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Abstract

Digital twin technology is pivotal in the advancement of smart cities and autonomous driving due to its unique capabilities in virtual-reality integration,
interactive control, and predictive analysis. The primary enabler for achieving advanced transportation digital twins lies in enhancing environmental sensing
capabilities, with multi-sensor data fusion emerging as a widely adopted strategy to improve sensing performance. However, existing research has
predominantly focused on onboard systems, leaving roadside sensor deployment and roadside multi-sensor data fusion strategies insufficiently explored.
Recognizing the potential advantages of roadside sensor systems, such as broader sensory field coverage and reduced occlusion. This study investigates the
integration of roadside multi-sensor data fusion with digital twin technology in the transportation domain. Consequently, this paper introduces an
innovative intersection digital twin system developed through a simulation-based approach, leveraging roadside multi-sensor data late fusion. The Car
Learning to Act-Simulation of Urban Mobility (CARLA-SUMO) co-simulator acts as a data generation platform, synchronously producing RGB images and
Light Detection and Ranging (LiDAR) point clouds with spatiotemporal consistency. For object detection, we employ the You Only Look Once version 5
(YOLOVS5) and PointPillars algorithms. Then, a decision-level fusion strategy is proposed to integrate these heterogeneous sensor outputs into a cohesive
roadside digital twin system. Experimental results demonstrate that YOLOv5 and PointPillars achieve a mean Average Precision (mAP) of approximately 90%
and 60%, respectively. Moreover, the detection frequency of both detectors is well-suited to the dynamic nature of intersection traffic, and the fusion
strategy synergistically exploits the complementary advantages of heterogeneous sensors to enhance overall system performance. This research
contributes to the field by facilitating low-cost autonomous driving simulation tests and enabling the reconstruction of intersections using roadside digital

twin technology, with significant implications for vehicle-road coordination and traffic management.
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Introduction

In recent years, the rapid advancement of autonomous driving
has significantly increased the demand for sophisticated digital
twins!'l. By creating digital replicas of the physical world, digital twin
technology enables real-time monitoring, precise analysis, and effi-
cient optimization of transportation systems(23l. Additionally, it
provides planners with high-precision detection and object model-
ing capabilities, which are instrumental in enhancing the auto-
mation and intelligence of transportation networkstl.

The primary challenge in developing high-fidelity transportation
digital twin systems lies in achieving robust, precise, and detailed
environmental sensing, which demands advanced object detection
capabilities. While current research and industry projects have
predominantly focused on onboard sensor solutions, the potential
of roadside infrastructure sensing remains underexplored®®l,
Onboard solutions are favored for their ease of deployment and
maintenancel”8l, making them well-suited for the current popular
single-vehicle intelligence approaches in the industry. Compared to
onboard systems, roadside infrastructure offers several complemen-
tary distinct advantages, including reduced edge computing costs,
enhanced provision of continuous and reliable area-wide sensing,
and expanded detection range with diminished susceptibility to
occlusion!®l. These strengths make roadside infrastructure promis-
ing for advanced applications like vehicle-to-infrastructure (V2I)
collaboration and higher-level autonomous driving. Both academia
and industry are increasingly recognizing the benefits of road-
side infrastructure sensing as a valuable complementary solution.
Consequently, there is a pressing need for interdisciplinary research
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that integrates roadside multi-view sensing and digital twin tech-
nology to extend the capabilities of existing transportation systems.

In the context of roadside deployment, the choice of sensor type
is crucial. Different sensors, such as cameras and LiDAR, offer distinct
advantages based on their respective imaging principles. Cameras
capture rich color and semantic information through pixel-based
textures, while LiDAR provides precise positional and depth infor-
mation through spatial 3D point clouds. The performance compa-
rison of these common sensors is detailed in Table 1. In complex
transportation environments, a single type of sensor may lead to
problems such as low accuracy, susceptibility to interference, and
poor adaptability!'®'"], To avoid the drawbacks of a single type of
sensor, multi-sensor fusion can effectively improve the quality of the
obtained information, resulting in more comprehensive and accu-
rate sensing results. For roadside sensors, factors such as data offset
due to different installation heights, differences in perceptual
perspectives, and experimental difficulties due to scarce datasets
bring more challenges to the fusion process.

In response to the above issues, scholars have conducted a great
deal of research in related fields. Liu et al.['dl developed a method
that integrates vehicle camera image data with digital twins to
improve the performance of vision systems in intelligent vehicles,
achieving a detection accuracy of 79.2% at a threshold of 0.7 loU.
Zheng et al.'”! constructed digital twin models at 12 urban traffic
locations by capturing image data and extracting trajectory informa-
tion via drones. He et al.l'8] utilized deep learning algorithms and
near-real-time projection methods to develop a digital twin system
for 3D reconstruction of construction sites based on video camera
image data. Wojke et al.l'l introduced a real-time traffic monitoring
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Digital twin intersection

Table 1. Common sensors in road infrastructure sensing systems.
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Type

Advantage

Disadvantage

Principle

Main application

Deployment location

Geomagpnetic coil'?  Fast response time, cost-

Infrared sensors!'?!
Fisheye cameral'¥

LiDARI™

Cameral!

effective
High precision

Large detection range,
high picture quality

3D information available,
high accuracy

Wide range, rich textures,
low prices

Difficult to maintain,
accuracy sensitive
Low resolution, short
distance

Highly expensive with
distortion problems
Slow processing, high
costs

Light-sensitive, blurriness
under high-speed

Electromagnetic
induction

Infrared reflectance

Image recognition
technology
Laser beam reflection

Image recognition
technology

Detecting the presence,
passage of vehicles
Night vision, infrared
imaging

Safety monitoring

Depth information
perception, 3D
reconstruction
Path and object
recognition

Position 0.2-0.4 m deep from
the road surface

Signal arm, building above 3
m position

Signal arm, street lamp post
3-5 m height position
Signal arm, street lamp post
1.5-2.5 m height position

Signal arm, street lamp post
2.5-5 m height position

system that integrates LiDAR and visual data deployed at the road-
side for 3D object detection, extending the DeepSORT model to
create the 3DSORT tracking model. Bai et al.2% pioneered a multi-
modal 3D object detection framework that combines roadside
LiDAR and camera data, integrating various fusion stages (early and
late fusion) and methods (traditional and learning-based fusion)
within a single system. Young et al.2"l proposed an infrastructure-
based perceptual fusion scheme, where multiple sensors (LiDAR and
cameras) are used to acquire and fuse perceptual information for
monitoring the traffic status of moving objects. In a recent study,
Chen et al.22l employed the PointPillars algorithm with a late fusion-
based cooperative sensing strategy to generate highly complete
and smooth vehicle trajectories in the entire road.

The literature review traces the progression of digital twin
construction from onboard sensing and aerial photography to road-
side sensing, emphasizing the shift from unimodal to multimodal
fusion detection methods. Despite these advancements, there
remains a vacancy in integrating roadside infrastructure sensing,
multi-sensor data fusion, and digital twin technologies into a unified
framework. Additionally, much of the existing research in roadside
sensing relies on open-source datasets (e.g., nuScenes, Waymo) or
real-world field experiments to train object detection models, which
demands substantial resources and incurs high costs. This study
introduces a novel approach by leveraging the CARLA-SUMO co-
simulator to generate heterogeneous sensor data from roadside
infrastructures and proposes an innovative fusion technique that
integrates LiDAR point cloud data with camera RGB image data. The
framework of this research is composed of three key components:
(1) Simulation Platform Construction and Data Collection: the
CARLA-SUMO co-simulator is employed to build detailed simulation
environments, wherein LiDAR and cameras are deployed to gener-
ate comprehensive test datasets. This phase also includes essential
tasks such as data preprocessing, co-calibration, and labeling. (2)
Unimodal Detection: in this phase, the PointPillars model processes
the LiDAR-acquired point cloud data, while the YOLOv5 model
handles the RGB image data from the cameras. The detection results
from both models undergo spatial transformation to account for the
differing perspectives of the detection bounding boxes. (3) Near
Real-Time Mapping and Fusion Modeling: this final phase involves
correlating and matching detection frames within a unified view-
point, followed by fusing the sensing results at the decision level
through a mapping approach. The overarching objective of this
framework is to enhance perception accuracy and develop a digital
twin intersection capable of real-time monitoring of traffic dyna-
mics at the vehicle level. The key advantages of this research are
outlined as follows:

Versatility and modularity
The study employs a late-fusion approach, where the object
detection results from each sensor are fused on top of each other,
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thus allowing for the flexible selection of any pre-trained 2D and 3D
object detection algorithms to achieve the digital twin effect using
the proposed fusion method.

Stability and superior performance

By deploying sensors within the roadside infrastructure, the
system mitigates occlusions caused by vehicles and buildings,
ensuring a continuous and stable perceptual field.

Simulation platform construction and data
collection

Experimental scenario configuration

The collection of high-quality camera and LiDAR detection data
for urban intersection scenes is critical to this study. Given the time
and cost constraints of real-world data collection, this study utilizes
the CARLA-SUMO co-simulator for traffic simulation and high-
fidelity point cloud and RGB image data collection. Specifically, the
Simulation of Urban MObility (SUMO) is an open-source micro-
scopic traffic simulator capable of generating multi-modal traffic
flows and simulating driving behaviors. In contrast, CARLA, a high-
performance autonomous driving simulator built on the Unreal
Engine (UE), is dedicated to accurately simulate vehicle dynamics
and components related to perception, planning, decision-making,
and control. By integrating CARLA with SUMO, highly realistic virtual
traffic scenarios can be constructed, allowing the simulation of vari-
ous sensor processes and the generation of data, including images
and 3D point clouds. This integrated simulation framework not only
facilitates the flexible creation of multi-modal traffic environments
but also provides an ideal experimental platform for multi-sensor
fusion detection. It should be emphasized that, owing to its low-cost
nature, high-performance capabilities, and easy scalability, the
CARLA-SUMO co-simulator was chosen as the simulation model in
this research. Based on the Unreal Engine, CARLA enables detailed
modeling of sensors, including cameras, LiDARs, and millimeter
wave radars. Moreover, it can offer high-fidelity 3D scene rendering.
On the other hand, SUMO can generate background traffic flows
that comply with real-world traffic regulations. Together, these two
platforms can rapidly and synchronously construct intricate traffic
scenarios, which align well with the high-precision and high-speed
features of digital twin intersections. The simulation environment is
based on the Town10 map within the CARLA simulator. The selected
intersection is situated in the core area of the town. One LiDAR
sensor and four cameras are deployed at the center of the yellow
grid area depicted in Fig. 1.

The sensors were deployed at the center of the intersection of the
CARLA built-in Town10 map downtown at the coordinate position
of (51.2, 51.2), and their mounting height was 3.17 m above the
ground level of the roadside monitoring pole. The four cameras are
strategically positioned to cover each direction of the intersection,
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ensuring uninterrupted monitoring of the entire area. More specific
sensor configuration parameters are shown in Table 2.

Data processing

The raw data generated from the simulation is processed and
converted into the Karlsruhe Institute of Technology and Toyota
Technological Institute (KITTI) format, which is widely used for evalu-
ating computer vision algorithms in autonomous driving scenarios.
The raw data comprises several file sets, including image data from
four cameras, point cloud data, labeling data, and calibration para-
meters.

Before performing detection and fusion operations, the labeling
files must undergo further processing. Specifically, using the
camera's external parameters, rotation matrix, and other relevant
parameters from the calibration files, the 3D bounding box coordi-
nates of detected objects are converted into the image coordinate
system. This conversion allows for the generation of 2D planar

: g! 4 Cameras
% 1 LiDAR
4

CARLA-SUMO co-simulator

SUMO

¥Sensors Deployment Point

" N—

_ LiDAR Detection Range

Carera Detection Range

Fig. 1 Sensor deployment locations and hardware configurations.

Table2. Parameter configuration and description for Camera and LiDARs.

Sensor Parameters Default Description
LiDAR Channels 64 Number of lasers
Height 3.17m Height with respect to the
road surface
Range 100 m Maximum distance to
measure/ray-cast in meters
Rotation 20 Hz LiDAR rotation frequency
frequency
Points per second 500,000 Number of points
Upper FOV 5 Angle in degrees of the
highest laser beam
Lower FOV -35 Angle in degrees of the lowest
laser beam
Noise stddev 0.01 Standard deviation of the
noise model of point
Dropoff rate 20% General proportion of points
that are randomly dropped
Dropoff intensity 0.8 Threshold of intensity value for
limit exempting dropoff
Camera  FOV 920 Angle in degrees

Focal length 360 Optical characteristics of

camera lenses

Principal point (320,240) Image center coordinates
coordinate
Resolution 640 X480  Measure of image sharpness

FOV indicates field of view; stddev indicates standard deviation.
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bounding box coordinates, facilitating the transformation of the
collected data into the standard KITTlI format. The conversion
process is guided by Eqgs (1)—(4). The KITTI dataset, established by
the Karlsruhe Institute of Technology (KIT) in Germany and the
Toyota Technological Institute at Chicago (TTI-C) in the United
States in 2012, is a leading benchmark for computer vision algo-
rithms in self-driving applications!'"l. Due to its open-source nature
and widespread adoption, many 2D and 3D detection frame-
works include interfaces specifically designed for processing KITTI-
formatted data, making it a convenient format for this study.

To map the point cloud coordinates y from the point cloud coor-
dinate system to the image coordinate system of camera j, resulting
in the corresponding image coordinates x, the following transforma-
tion is applied:

y= P(i) R(O) Team .

rectRrectTheto®  (=0,1,2,3) )
where, P is the projection matrix of camera i, which consists of a
series of internal references of the camera, i = 0, 1, 2, 3 are the
corresponding numbers of the four cameras, respectively. R, is the
aberration correction matrix, which is used to improve the aberration
of the image. T¢" is the external reference matrix of the camera,

which consists of a rotation matrix and a translation matrix.

X = [xvelo;yvelo;zvelo; 1] (2)
y= [xcam;ycam;zc] (3)

’ Xeam | Yecam
=== 4
y [ 7 7 ] “

where, X = [Xye100 Yvelor Zvelo 1 1S the chi-square coordinate form of the
point cloud data, y = [X .4 Yeams Zcl is the chi-square coordinate of the
point cloud data after mapping in the image coordinate system, and y'
is the pixel coordinate, and the final 2D bounding-box coordinate can
be obtained by choosing the maximal and minimal value of y' in eight
vertices. P R T¢r, the three parameters can be obtained
directly by simulation, and the data preprocessing is completed by the
above steps.

Detection fusion algorithm

This research aims to enhance engineering feasibility by leverag-
ing mature and widely accepted algorithms and techniques in the
industry. A dedicated roadside sensor dataset is generated using the
CARLA-SUMO co-simulation platform described previously. Follow-
ing specific preprocessing of the raw data, detection tasks are
executed using the widely adopted YOLOVS5 for 2D image detection
and PointPillars for 3D point cloud detection. The 2D and 3D detec-
tion results are then integrated within a unified viewpoint through a
near-real-time mapping approach. This process involves operations
such as matching, fusion, and information sharing, ultimately lead-
ing to the development of a preliminary digital twin system. The
framework architecture of this paper is shown in Fig. 2.

Near real-time mapping approach to fusion modeling

The fusion process integrates the detection results from the 2D
and 3D detectors, capitalizing on the higher accuracy of 2D detec-
tion. The fusion strategy is as follows: first, the bounding boxes from
the 3D point cloud detection are transformed from the LiDAR coor-
dinate system into the camera coordinate system. These trans-
formed bounding boxes are then projected onto the image plane,
with the center point of each 3D bounding box mapped to the pixel
coordinate system to generate projection points. Next, the 2D
detection results are utilized, where the corresponding bounding
boxes are identified. Associative matching is conducted by examin-
ing the logical containment relationship between the projection
points and the 2D bounding boxes. For objects that are successfully
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Fig.2 Framework for multi-sensor fusion perception.

matched, the perception information of both parties is shared. For
objects that are not successfully matched, decisions are made based
on the confidence scores of the unimodal detectors, retaining the
unimodal detection results with confidence higher than the set
threshold and discarding the detection results below the threshold.
This approach allows for the effective integration of multimodal
sensor data, enhancing the accuracy and reliability of the percep-
tion system.

To finalize the fusion, a fixed region within the sensor's detection
field of view is selected as the background view for the digital twin.
The final detection results, post-fusion, are then overlaid on this
background. The mathematical transformations involved in
mapping the detection results between the LIiDAR coordinate
system, the camera coordinate system, and the image pixel coordi-
nate system are outlined in Egs (5), (6):

Camera coordinate system to pixel coordinate system

A point (u, v) in the pixel coordinate system can be represented
by a point (x,, ., z.) in the camera coordinate system as Eq. (5):

w| [ frax 0w 0 e
v == 0 fldy v 0 Ye )
1] =] o 0 1 0 Ze

1

where, (u, v) denotes the point coordinates under the pixel coordinate
system. f is the focal length of the camera, which is determined only
by the camera's attributes. (x, y, z) denotes the point coordinates
under the camera's coordinate system.

LiDAR coordinate system to camera coordinate system

The conversion of the global coordinate system to the camera
coordinate system requires the camera's external reference matrix
K, which is a 4x4 matrix. The points (x, ¥, z.) in the camera coordi-
nate system can be represented by the points x,, y,,, z,, in the global
coordinate system as Eq. (6):

x Xy Xy

¢ Y R T ] Y
Yo |=Ks- = [ )
2 le 0 1 Axd le

where, R is a 3 x 3 rotation matrix and T is a 3 X 1 translation matrix,
which can be obtained by sensor calibration. The computational
workflow outlined above describes a cooperative roadside sensing
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strategy utilizing late fusion. The following will detail the process
used in this study to obtain both 2D and 3D sensing results.

Yolov5-based RGB image detector

The performance comparison of common 2D object detection
models in terms of detection accuracy and detection speed is shown
in Table 3. Among them, the YOLO series has demonstrated particu-
larly outstanding performance. The YOLO architecture has under-
gone continuous development and iteration in recent years, with
YOLOv11 representing the most recent version. While updated
releases typically offer improved perception and inference capabili-
ties, they often cost greater computational resources. Considering
engineering deployment feasibility and practical application
requirements, YOLOVS5 is selected as the 2D detector for this study.
YOLOv5 features a lightweight network architecture, adaptive
anchor frame computation, and robust community support. Since
its initial release, it has been extensively validated through numer-
ous practical applications and academic research, demonstrating
mature implementation and stable performance. Its functional
design ensures real-time detection capability and effective process-
ing of objects across various scales - including small, medium, and
large objects, which is essential for roadside scenarios!3l. Further-
more, YOLOV5 offers straightforward training and deployment
across multiple programming languages and deep learning frame-
works. This versatility enhances both portability and scalability,
making it especially suitable for engineering applications in road-
side detection systems.

The modeling framework of YOLOVS5 is shown in Fig. 3. The first
module is responsible for data preprocessing. It utilizes the Mosaic
augmentation technique for data enhancement, which combines
four random images into one to increase variability and reduce
overfitting. Adaptive anchor box computation adjusts the anchor
box sizes based on the dataset's statistics, improving detection
accuracy for objects of varying scales. Image scaling ensures consis-
tent object sizes within the input image. Following this, the YOLOv5
Backbone network processes the input through structures such
as Focus, which reduces the spatial dimensions while increasing
channel depth, and Cross Stage Partial (CSP) connections, which
enhance feature extraction by promoting information flow and
reducing computational load. The extracted features are then
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Table 3. Comparison of common 2D detection algorithms average perfor

mance for cars.
Model Test dataset mAP FPS
YOLOv5124 COoCo 50.4% 140
YOLOv412%! COoCo 48.9% 120
SSDRe! COCo 412% 59
Faster R-CNN2®! COCO 42.7% 7

mAP indicates mean average precision. FPS indicates frames per second.

passed to the Neck network, which further refines the feature repre-
sentation using advanced structures like Spatial Pyramid Pooling
(SPP), Feature Pyramid Network (FPN), and Path Aggregation
Network (PAN). SPP improves multi-scale feature representation,
FPN integrates features from different levels, and PAN aggregates
bottom-up and top-down pathways for better feature refinement.
Finally, object detection is performed in the Head network, where
bounding boxes and class probabilities for potential vehicles in the
input image are predicted using a combination of convolutional
layers and non-maximum suppression to eliminate redundant
detections.

The complete workflow for vehicle detection using YOLOV5 in a
single roadside image is outlined as follows:

Firstly, the raw RGB images are generated by four cameras
deployed in the center area of the intersection. The pixels of the
cameras are 640 x 480. The objects in the raw RGB images are
described as follows:

L= {[ug,vi,ur,ve) g € [0,1],v; € [0,1],u, € [0,1],v, € [0,1]} (@)
where, L represents the original image data, and [uj, v, u,, v,]” represent
the coordinates of the lower-left vertex (converted to relative position
coordinates between 0-1) and the upper-right vertex coordinates of
the bounding box of objects under the image coordinate system,
respectively.

Next, objects within the target area are labeled using the object
annotations automatically generated by the CARLA-SUMO co-simu-
lation platform as described previously. Following this, the YOLOv5
model is trained, and the well-trained model is employed to infer
and predict the bounding boxes of detected objects based on the
input RGB images. The prediction of the bounding box for each
object can be expressed by the following Eg. (8):

xoy howroa s
X2 y2 b owa o s —F W) )

Xn Yn ln Wp  Cp Sp

where, ¥ (L) represents the prediction of the input RGB image. [x, y, /,
w, ¢, s] represents the 2D coordinates of the center point of a predicted
object bounding box, and the length, width, class label, and
confidence score of the object, respectively. n represents the number
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Fig.3 Network overview for the YOLOVS.
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of the estimated boxes. The j-th estimated bounding box is denoted
by (x; y; I, w; ¢;, s), j € [1, n]. The perception results of vehicles travelling
on each arm of the intersection are obtained independently by
YOLOV5, which is used as an input to the cooperative perception
strategy based on late fusion introduced above.

PointPillars-based point cloud detector

The performance comparison of common 3D object detection
models in terms of detection accuracy and detection speed is shown
in Table 4. The PointPillars algorithm is chosen for 3D traffic detec-
tion due to its exceptional balance between object detection accu-
racy and real-time performance, achieving 62 frames per second
(FPS)271, Its robust performance has made it a widely adopted model
for tasks involving point cloud data. A key strength of PointPillars
lies in its effective data aggregation along the Z-axis (i.e., vertical
height from the road surface), enabling precise detection of traffic
objects with varying heights—a critical advantage when applied to
roadside LiDARs, which are typically mounted at a specific height.

In this study, PointPillars is employed to detect and classify traffic
objects, particularly vehicles, at intersections using point cloud data.
The model's architecture is depicted in Fig. 4, comprising three main
modules: (1) Pillar Feature Network (PFN): this module transforms
3D point cloud data into 2D sparse pseudo-images by dividing the
point cloud into 'pillars'. The dimensions of the point cloud vectors,
the number of non-empty pillars, and the number of points within
each pillar are represented as D, P, N, respectively. The process
begins by converting unordered point cloud data into a normalized
4-dimensional tensor. This is achieved by defining the spatial range
of the point cloud and determining the size of each pillar. Each point
is assigned to a corresponding pillar based on its spatial location,
and a fixed number of points are randomly sampled from each pillar
(zero-padding is applied if fewer points are present). Further opera-
tions, such as mean and center encoding, expand the dimensions.
The features are then extracted through fully connected layers and
max pooling. The final output is a 64-dimensional 2D pseudo-image,
which can be processed using a convolutional framework similar to
YOLO. (2) FPN: in this module, the sparse pseudo-images generated
from the point cloud data are fed into a convolutional neural
network (CNN) backbone. This network extracts both fine-grained
and coarse-level features through convolution, enabling accurate
detection of objects at varying scales. By integrating different levels
of the network hierarchy, multi-scale features are captured. The
input data is represented by the number of channels C, height H,
and width W. (3) Single Shot Multi-Box Detector (SSD): the SSD
serves as the detection head, producing the final output, which
includes 3D bounding boxes, object categories, and confidence
scores. The classification loss, localization loss, and orientation loss
collectively form the loss function to train the PointPillars model.
Specifically, the classification loss ensures correct object category

Location
Category
Confidence Score

Wang et al. Digital Transportation and Safety 2025, 4(4): 242—250
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Table 4. Comparison of common 3D detection algorithms average perfor-
mance for cars.
Model Test dataset mAP FPS
VoxelNet[8! KITTI dataset 65.11% 30
SECONDE! KITTI dataset 76.48% 20
Pointpillars!?” KITTI dataset 74.99% 62
F-PointNetB% KITTI dataset 70.39% 5.9

mAP indicates mean average precision. FPS indicates frames per second.

identification, the localization loss refines the bounding box coordi-
nates, and the orientation loss ensures accurate estimation of object
orientation.
The complete workflow for vehicle detection using PointPillars in
a single roadside point cloud is outlined as follows: Firstly, the raw
point clouds are generated by a 64-channel roadside LiDAR with the
detection range of a 100 m x 100 m area centred around its location.
The raw point clouds can be described by:
P ={[x.y.zr] Ixy.2]" €R,refo,1) ©)

where, [x, y, z, r] represents x-coordinate of a 3D point, y-coordinate
of a 3D point, z-coordinate of a 3D point, and reflectance value which
depends on the material and characteristics of the target surface,
respectively. R represents the LiDAR detection range.

In this study, the roadside LiDAR was installed at a height of
3.17 m and was responsible for generating ground truth 3D annota-
tions for objects within its detection range. The bounding boxes
for the detected objects are estimated by the trained PointPillars
model based on the input point cloud data. The formula for estimat-
ing these bounding boxes is as follows:

Input Point Clouds

Digital Transportation
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S TR I
e € € e € € €
oY, 5 owy oy 8 s = F(P) (10)

e e

Xo Yoo zown Loh 6 s

where, F (P) represents the prediction of the input point cloud data.
[x, ¥, z,w, |, h, 0, ¢, s] represents the 3D coordinates of the center point
of a predicted object bounding box, and the width, length, height,
orientation angle, class label, and confidence score of the object.
n represents the number of estimated boxes. The j-th estimated
bounding box is denoted by (xj,yj,z wj lj,he 6, c sf) ,j €, nl
PointPillars is employed to independently generate 3D perception
results for transportation objects of intersections. These results serve as
additional input for the cooperative perception strategy based on the
post-fusion process. Through this approach, the final vehicle
positioning and classification results for the entire roadway are
obtained.

Results

Experimental performance evaluation was conducted using the
custom roadside infrastructure sensing dataset generated by the
CARLA-SUMO co-simulator. The testing environment was config-
ured with a 12-core Xeon Platinum 8260C CPU, an RTX 3090 (24GB)
GPU, and an Ubuntu 18.04 server. The software environment
comprised Python 3.8, CUDA 11.3, and PyTorch 1.11.0. Table 5
outlines the hyperparameter settings used for the two uni-modal
detectors, YOLOv5 and PointPillars, during the experiments. These
settings were carefully chosen to optimize the performance of
both models, ensuring accurate and efficient detection within the
simulated environment.

The YOLOv5 detector was trained for 300 epochs, and the
PointPillars detector was trained for 100 epochs, resulting in the

Single Shot Multi-box Detector

~

Pillar Pyramid Network (SSD)
(FPN)
l Decony F ‘ﬁ \\n
”% | |
Pillar Feature Net Deconv || Concat L—{I—— i ‘
(PFN) | ot |
S T e TR RN TTTTTTTTE Deconv | H
\ | [
: /—- — T = _J 2
: ct,. >
: Pllal ncex
"""""" e, ,—,, Output Estimated Results
Fig.4 Network overview for the PointPillars.
Table 5. Hyper-parameter configuration.
Value
Parameter Description
PointPillars YOLOv5
Range Detection range of the model. [0, —39.68, -3, 69.12, 39.68, 1] -
Voxel size Voxel is a pixel in 3D space, voxel_size represents the size of the voxel. [0.16,0.16,4] -
No. of classes Class of detection objects. 1 1
Lr Learning rate, which determines the step size of parameter updates during the optimization process. 0.003 0.01
Batch size Refers to the number of samples entered at once when training the model. 4 16
Epoch Number of iterations during training. 80 300
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convergence of the loss functions. The results showed that YOLOv5
achieved an mAP exceeding 90%, and PointPillars mean Average
Precision (mAP) reached about 60%. The mAP metric is widely used
in computer vision and is the key evaluation criterion for detection
accuracy in this study. Supplementary Text 1 details the calculation
process of two essential metrics, precision and recall, which are inte-
gral to the computation of mAP. Supplementary Algorithm 1 and
Supplementary Algorithm 2 present the pseudocode for calculating
mAP in two-dimensional (2D) and three-dimensional (3D) contexts,
respectively. Both detectors exhibited strong performance on the
test set, particularly in accurately recognizing targets close to the
sensors and effectively mitigating issues related to obstacle occlu-
sion. However, the detection accuracy for distant objects remained
less than ideal. This limitation may stem from the CARLA simulator's
constraints in image resolution and point cloud density, leading to
feature loss in distant images and increased sparsity in point clouds.

After a series of coordinate transformations, projections, and
matchings, an integrated digital twin system was developed. Fig. 5
captures a representative frame from the simulation, showcasing
the functionality of this system. Fig. 5a is the Bird's Eye View (BEV)
fusion view of the digital twin system, which integrates both 2D and
3D perception results. The figure shows that in this frame, there are

Digital twin intersection

a total of 13 target vehicles, with 11 objects (red bounding boxes)
detected and matched by both sensors. This indicates that their
information across different dimensions has been integrated and
shared. Blue bounding boxes represent two vehicles detected by
the camera but not by LiDAR. Orange bounding boxes indicate vehi-
cles detected by LiDAR but not by the camera. Figure 5b is the 2D
camera view of the digital twin system, where green bounding
boxes represent the camera's object detection results, and red
points are the projections of the center points of the 3D LiDAR
detection bounding boxes onto the 2D plane. Figure 5c is the 3D
LiDAR view of the digital twin system, with cubic bounding boxes
representing the LiDAR's object detection results, and the entire
view also includes a certain level of three-dimensional reconstruc-
tion of the background of interest.

Within this digital twin system, 2D detection provides richer
texture and color information. In scenarios where the 3D detector
fails to identify sparse point cloud objects (as shown in the red circle
of Fig. 6a), the 2D detector's perceptual results can effectively
complement and enhance the 3D detector's performance (red circle
of Fig. 6b). Conversely, when 2D detection fails due to occlusion (red
circle of Fig. 6¢), the 3D detection results projected onto the 2D view
can serve as valuable hints, reducing the likelihood of missed

Fig. 6 Local details of the digital twin view. (a) 3D Detection Failure: The 3D detector fails to identify a vehicle near the intersection. (b) 2D Detection
Success: The 2D detector successfully captures the vehicle that was missed in the 3D detection (as shown in a). (c) 3D Detection Success: The 3D detector
successfully detects a vehicle that was occluded and missed by the 2D detector (as shown in d). (d) 2D Detection Failure: The 2D detector fails to detect a

vehicle on the far side of the road due to the overlap of two vehicles.
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detections (red circle of Fig. 6. Additionally, the more precise spatial
position and distance information provided by the 3D detector
enriches the data available to the digital twin system, further
enhancing overall performance.

Conclusions

In this study, we address the limited availability of roadside infras-
tructure sensing solutions at intersections by integrating traffic
simulation, 2D and 3D unimodal detectors, and multi-source hetero-
geneous sensor data fusion. We propose a digital twin system for
intersections based on multi-sensor data fusion. This approach vali-
dates the feasibility of deploying digital twin systems at roadside
infrastructure using sensor fusion and explores its performance. It
accomplishes the fusion of decision-level perceptual results based
on near real-time mapping. The experimental results demonstrate
that the fusion strategy effectively integrates the complementary
advantages of RGB cameras and LiDAR. For instance, when sparse
point clouds lead to 3D detection failures, 2D detection can provide
supplementary information, while conversely, the global perspec-
tive of 3D detection compensates for occlusion issues inherent in 2D
detection. Unlike existing studies which are predominantly focused
on onboard sensors, this research validates the feasibility of deploy-
ing the framework in roadside infrastructure and proposes a modu-
lar fusion architecture. In terms of methodology, this study employs
simulated data to reduce the costs associated with real-world data
collection, offering greater scalability compared to physical vehicle
testing. Additionally, the fusion strategy is compatible with various
pre-trained models, enhancing its engineering applicability. This
research contributes theoretically and practically to the fields of
digital twin technology and multi-sensor data fusion.

The research still has certain limitations. Due to the data genera-
tion mechanism of the CARLA-SUMO joint simulation platform,
there are discrepancies between the sensor models (such as RGB
camera noise and LiDAR point cloud density) and real-world
scenarios. For example, the simulation does not consider the impact
of random electromagnetic interference and extreme weather
conditions on real roads, which may overestimate the robustness of
multimodal fusion algorithms in practical deployment. Additionally,
the generalization ability of current decision-level fusion strategies
under complex environmental disturbances has not been fully
verified. Current studies have not considered the effects of non-
motorized vehicles, pedestrians, weather, and lighting changes
(such as rain, fog, and nighttime) on the overall performance of the
system.

Future research efforts will concentrate on the following key
areas: (1) Enhancing the quality of RGB image data generated by the
CARLA-SUMO co-simulator is essential to accurately capture key
object features. Future efforts will prioritize improving the resolu-
tion and clarity of these images to ensure comprehensive feature
extraction. (2) Further optimization of the deployment locations and
strategies for roadside infrastructure sensors is crucial. This includes
a thorough investigation of how various sensor types, orientations,
heights, elevations, pitch angles, and configuration combinations
influence detection performance. Such optimizations will enhance
the adaptability and effectiveness of the proposed solution across
different scenarios. (3) To bolster model robustness and minimize
the costs associated with large-scale testing, future research should
focus on integrating real-world data with simulation-generated data
through cross-validation. This approach will provide a more reliable
and cost-effective method for refining detection models.
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