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Abstract
Digital twin technology is pivotal in the advancement of smart cities and autonomous driving due to its unique capabilities in virtual-reality integration,
interactive control, and predictive analysis. The primary enabler for achieving advanced transportation digital twins lies in enhancing environmental sensing
capabilities,  with  multi-sensor  data  fusion  emerging  as  a  widely  adopted  strategy  to  improve  sensing  performance.  However,  existing  research  has
predominantly focused on onboard systems, leaving roadside sensor deployment and roadside multi-sensor data fusion strategies insufficiently explored.
Recognizing the potential advantages of roadside sensor systems, such as broader sensory field coverage and reduced occlusion. This study investigates the
integration  of  roadside  multi-sensor  data  fusion  with  digital  twin  technology  in  the  transportation  domain.  Consequently,  this  paper  introduces  an
innovative  intersection  digital  twin  system  developed  through  a  simulation-based  approach,  leveraging  roadside  multi-sensor  data  late  fusion.  The  Car
Learning to Act-Simulation of Urban Mobility (CARLA-SUMO) co-simulator acts as a data generation platform, synchronously producing RGB images and
Light Detection and Ranging (LiDAR) point clouds with spatiotemporal  consistency.  For object detection,  we employ the You Only Look Once version 5
(YOLOv5) and PointPillars algorithms. Then, a decision-level fusion strategy is proposed to integrate these heterogeneous sensor outputs into a cohesive
roadside digital twin system. Experimental results demonstrate that YOLOv5 and PointPillars achieve a mean Average Precision (mAP) of approximately 90%
and  60%,  respectively.  Moreover,  the  detection  frequency  of  both  detectors  is  well-suited  to  the  dynamic  nature  of  intersection  traffic,  and  the  fusion
strategy  synergistically  exploits  the  complementary  advantages  of  heterogeneous  sensors  to  enhance  overall  system  performance.  This  research
contributes to the field by facilitating low-cost autonomous driving simulation tests and enabling the reconstruction of intersections using roadside digital
twin technology, with significant implications for vehicle-road coordination and traffic management.
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 Introduction

In  recent  years,  the  rapid  advancement  of  autonomous  driving
has  significantly  increased  the  demand  for  sophisticated  digital
twins[1]. By creating digital replicas of the physical world, digital twin
technology enables real-time monitoring,  precise analysis,  and effi-
cient  optimization  of  transportation  systems[2,3].  Additionally,  it
provides planners with high-precision detection and object model-
ing  capabilities,  which  are  instrumental  in  enhancing  the  auto-
mation and intelligence of transportation networks[4].

The  primary  challenge  in  developing  high-fidelity  transportation
digital  twin  systems  lies  in  achieving  robust,  precise,  and  detailed
environmental sensing, which demands advanced object detection
capabilities.  While  current  research  and  industry  projects  have
predominantly  focused  on  onboard  sensor  solutions,  the  potential
of  roadside  infrastructure  sensing  remains  underexplored[5,6].
Onboard  solutions  are  favored  for  their  ease  of  deployment  and
maintenance[7,8],  making  them  well-suited  for  the  current  popular
single-vehicle intelligence approaches in the industry. Compared to
onboard systems, roadside infrastructure offers several complemen-
tary  distinct  advantages,  including  reduced  edge  computing  costs,
enhanced  provision  of  continuous  and  reliable  area-wide  sensing,
and  expanded  detection  range  with  diminished  susceptibility  to
occlusion[9].  These  strengths  make  roadside  infrastructure  promis-
ing  for  advanced  applications  like  vehicle-to-infrastructure  (V2I)
collaboration and higher-level  autonomous driving.  Both academia
and  industry  are  increasingly  recognizing  the  benefits  of  road-
side  infrastructure  sensing  as  a  valuable  complementary  solution.
Consequently, there is a pressing need for interdisciplinary research

that  integrates  roadside  multi-view  sensing  and  digital  twin  tech-
nology to extend the capabilities of existing transportation systems.

In the context of roadside deployment, the choice of sensor type
is crucial. Different sensors, such as cameras and LiDAR, offer distinct
advantages  based  on  their  respective  imaging  principles.  Cameras
capture  rich  color  and  semantic  information  through  pixel-based
textures,  while  LiDAR  provides  precise  positional  and  depth  infor-
mation  through  spatial  3D  point  clouds.  The  performance  compa-
rison  of  these  common  sensors  is  detailed  in Table  1.  In  complex
transportation  environments,  a  single  type  of  sensor  may  lead  to
problems  such  as  low  accuracy,  susceptibility  to  interference,  and
poor  adaptability[10,11].  To  avoid  the  drawbacks  of  a  single  type  of
sensor, multi-sensor fusion can effectively improve the quality of the
obtained  information,  resulting  in  more  comprehensive  and  accu-
rate sensing results. For roadside sensors, factors such as data offset
due  to  different  installation  heights,  differences  in  perceptual
perspectives,  and  experimental  difficulties  due  to  scarce  datasets
bring more challenges to the fusion process.

In response to the above issues, scholars have conducted a great
deal  of  research  in  related  fields.  Liu  et  al.[16] developed  a  method
that  integrates  vehicle  camera  image  data  with  digital  twins  to
improve  the  performance  of  vision  systems  in  intelligent  vehicles,
achieving  a  detection  accuracy  of  79.2%  at  a  threshold  of  0.7  IoU.
Zheng  et  al.[17] constructed  digital  twin  models  at  12  urban  traffic
locations by capturing image data and extracting trajectory informa-
tion  via  drones.  He  et  al.[18] utilized  deep  learning  algorithms  and
near-real-time projection methods to develop a digital twin system
for  3D  reconstruction  of  construction  sites  based  on  video  camera
image data. Wojke et al.[19] introduced a real-time traffic monitoring
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system that integrates LiDAR and visual data deployed at the road-
side  for  3D  object  detection,  extending  the  DeepSORT  model  to
create  the  3DSORT  tracking  model.  Bai  et  al.[20] pioneered  a  multi-
modal  3D  object  detection  framework  that  combines  roadside
LiDAR and camera data, integrating various fusion stages (early and
late  fusion)  and  methods  (traditional  and  learning-based  fusion)
within  a  single  system.  Young  et  al.[21] proposed  an  infrastructure-
based perceptual fusion scheme, where multiple sensors (LiDAR and
cameras)  are  used  to  acquire  and  fuse  perceptual  information  for
monitoring  the  traffic  status  of  moving  objects.  In  a  recent  study,
Chen et al.[22] employed the PointPillars algorithm with a late fusion-
based  cooperative  sensing  strategy  to  generate  highly  complete
and smooth vehicle trajectories in the entire road.

The  literature  review  traces  the  progression  of  digital  twin
construction from onboard sensing and aerial photography to road-
side  sensing,  emphasizing  the  shift  from  unimodal  to  multimodal
fusion  detection  methods.  Despite  these  advancements,  there
remains  a  vacancy  in  integrating  roadside  infrastructure  sensing,
multi-sensor data fusion, and digital twin technologies into a unified
framework.  Additionally,  much  of  the  existing  research  in  roadside
sensing  relies  on  open-source  datasets  (e.g.,  nuScenes,  Waymo)  or
real-world field experiments to train object detection models, which
demands  substantial  resources  and  incurs  high  costs.  This  study
introduces  a  novel  approach  by  leveraging  the  CARLA-SUMO  co-
simulator  to  generate  heterogeneous  sensor  data  from  roadside
infrastructures  and  proposes  an  innovative  fusion  technique  that
integrates LiDAR point cloud data with camera RGB image data. The
framework  of  this  research  is  composed  of  three  key  components:
(1)  Simulation  Platform  Construction  and  Data  Collection:  the
CARLA-SUMO co-simulator is employed to build detailed simulation
environments,  wherein  LiDAR and cameras  are  deployed to  gener-
ate  comprehensive test  datasets.  This  phase also includes  essential
tasks  such  as  data  preprocessing,  co-calibration,  and  labeling.  (2)
Unimodal Detection: in this phase, the PointPillars model processes
the  LiDAR-acquired  point  cloud  data,  while  the  YOLOv5  model
handles the RGB image data from the cameras. The detection results
from both models undergo spatial transformation to account for the
differing  perspectives  of  the  detection  bounding  boxes.  (3)  Near
Real-Time  Mapping  and  Fusion  Modeling:  this  final  phase  involves
correlating  and  matching  detection  frames  within  a  unified  view-
point,  followed  by  fusing  the  sensing  results  at  the  decision  level
through  a  mapping  approach.  The  overarching  objective  of  this
framework is to enhance perception accuracy and develop a digital
twin  intersection  capable  of  real-time  monitoring  of  traffic  dyna-
mics  at  the  vehicle  level.  The  key  advantages  of  this  research  are
outlined as follows:

 Versatility and modularity
The  study  employs  a  late-fusion  approach,  where  the  object

detection  results  from  each  sensor  are  fused  on  top  of  each  other,

thus allowing for the flexible selection of any pre-trained 2D and 3D
object detection algorithms to achieve the digital  twin effect using
the proposed fusion method.

 Stability and superior performance
By  deploying  sensors  within  the  roadside  infrastructure,  the

system  mitigates  occlusions  caused  by  vehicles  and  buildings,
ensuring a continuous and stable perceptual field.

 Simulation platform construction and data
collection

 Experimental scenario configuration
The  collection  of  high-quality  camera  and  LiDAR  detection  data

for urban intersection scenes is critical to this study. Given the time
and cost constraints of real-world data collection, this study utilizes
the  CARLA-SUMO  co-simulator  for  traffic  simulation  and  high-
fidelity point cloud and RGB image data collection.  Specifically,  the
Simulation  of  Urban  MObility  (SUMO)  is  an  open-source  micro-
scopic  traffic  simulator  capable  of  generating  multi-modal  traffic
flows  and simulating driving behaviors.  In  contrast,  CARLA,  a  high-
performance  autonomous  driving  simulator  built  on  the  Unreal
Engine  (UE),  is  dedicated  to  accurately  simulate  vehicle  dynamics
and components  related to  perception,  planning,  decision-making,
and control. By integrating CARLA with SUMO, highly realistic virtual
traffic scenarios can be constructed, allowing the simulation of vari-
ous sensor processes and the generation of  data,  including images
and 3D point clouds. This integrated simulation framework not only
facilitates  the  flexible  creation  of  multi-modal  traffic  environments
but  also  provides  an  ideal  experimental  platform  for  multi-sensor
fusion detection. It should be emphasized that, owing to its low-cost
nature,  high-performance  capabilities,  and  easy  scalability,  the
CARLA-SUMO  co-simulator  was  chosen  as  the  simulation  model  in
this  research.  Based  on  the  Unreal  Engine,  CARLA  enables  detailed
modeling  of  sensors,  including  cameras,  LiDARs,  and  millimeter
wave radars. Moreover, it can offer high-fidelity 3D scene rendering.
On  the  other  hand,  SUMO  can  generate  background  traffic  flows
that comply with real-world traffic regulations. Together, these two
platforms  can  rapidly  and  synchronously  construct  intricate  traffic
scenarios,  which align well  with the high-precision and high-speed
features of digital twin intersections. The simulation environment is
based on the Town10 map within the CARLA simulator. The selected
intersection  is  situated  in  the  core  area  of  the  town.  One  LiDAR
sensor  and  four  cameras  are  deployed  at  the  center  of  the  yellow
grid area depicted in Fig. 1.

The sensors were deployed at the center of the intersection of the
CARLA  built-in  Town10  map  downtown  at  the  coordinate  position
of  (51.2,  51.2),  and  their  mounting  height  was  3.17  m  above  the
ground level of the roadside monitoring pole. The four cameras are
strategically  positioned  to  cover  each  direction  of  the  intersection,

 

Table 1.    Common sensors in road infrastructure sensing systems.

Type Advantage Disadvantage Principle Main application Deployment location

Geomagnetic coil[12] Fast response time, cost-
effective

Difficult to maintain,
accuracy sensitive

Electromagnetic
induction

Detecting the presence,
passage of vehicles

Position 0.2-0.4 m deep from
the road surface

Infrared sensors[13] High precision Low resolution, short
distance

Infrared reflectance Night vision, infrared
imaging

Signal arm, building above 3
m position

Fisheye camera[14] Large detection range,
high picture quality

Highly expensive with
distortion problems

Image recognition
technology

Safety monitoring Signal arm, street lamp post
3−5 m height position

LiDAR[15] 3D information available,
high accuracy

Slow processing, high
costs

Laser beam reflection Depth information
perception, 3D
reconstruction

Signal arm, street lamp post
1.5−2.5 m height position

Camera[5] Wide range, rich textures,
low prices

Light-sensitive, blurriness
under high-speed

Image recognition
technology

Path and object
recognition

Signal arm, street lamp post
2.5−5 m height position

Digital twin intersection
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ensuring uninterrupted monitoring of the entire area. More specific
sensor configuration parameters are shown in Table 2.

 Data processing
The  raw  data  generated  from  the  simulation  is  processed  and

converted  into  the  Karlsruhe  Institute  of  Technology  and  Toyota
Technological Institute (KITTI) format, which is widely used for evalu-
ating computer vision algorithms in autonomous driving scenarios.
The raw data comprises several file sets, including image data from
four cameras,  point  cloud data,  labeling data,  and calibration para-
meters.

Before  performing  detection  and  fusion  operations,  the  labeling
files  must  undergo  further  processing.  Specifically,  using  the
camera's  external  parameters,  rotation  matrix,  and  other  relevant
parameters  from the calibration files,  the 3D bounding box coordi-
nates  of  detected objects  are  converted into the image coordinate
system.  This  conversion  allows  for  the  generation  of  2D  planar

bounding  box  coordinates,  facilitating  the  transformation  of  the
collected  data  into  the  standard  KITTI  format.  The  conversion
process  is  guided  by  Eqs  (1)−(4).  The  KITTI  dataset,  established  by
the  Karlsruhe  Institute  of  Technology  (KIT)  in  Germany  and  the
Toyota  Technological  Institute  at  Chicago  (TTI-C)  in  the  United
States  in  2012,  is  a  leading  benchmark  for  computer  vision  algo-
rithms in self-driving applications[11].  Due to its open-source nature
and  widespread  adoption,  many  2D  and  3D  detection  frame-
works  include  interfaces  specifically  designed  for  processing  KITTI-
formatted data, making it a convenient format for this study.

To map the point cloud coordinates y from the point cloud coor-
dinate system to the image coordinate system of camera i, resulting
in the corresponding image coordinates x, the following transforma-
tion is applied:

y = P(i)
rectR

(0)
rectT

cam
velo x (i = 0,1,2,3) (1)

P(i)
rect

R(0)
rect

T cam
velo

where,  is  the  projection  matrix  of  camera i,  which  consists  of  a
series  of  internal  references  of  the  camera, i =  0,  1,  2,  3  are  the
corresponding numbers  of  the four  cameras,  respectively.  is  the
aberration correction matrix,  which is  used to improve the aberration
of  the  image.  is  the  external  reference  matrix  of  the  camera,
which consists of a rotation matrix and a translation matrix.

x =
[
xvelo;yvelo;zvelo;1

]
(2)

y =
[
xcam;ycam;Zc

]
(3)

y′ =
[

xcam

Zc
;

ycam

Zc

]
(4)

P(i)
rect,R

(0)
rect,T

cam
velo

where, x =  [xvelo; yvelo; zvelo; l]  is  the  chi-square  coordinate  form  of  the
point cloud data, y = [xcam; ycam; ZC] is the chi-square coordinate of the
point cloud data after mapping in the image coordinate system, and y'
is the pixel coordinate, and the final 2D bounding-box coordinate can
be obtained by choosing the maximal and minimal value of y' in eight
vertices. ,  the  three  parameters  can  be  obtained
directly by simulation, and the data preprocessing is completed by the
above steps.

 Detection fusion algorithm

This research aims to enhance engineering feasibility by leverag-
ing  mature  and  widely  accepted  algorithms  and  techniques  in  the
industry. A dedicated roadside sensor dataset is generated using the
CARLA-SUMO  co-simulation  platform  described  previously.  Follow-
ing  specific  preprocessing  of  the  raw  data,  detection  tasks  are
executed using the widely adopted YOLOv5 for 2D image detection
and PointPillars for 3D point cloud detection. The 2D and 3D detec-
tion results are then integrated within a unified viewpoint through a
near-real-time mapping approach. This process involves operations
such as  matching,  fusion,  and information sharing,  ultimately  lead-
ing  to  the  development  of  a  preliminary  digital  twin  system.  The
framework architecture of this paper is shown in Fig. 2.

 Near real-time mapping approach to fusion modeling
The  fusion  process  integrates  the  detection  results  from  the  2D

and  3D  detectors,  capitalizing  on  the  higher  accuracy  of  2D  detec-
tion. The fusion strategy is as follows: first, the bounding boxes from
the 3D point cloud detection are transformed from the LiDAR coor-
dinate  system  into  the  camera  coordinate  system.  These  trans-
formed  bounding  boxes  are  then  projected  onto  the  image  plane,
with the center point of each 3D bounding box mapped to the pixel
coordinate  system  to  generate  projection  points.  Next,  the  2D
detection  results  are  utilized,  where  the  corresponding  bounding
boxes are identified. Associative matching is conducted by examin-
ing  the  logical  containment  relationship  between  the  projection
points and the 2D bounding boxes. For objects that are successfully

 

Fig. 1    Sensor deployment locations and hardware configurations.

 

Table 2.    Parameter configuration and description for Camera and LiDARs.

Sensor Parameters Default Description

LiDAR Channels 64 Number of lasers
Height 3.17 m Height with respect to the

road surface
Range 100 m Maximum distance to

measure/ray-cast in meters
Rotation
frequency

20 Hz LiDAR rotation frequency

Points per second 500,000 Number of points
Upper FOV 5 Angle in degrees of the

highest laser beam
Lower FOV −35 Angle in degrees of the lowest

laser beam
Noise stddev 0.01 Standard deviation of the

noise model of point
Dropoff rate 20% General proportion of points

that are randomly dropped
Dropoff intensity
limit

0.8 Threshold of intensity value for
exempting dropoff

Camera FOV 90 Angle in degrees
Focal length 360 Optical characteristics of

camera lenses
Principal point
coordinate

(320, 240) Image center coordinates

Resolution 640 × 480 Measure of image sharpness

FOV indicates field of view; stddev indicates standard deviation.
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matched,  the  perception  information  of  both  parties  is  shared.  For
objects that are not successfully matched, decisions are made based
on  the  confidence  scores  of  the  unimodal  detectors,  retaining  the
unimodal  detection  results  with  confidence  higher  than  the  set
threshold and discarding the detection results below the threshold.
This  approach  allows  for  the  effective  integration  of  multimodal
sensor  data,  enhancing  the  accuracy  and  reliability  of  the  percep-
tion system.

To finalize the fusion, a fixed region within the sensor's detection
field of view is selected as the background view for the digital twin.
The  final  detection  results,  post-fusion,  are  then  overlaid  on  this
background.  The  mathematical  transformations  involved  in
mapping  the  detection  results  between  the  LiDAR  coordinate
system, the camera coordinate system, and the image pixel coordi-
nate system are outlined in Eqs (5), (6):

 Camera coordinate system to pixel coordinate system
A  point  (u, v)  in  the  pixel  coordinate  system  can  be  represented

by a point (xc, yc, zc) in the camera coordinate system as Eq. (5): u
v
1

 = 1
zc
·

 f /dx 0 u0 0
0 f /dy v0 0
0 0 1 0




xc

yc

zc

1

 (5)

where, (u, v) denotes the point coordinates under the pixel coordinate
system. f is  the  focal  length  of  the  camera,  which  is  determined  only
by  the  camera's  attributes.  (xc, yc, zc)  denotes  the  point  coordinates
under the camera's coordinate system.

 LiDAR coordinate system to camera coordinate system

×

The  conversion  of  the  global  coordinate  system  to  the  camera
coordinate  system  requires  the  camera's  external  reference  matrix
K2 which is a 4 4 matrix. The points (xc, yc, zc) in the camera coordi-
nate system can be represented by the points xw, yw, zw in the global
coordinate system as Eq. (6): xc

yc

zc

 = K2 ·


xw

yw

zw

1

 =
[

R T
0 1

]
4×4


xw

yw

zw

1

 (6)

where, R is  a  3 × 3 rotation matrix and T is  a  3 × 1 translation matrix,
which  can  be  obtained  by  sensor  calibration.  The  computational
workflow  outlined  above  describes  a  cooperative  roadside  sensing

strategy  utilizing  late  fusion.  The  following  will  detail  the  process
used in this study to obtain both 2D and 3D sensing results.

 Yolov5-based RGB image detector
The  performance  comparison  of  common  2D  object  detection

models in terms of detection accuracy and detection speed is shown
in Table 3. Among them, the YOLO series has demonstrated particu-
larly  outstanding  performance.  The  YOLO  architecture  has  under-
gone  continuous  development  and  iteration  in  recent  years,  with
YOLOv11  representing  the  most  recent  version.  While  updated
releases typically offer improved perception and inference capabili-
ties,  they  often  cost  greater  computational  resources.  Considering
engineering  deployment  feasibility  and  practical  application
requirements,  YOLOv5 is selected as the 2D detector for this study.
YOLOv5  features  a  lightweight  network  architecture,  adaptive
anchor  frame  computation,  and  robust  community  support.  Since
its  initial  release,  it  has  been  extensively  validated  through  numer-
ous  practical  applications  and  academic  research,  demonstrating
mature  implementation  and  stable  performance.  Its  functional
design ensures real-time detection capability and effective process-
ing  of  objects  across  various  scales - including  small,  medium,  and
large  objects,  which  is  essential  for  roadside  scenarios[23].  Further-
more,  YOLOv5  offers  straightforward  training  and  deployment
across  multiple  programming  languages  and  deep  learning  frame-
works.  This  versatility  enhances  both  portability  and  scalability,
making  it  especially  suitable  for  engineering  applications  in  road-
side detection systems.

The  modeling  framework  of  YOLOv5  is  shown  in Fig.  3.  The  first
module  is  responsible  for  data  preprocessing.  It  utilizes  the Mosaic
augmentation  technique  for  data  enhancement,  which  combines
four  random  images  into  one  to  increase  variability  and  reduce
overfitting.  Adaptive  anchor  box  computation  adjusts  the  anchor
box  sizes  based  on  the  dataset's  statistics,  improving  detection
accuracy for objects of varying scales. Image scaling ensures consis-
tent object sizes within the input image. Following this, the YOLOv5
Backbone  network  processes  the  input  through  structures  such
as  Focus,  which  reduces  the  spatial  dimensions  while  increasing
channel  depth,  and  Cross  Stage  Partial  (CSP)  connections,  which
enhance  feature  extraction  by  promoting  information  flow  and
reducing  computational  load.  The  extracted  features  are  then

 

Fig. 2    Framework for multi-sensor fusion perception.
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passed to the Neck network, which further refines the feature repre-
sentation  using  advanced  structures  like  Spatial  Pyramid  Pooling
(SPP),  Feature  Pyramid  Network  (FPN),  and  Path  Aggregation
Network  (PAN).  SPP  improves  multi-scale  feature  representation,
FPN  integrates  features  from  different  levels,  and  PAN  aggregates
bottom-up  and  top-down  pathways  for  better  feature  refinement.
Finally,  object  detection  is  performed  in  the  Head  network,  where
bounding boxes and class probabilities for potential vehicles in the
input  image  are  predicted  using  a  combination  of  convolutional
layers  and  non-maximum  suppression  to  eliminate  redundant
detections.

The  complete  workflow  for  vehicle  detection  using  YOLOv5  in  a
single roadside image is outlined as follows:

Firstly,  the  raw  RGB  images  are  generated  by  four  cameras
deployed  in  the  center  area  of  the  intersection.  The  pixels  of  the
cameras  are  640  ×  480.  The  objects  in  the  raw  RGB  images  are
described as follows:

L = {[ul,vl,ur,vr]T |ul ∈ [0,1] ,vl ∈ [0,1] ,ur ∈ [0,1] ,vr ∈ [0,1]} (7)
where, L represents the original image data, and [ul, vl, ur, vr]

T represent
the coordinates of the lower-left vertex (converted to relative position
coordinates  between  0−1)  and  the  upper-right  vertex  coordinates  of
the  bounding  box  of  objects  under  the  image  coordinate  system,
respectively.

Next,  objects  within  the  target  area  are  labeled  using  the  object
annotations automatically generated by the CARLA-SUMO co-simu-
lation platform as described previously.  Following this,  the YOLOv5
model  is  trained,  and  the  well-trained  model  is  employed  to  infer
and  predict  the  bounding  boxes  of  detected  objects  based  on  the
input  RGB  images.  The  prediction  of  the  bounding  box  for  each
object can be expressed by the following Eq. (8):

x1 y1 l1 w1 c1 s1
x2 y2 l2 w2 c2 s2
... ... ... ... ... ...
xn yn ln wn cn sn

 = F (L) (8)

F (L)where,  represents the prediction of the input RGB image. [x, y, l,
w, c, s] represents the 2D coordinates of the center point of a predicted
object  bounding  box,  and  the  length,  width,  class  label,  and
confidence score of the object,  respectively. n represents the number

∈
of  the  estimated  boxes.  The j-th  estimated  bounding  box  is  denoted
by (xj, yj, lj, wj, cj, sj), j  [1, n]. The perception results of vehicles travelling
on  each  arm  of  the  intersection  are  obtained  independently  by
YOLOv5,  which  is  used  as  an  input  to  the  cooperative  perception
strategy based on late fusion introduced above.

 PointPillars-based point cloud detector
The  performance  comparison  of  common  3D  object  detection

models in terms of detection accuracy and detection speed is shown
in Table 4.  The PointPillars  algorithm is  chosen for  3D traffic  detec-
tion due to its exceptional balance between object detection accu-
racy  and  real-time  performance,  achieving  62  frames  per  second
(FPS)[27]. Its robust performance has made it a widely adopted model
for  tasks  involving  point  cloud  data.  A  key  strength  of  PointPillars
lies  in  its  effective  data  aggregation  along  the  Z-axis  (i.e.,  vertical
height  from  the  road  surface),  enabling  precise  detection  of  traffic
objects with varying heights—a critical advantage when applied to
roadside LiDARs, which are typically mounted at a specific height.

In this study, PointPillars is employed to detect and classify traffic
objects, particularly vehicles, at intersections using point cloud data.
The model's architecture is depicted in Fig. 4, comprising three main
modules:  (1)  Pillar  Feature  Network  (PFN):  this  module  transforms
3D point cloud data into 2D sparse pseudo-images by dividing the
point cloud into 'pillars'. The dimensions of the point cloud vectors,
the number of  non-empty pillars,  and the number of  points  within
each  pillar  are  represented  as D, P, N,  respectively.  The  process
begins by converting unordered point cloud data into a normalized
4-dimensional tensor. This is achieved by defining the spatial range
of the point cloud and determining the size of each pillar. Each point
is  assigned  to  a  corresponding  pillar  based  on  its  spatial  location,
and a fixed number of points are randomly sampled from each pillar
(zero-padding is applied if fewer points are present). Further opera-
tions,  such  as  mean  and  center  encoding,  expand  the  dimensions.
The features are then extracted through fully connected layers and
max pooling. The final output is a 64-dimensional 2D pseudo-image,
which can be processed using a convolutional framework similar to
YOLO. (2) FPN: in this module, the sparse pseudo-images generated
from  the  point  cloud  data  are  fed  into  a  convolutional  neural
network  (CNN)  backbone.  This  network  extracts  both  fine-grained
and  coarse-level  features  through  convolution,  enabling  accurate
detection of objects at varying scales. By integrating different levels
of  the  network  hierarchy,  multi-scale  features  are  captured.  The
input  data  is  represented  by  the  number  of  channels C,  height H,
and  width W.  (3)  Single  Shot  Multi-Box  Detector  (SSD):  the  SSD
serves  as  the  detection  head,  producing  the  final  output,  which
includes  3D  bounding  boxes,  object  categories,  and  confidence
scores.  The  classification  loss,  localization  loss,  and  orientation  loss
collectively  form  the  loss  function  to  train  the  PointPillars  model.
Specifically,  the  classification  loss  ensures  correct  object  category

 

Table  3.    Comparison  of  common  2D  detection  algorithms  average  perfor
mance for cars.

Model Test dataset mAP FPS

YOLOv5[24] COCO 50.4% 140
YOLOv4[25] COCO 48.9% 120
SSD[26] COCO 41.2% 59
Faster R-CNN[26] COCO 42.7% 7

mAP indicates mean average precision. FPS indicates frames per second.

 

Fig. 3    Network overview for the YOLOv5.
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identification, the localization loss refines the bounding box coordi-

nates, and the orientation loss ensures accurate estimation of object

orientation.

The complete workflow for vehicle detection using PointPillars in

a  single  roadside point  cloud is  outlined as  follows:  Firstly,  the  raw

point clouds are generated by a 64-channel roadside LiDAR with the

detection range of a 100 m × 100 m area centred around its location.

The raw point clouds can be described by:

P =
{[

x,y,z,r
]T |[x,y,z]T ∈ R3,r ∈ [0,1]

}
(9)

where,  [x, y, z, r]  represents  x-coordinate  of  a  3D  point,  y-coordinate

of a 3D point, z-coordinate of a 3D point, and reflectance value which

depends  on  the  material  and  characteristics  of  the  target  surface,

respectively. R represents the LiDAR detection range.

In  this  study,  the  roadside  LiDAR  was  installed  at  a  height  of

3.17 m and was responsible for generating ground truth 3D annota-

tions  for  objects  within  its  detection  range.  The  bounding  boxes

for  the  detected  objects  are  estimated  by  the  trained  PointPillars

model based on the input point cloud data. The formula for estimat-

ing these bounding boxes is as follows:


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where,  represents the prediction of the input point cloud data.
[x, y, z, w, l, h, θ, c, s] represents the 3D coordinates of the center point
of  a  predicted  object  bounding  box,  and  the  width,  length,  height,
orientation  angle,  class  label,  and  confidence  score  of  the  object.
n represents  the  number  of  estimated  boxes.  The j-th  estimated
bounding  box  is  denoted  by  ( )  , j  [1, n].
PointPillars  is  employed  to  independently  generate  3D  perception
results for transportation objects of intersections. These results serve as
additional input for the cooperative perception strategy based on the
post-fusion  process.  Through  this  approach,  the  final  vehicle
positioning  and  classification  results  for  the  entire  roadway  are
obtained.

 Results

Experimental  performance  evaluation  was  conducted  using  the
custom  roadside  infrastructure  sensing  dataset  generated  by  the
CARLA-SUMO  co-simulator.  The  testing  environment  was  config-
ured with a 12-core Xeon Platinum 8260C CPU, an RTX 3090 (24GB)
GPU,  and  an  Ubuntu  18.04  server.  The  software  environment
comprised  Python  3.8,  CUDA  11.3,  and  PyTorch  1.11.0. Table  5
outlines  the  hyperparameter  settings  used  for  the  two  uni-modal
detectors,  YOLOv5  and  PointPillars,  during  the  experiments.  These
settings  were  carefully  chosen  to  optimize  the  performance  of
both  models,  ensuring  accurate  and  efficient  detection  within  the
simulated environment.

The  YOLOv5  detector  was  trained  for  300  epochs,  and  the
PointPillars  detector  was  trained  for  100  epochs,  resulting  in  the

 

Table  4.    Comparison  of  common  3D  detection  algorithms  average  perfor-
mance for cars.

Model Test dataset mAP FPS

VoxelNet[28] KITTI dataset 65.11% 30
SECOND[29] KITTI dataset 76.48% 20
Pointpillars[27] KITTI dataset 74.99% 62
F-PointNet[30] KITTI dataset 70.39% 5.9

mAP indicates mean average precision. FPS indicates frames per second.

 

Fig. 4    Network overview for the PointPillars.

 

Table 5.    Hyper-parameter configuration.

Parameter Description
Value

PointPillars YOLOv5

Range Detection range of the model. [0, −39.68, −3, 69.12, 39.68, 1] −
Voxel size Voxel is a pixel in 3D space, voxel_size represents the size of the voxel. [0.16,0.16,4] −
No. of classes Class of detection objects. 1 1
Lr Learning rate, which determines the step size of parameter updates during the optimization process. 0.003 0.01
Batch size Refers to the number of samples entered at once when training the model. 4 16
Epoch Number of iterations during training. 80 300
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convergence of the loss functions. The results showed that YOLOv5
achieved  an mAP exceeding  90%,  and  PointPillars  mean  Average
Precision (mAP) reached about 60%. The mAP metric is widely used
in computer vision and is  the key evaluation criterion for detection
accuracy in this study. Supplementary Text 1 details the calculation
process of two essential metrics, precision and recall, which are inte-
gral  to  the  computation  of  mAP. Supplementary  Algorithm  1 and
Supplementary Algorithm 2 present the pseudocode for calculating
mAP in two-dimensional  (2D) and three-dimensional  (3D) contexts,
respectively.  Both  detectors  exhibited  strong  performance  on  the
test  set,  particularly  in  accurately  recognizing  targets  close  to  the
sensors  and  effectively  mitigating  issues  related  to  obstacle  occlu-
sion.  However,  the detection accuracy for  distant objects remained
less than ideal. This limitation may stem from the CARLA simulator's
constraints  in  image resolution and point  cloud density,  leading to
feature loss in distant images and increased sparsity in point clouds.

After  a  series  of  coordinate  transformations,  projections,  and
matchings,  an integrated digital  twin system was developed. Fig.  5
captures  a  representative  frame  from  the  simulation,  showcasing
the  functionality  of  this  system. Fig.  5a is  the  Bird's  Eye  View  (BEV)
fusion view of the digital twin system, which integrates both 2D and
3D perception results. The figure shows that in this frame, there are

a  total  of  13  target  vehicles,  with  11  objects  (red  bounding  boxes)
detected  and  matched  by  both  sensors.  This  indicates  that  their
information  across  different  dimensions  has  been  integrated  and
shared.  Blue  bounding  boxes  represent  two  vehicles  detected  by
the camera but not by LiDAR. Orange bounding boxes indicate vehi-
cles  detected by LiDAR but  not  by the camera. Figure 5b is  the 2D
camera  view  of  the  digital  twin  system,  where  green  bounding
boxes  represent  the  camera's  object  detection  results,  and  red
points  are  the  projections  of  the  center  points  of  the  3D  LiDAR
detection  bounding  boxes  onto  the  2D  plane. Figure  5c is  the  3D
LiDAR  view  of  the  digital  twin  system,  with  cubic  bounding  boxes
representing  the  LiDAR's  object  detection  results,  and  the  entire
view  also  includes  a  certain  level  of  three-dimensional  reconstruc-
tion of the background of interest.

Within  this  digital  twin  system,  2D  detection  provides  richer
texture  and  color  information.  In  scenarios  where  the  3D  detector
fails to identify sparse point cloud objects (as shown in the red circle
of Fig.  6a),  the  2D  detector's  perceptual  results  can  effectively
complement and enhance the 3D detector's performance (red circle
of Fig. 6b). Conversely, when 2D detection fails due to occlusion (red
circle of Fig. 6c), the 3D detection results projected onto the 2D view
can  serve  as  valuable  hints,  reducing  the  likelihood  of  missed

 

a b c

Fig. 5    Digital twin view. (a) BEV fusion view. (b) Camera view. (c) LiDAR view.

 

a b

c d

Fig. 6    Local details of the digital twin view. (a) 3D Detection Failure: The 3D detector fails to identify a vehicle near the intersection. (b) 2D Detection
Success: The 2D detector successfully captures the vehicle that was missed in the 3D detection (as shown in a). (c) 3D Detection Success: The 3D detector
successfully detects a vehicle that was occluded and missed by the 2D detector (as shown in d). (d) 2D Detection Failure: The 2D detector fails to detect a
vehicle on the far side of the road due to the overlap of two vehicles.
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detections (red circle of Fig. 6. Additionally, the more precise spatial
position  and  distance  information  provided  by  the  3D  detector
enriches  the  data  available  to  the  digital  twin  system,  further
enhancing overall performance.

 Conclusions

In this study, we address the limited availability of roadside infras-
tructure  sensing  solutions  at  intersections  by  integrating  traffic
simulation, 2D and 3D unimodal detectors, and multi-source hetero-
geneous  sensor  data  fusion.  We  propose  a  digital  twin  system  for
intersections based on multi-sensor data fusion. This approach vali-
dates  the  feasibility  of  deploying  digital  twin  systems  at  roadside
infrastructure  using  sensor  fusion  and  explores  its  performance.  It
accomplishes  the  fusion  of  decision-level  perceptual  results  based
on  near  real-time  mapping.  The  experimental  results  demonstrate
that  the  fusion  strategy  effectively  integrates  the  complementary
advantages  of  RGB  cameras  and  LiDAR.  For  instance,  when  sparse
point clouds lead to 3D detection failures, 2D detection can provide
supplementary  information,  while  conversely,  the  global  perspec-
tive of 3D detection compensates for occlusion issues inherent in 2D
detection. Unlike existing studies which are predominantly focused
on onboard sensors, this research validates the feasibility of deploy-
ing the framework in roadside infrastructure and proposes a modu-
lar fusion architecture. In terms of methodology, this study employs
simulated data  to  reduce the  costs  associated with  real-world  data
collection,  offering greater  scalability  compared to  physical  vehicle
testing.  Additionally,  the fusion strategy is  compatible  with various
pre-trained  models,  enhancing  its  engineering  applicability.  This
research  contributes  theoretically  and  practically  to  the  fields  of
digital twin technology and multi-sensor data fusion.

The research still  has certain limitations.  Due to the data genera-
tion  mechanism  of  the  CARLA-SUMO  joint  simulation  platform,
there  are  discrepancies  between  the  sensor  models  (such  as  RGB
camera  noise  and  LiDAR  point  cloud  density)  and  real-world
scenarios. For example, the simulation does not consider the impact
of  random  electromagnetic  interference  and  extreme  weather
conditions on real roads, which may overestimate the robustness of
multimodal fusion algorithms in practical deployment. Additionally,
the  generalization  ability  of  current  decision-level  fusion  strategies
under  complex  environmental  disturbances  has  not  been  fully
verified.  Current  studies  have  not  considered  the  effects  of  non-
motorized  vehicles,  pedestrians,  weather,  and  lighting  changes
(such as rain, fog, and nighttime) on the overall performance of the
system.

Future  research  efforts  will  concentrate  on  the  following  key
areas: (1) Enhancing the quality of RGB image data generated by the
CARLA-SUMO  co-simulator  is  essential  to  accurately  capture  key
object  features.  Future  efforts  will  prioritize  improving  the  resolu-
tion  and  clarity  of  these  images  to  ensure  comprehensive  feature
extraction. (2) Further optimization of the deployment locations and
strategies for roadside infrastructure sensors is crucial. This includes
a thorough investigation of  how various sensor types,  orientations,
heights,  elevations,  pitch  angles,  and  configuration  combinations
influence  detection  performance.  Such  optimizations  will  enhance
the  adaptability  and  effectiveness  of  the  proposed  solution  across
different  scenarios.  (3)  To  bolster  model  robustness  and  minimize
the costs associated with large-scale testing, future research should
focus on integrating real-world data with simulation-generated data
through cross-validation. This approach will provide a more reliable
and cost-effective method for refining detection models.
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