km/h,
the  ECR  tends  to  be  significantly  higher  than  average,  which  does
not accurately reflect the energy consumption of BETs. After exclud-
ing these anomalous data points, it was determined that the collec-
tion subjects in this data sample rarely operated at a constant speed
below 20 km/h. Instead, many BETs were mostly in the acceleration
or  deceleration  phases  when  traveling  at  speeds  below  this  thre-
shold.  In  particular,  during  the  motor's  transitional  phase,  the
energy  required  to  overcome  resistance  is  substantial,  resulting
in  low  ECRs.  This  leads  to  inflated  results  that  do  not  objectively

represent  the  energy  consumption  of  BETs  at  low  and  steady
speeds.

Therefore, in the nonlinear regression analysis, data points below
20  km/h  are  excluded  from  consideration,  and  the  remaining  data
points  are  utilized  for  function  fitting.  Specifically,  the  quadratic,
cubic, quartic, and quintic functions are selected as candidate model
frameworks based on initial  observations from the scatter plot.  Not
only do these functions resemble the scatter plot visually,  but they
also provide clear mathematical expressions. The predicted ECRs at
different  driving  speeds  can  be  visually  assessed,  allowing  for  an
understanding of how changes in speed influence ECRs through the
varying coefficients, thus offering high flexibility.

Subsequently,  the  fitting  effects  of  the  four  functions  are
compared to determine the most suitable model for the estimation
of  energy  consumption.  The  fitted  curves  of  the  frameworks  from
the  quadratic,  cubic,  quartic,  and  quintic  functions  are  illustrated
in Fig. 5.

 Parameter identification
The  results  of  the  analysis  indicate  that  the  four  model  frame-

works exhibit  a satisfactory fit  to the model.  Furthermore,  the intri-
cate  relationships  and  trends  within  the  data  are  more  effectively
captured  as  the  complexity  of  the  model  increases  to  a  certain
threshold.  Specifically,  higher-order  polynomial  model  frameworks
incorporate  a  greater  number  of  parameters,  thereby  enhancing
their  flexibility.  In  contrast,  lower-order  functions,  while  capable  of
representing  certain  characteristics  of  the  data,  tend  to  be  less
responsive to subtle variations.

It is important to acknowledge the potential for overfitting, which
can  arise  when  the  number  of  model  frameworks  is  excessively
high[23].  Overfitting  is  characterized  by  a  model  that  demonstrates
strong  performance  on  the  training  dataset  but  lacks  predictive
accuracy when applied to unseen data. This occurs because, with an
abundance  of  model  frameworks,  the  model  may  not  only  accu-
rately reflect the underlying trends within the data but also inadver-
tently capture noise and random errors present in the dataset.  This
complexity  poses  challenges  in  distinguishing  genuine  patterns
from spurious fluctuations.

Moreover,  employing  higher-order  model  frameworks  is  associ-
ated with increased computational  complexity,  which can diminish
computational  efficiency  in  subsequent  analyses.  Thus,  it  is  crucial
to  identify  an  optimal  balance  between  model  complexity  and  its
generalization  capability  when  selecting  an  appropriate  model
framework.  In  this  context,  the  cubic  model  more  effectively
captures the complex, nonlinear relationship between ECR and driv-
ing speed. Compared to simpler models like the quadratic function,
the  cubic  model  offers  a  better  fit  to  the  observed  data,  which  is
essential for accurately predicting ECR across varying driving condi-
tions.  This  improved fit  ensures  that  the model  accounts  for  subtle
variations in energy consumption that might be overlooked by less
flexible  models.  While  the  cubic  model  introduces  additional
complexity  compared to the quadratic  model,  it  remains computa-
tionally efficient compared to higher-order models (such as quartic
or quintic).  The cubic function strikes a balance between improved
fitting accuracy and computational efficiency, making it more practi-
cal  for  real-world  applications  where  computational  resources  and
processing  time  may  be  limited.  As  such,  this  study  prioritizes  the
cubic function model to ensure the robustness of predictive perfor-
mance on new data while maintaining an improved fitting effect. To
implement  the  parameter  identification  for  the  selected  cubic
model, this study employs the polyfit function in MATLAB. The poly-
fit  function utilizes a least squares approach to determine the opti-
mal  coefficients  of  a  polynomial  that  best  fits  the  given  dataset,

 

Fig. 4    Scatter plot of the ECR and driving speed.
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which  has  been  widely  used  in  data-based  models[24].  Specifically,
for  the  cubic  model  discussed  in  this  paper,  a  cubic  polynomial  is
used  to  establish  the  relationship,  where  the  driving  speed  data
serves as the input variable and the observed ECR as the output vari-
able.  This  method effectively minimizes the squared error  between
the  observed  and  predicted  values,  ensuring  an  optimal  fit  while
maintaining  computational  efficiency.  The  resulting  polynomial
coefficients  provide  a  precise  mathematical  representation  of  the
nonlinear  relationship  between  ECR  and  driving  speed,  facilitating
accurate predictions under varying driving conditions.

Table 3 presents the parameter values corresponding to the four
model frameworks.

 Results and discussion

 Model verification
The datasets of driving speed and ECR of the BETs are divided into

training  and  test  groups.  The  training  group  is  used  to  establish  a
curve describing the data distribution trend by the nonlinear regres-
sion method, and the test set is used to verify the model's accuracy.

Specifically,  75%  of  the  data  points  are  selected  as  the  training
group,  while  the  remaining  25%  of  them  are  regarded  as  the  test
group  to  verify  the  performance  of  the  trained  models,  which  is
common to ensure that the model has high accuracy and effective-
ness in fitting polynomials and evaluating model performance[12].

The  estimation  models  underwent  rigorous  validation  to  ensure
their  capacity  to  accurately  represent  the  intrinsic  relationship
between  driving  speed  and  ECR.  Furthermore,  during  actual  road
driving, the driving speed of BET is often variable because the driv-
ing speed can be influenced by road conditions. Thus, it is difficult to
accurately  estimate  ECR  using  only  a  fixed  speed  throughout  an
entire trip. However, specific intervals can be identified, which refer
to  segments  of  the  journey  where  the  driving  speed  remains  rela-
tively  constant  for  a  certain  period.  Within  these  specific  intervals,
the speed stabilizes with minimal fluctuations, allowing for the esti-
mation  of  ECR  by  superimposing  values  across  this  range.  While
maintaining  a  constant  speed  over  the  entire  trip  is  difficult,  there
are distinct phases where the vehicle's speed can be treated as fixed.
Thus,  the  energy  consumption  estimated  by  these  estimation
models  effectively  reflects  real-world  data  patterns.  A  flow  chart
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Fig. 5    Fitted curves of the model frameworks.  (a)  Quadratic function fitting, (b) Cubic function fitting, (c)  Quartic function fitting, (d) Quintic function
fitting.

 

Table 3.    Parameter values of each model framework.

Model framework Quintic coefficient Quartic coefficient Cubic coefficient Quadratic coefficient Linear coefficient Constant term

Quadratic 0.0005 −0.0672 2.7038
Cubic −0.000013 0.0025 −0.1505 3.5024
Quartic 0.0000004 −0.00009 0.0071 −0.2765 5.0188
Quintic 0 0.000004 −0.0004 0.0202 −0.5375 7.0127
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∆

illustrating  the  model  verification  process  is  presented  in Fig.  6.  In
the figure, n denotes the maximum number of intervals during the
travelling process; V(i) is the speed during the i-th interval; M1(i) and
M2(i) are  the  energy  consumption  when  a  BET  operates  between
the  starting  and  ending  points  of  the i-th  interval; M(i) is  the
section energy consumption during the i-th interval.

RMS E

To comprehensively and objectively evaluate the performance of
the  models,  three  evaluation  criteria  are  employed,  including  the
root mean square error (RMSE), the coefficient of determination (R²),
and  the  root  mean  square  error  of  the  estimation  on  the  test  set
( ). These criteria served as the basis for determining the most
suitable fitting function for  the model.  The formulas for  calculating
these evaluation metrics are presented as follows.

RMSE =

√∑n
i=1 (yi− ŷl)2

n
(7)

R2 = 1−
∑n

i=1 (yi− ŷl)2∑n
i=1 (yi− ȳl)2 (8)

RMSE =

√∑n
i=1 (yi− ŷ′l)

2

n
(9)

ŷl

ȳl
ŷ′

where, yi is  the i-th observation value;  is  the i-th predicted value of
the  model; n is  the  number  of  observations;  is  the  mean  of  all
observations;  is the model estimates the i-th value of the test set.

RMSE

The RMSE serves as a reliable metric for quantifying the deviation
between predicted and observed values. A smaller RMSE indicates a
reduced  discrepancy  between  the  predicted  values  and  the  actual
observations,  thereby  reflecting  a  higher  accuracy  of  the  model's
predictions. The R2 quantifies the model's fit to the data by measur-
ing the proportion of variability in the data that is explained by the
model. R2 values  range  from  0  to  1;  a  value  closer  to  1  signifies  a
superior fit  of  the model to the data,  while a value closer to 0 indi-
cates a limited capacity of the model to interpret the data.  In addi-
tion to assessing the fitting performance on the training dataset, the
estimation accuracy on the test dataset is also a crucial criterion for
evaluating the practical utility of the model. The evaluation method
for  the  test  set  is  consistent  with  that  used  for  the  of  the
model. The results of the computations and analyses are presented
in Table 4.

RMSEAs seen in the table, the values of RMSE and  for the models
are all lower than 0.1. The R2 values are larger than 0.9. These results
indicate  that  the  accuracy  of  the  models  is  relatively  high.  The
models  have  an  acceptable  estimation  effect.  Overall,  the

accuracy  of  the  ECR  estimation  model  using  real-world  data  is
ensured  through  several  steps,  including  data  preprocessing,  data
grouping  and  feature  extraction,  model  validation,  and  evaluation
of  model  robustness.  By  employing  these  rigorous  methods,  this
study  ensures  that  the  ECR  estimation  model  is  both  accurate  and
reliable  for  real-world  BET  operations,  offering  a  valuable  tool  for
improving energy efficiency and operational performance.

 Economic driving speed
Economical driving speed refers to the driving speed that causes

ECR to reach its minimum value, which can be obtained by using the
ECR  estimation  model.  In  this  section,  the  cubic  function  model  is
used to analyze the relationship between ECR and driving speed to
obtain the economical speed. The expression of the ECR estimation
model based on cubic function is shown as follows.

y = −0.000013v3+0.0025v2−0.1505v+3.5024 (10)
where, y and v represent the ECR and driving speed, respectively.

By  utilizing  the  ECR  estimation  model,  the  economical  driving
speed can be explored. Figure 7 provides the change trends of ECR
with driving speed under the estimation model. It can be seen from
the  figure  that  the  economical  driving  speed  can  be  captured  by
calculating  the  valley  value  of  the  model.  Consequently,  it  is
found that the economic driving speed of BET can be calculated as
52.02 km/h, and the corresponding ECR is 0.53 kWh/km.

 Conclusions

Accurately estimating ECR is an important issue for BET operation,
which is very useful for determining transport strategies and allevi-
ating  range  anxiety  during  trips.  Using  the  BET  operation  data
collected  from  real-world  situations,  this  study  adopts  the  data-
driven  approach  to  establish  the  nonlinear  regression  models  for
estimating  the  ECR  of  BETs,  accompanied  by  its  mathematical
expression.  To  be  specific,  four  model  frameworks  are  designed  to
model  the  ECR  estimation,  and  the  results  indicate  that  the  cubic

 

Table 4.    Metric values for the evaluation of the model frameworks.

Model framework RMSE R2 RMS E
Quadratic function 0.0818 0.9144 0.0856
Cubic function 0.0767 0.9247 0.0823
Quartic function 0.0762 0.9258 0.0629
Quintic function 0.0760 0.9261 0.0831

 

Fig. 6    Flow chart for model verification.

 

Fig. 7    Change trends of ECR with driving speed.
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function  model  is  selected  considering  the  complexity  and  robust-
ness.  In  addition,  the  ECR  estimation  model  is  used  to  explore  the
economic  driving  speed  of  BETs,  and  the  driving  speed  with  mini-
mum  ECR  value  can  be  obtained.  The  results  indicate  that  the
economic driving speed of  BET is  52.02 km/h,  and the correspond-
ing ECR is 0.53 kWh/km.

It is worth noting that the dataset used in this study is based on a
fixed  set  of  BET  models  that  are  highly  representative  and  widely
used in the current market.  However,  some crucial  factors  like load
and  wind  speed  were  not  recorded  during  the  data  collection
process and, therefore, were not included in the current analysis. In
future work, the study intends to address this limitation by incorpo-
rating these variables into the dataset and the modeling process. In
addition,  the  usage  lifespan  of  batteries  may  also  have  potential
impacts  on  their  capacity  and  discharge  efficiency.  Built  upon  the
proposed models, the effects of battery degradation on the ECR will
be  considered  in  future  studies.  Furthermore,  the  ECR  estimation
model  would  be  improved  by  introducing  multivariable  regression
or  machine  learning  models  to  incorporate  diverse  predictors  to
further improve estimation accuracy.
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