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Abstract
Traffic  anomaly detection is  crucial  for  road safety and traffic  efficiency,  but  the scarcity  of  accident data poses challenges for  model  training.  Although

current  research  has  utilized  deep  neural  networks  for  data  augmentation  in  small-sample  scenarios,  it  has  largely  overlooked  real-world  physical

constraints and lacks exploration into zero-shot scenarios, areas that still require further development. The paper proposes a SUMO-based simulation-driven

data augmentation approach that enhances detection performance under limited real-world data conditions. Synthetic accident data are generated under

five physical constraints and integrated with real traffic data to augment the training set. This study evaluates the method using three deep learning models

(MLP, CNN, and LSTM) on PeMS datasets from two California highways (I80-E and I10-E). Experimental results demonstrate that the simulation-augmented

training significantly improves model performance. In the spatial transfer experiment, the MLP model's accuracy improved from 75.53% to 76.58%, and AUC

increased  from  53.62%  to  56.74%.  These  findings  indicate  that  this  approach  effectively  enhances  both  temporal  and  spatial  transferability  for  traffic

anomaly detection in small-sample scenarios.
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 Introduction

Highways,  as  a  critical  component  of  modern  transportation
systems,  have  significantly  promoted  interconnectivity  between
regions  and  provided  a  solid  foundation  for  national  economic
development. However, traffic accidents remain one of the primary
public  safety  challenges  worldwide,  causing  substantial  fatalities,
injuries,  and  economic  losses  annually.  According  to  the  World
Health Organization (WHO), traffic accidents are the leading cause of
death for individuals aged five to 29,  accounting for approximately
1.19  million  fatalities  per  year[1].  Additionally,  millions  of  injuries
resulting  from  these  accidents  impose  a  heavy  burden  on  society.
With the acceleration of urbanization and the increasing number of
vehicles,  the  issue  of  frequent  traffic  accidents  has  become  more
pronounced, prompting academia and industry to urgently develop
efficient technologies for rapid accident detection and response.

Currently,  various  accident  prediction  and  detection  techniques
have been developed to improve traffic safety through risk identifi-
cation. These techniques can be categorized into two types: statisti-
cal models and machine learning-based models[2]. Traditional statis-
tical  models  rely  on  historical  data  and  mathematical  analysis  to
uncover patterns within the data.  However,  they exhibit limitations
when  addressing  complex  scenarios  and  large-scale  datasets[3].  In
contrast,  with  the  rapid  development  of  artificial  intelligence  (AI)
technology[4,5],  AI-based  models  have  shown  greater  potential  in
traffic  accident  prediction  and  detection.  These  methods  extract
complex  features  from  large-scale  data  and  achieve  high-precision
predictions.  Nevertheless,  AI-based  solutions  are  highly  dependent
on high-quality data, and the traffic accident data often suffers from

insufficient quantity and quality. This issue limits the effectiveness of
AI  technologies  in  practical  applications.  Advanced  data  cleaning
and  preprocessing  methods  can  address  this  challenge  by  improv-
ing data quality and enriching traffic event datasets with additional
information.

Despite increasing interest in using deep learning for traffic acci-
dent  prediction  and  detection,  significant  limitations  remain.  Most
existing data augmentation strategies—such as those using Genera-
tive Adversarial Networks (GANs)—focus on statistical realism with-
out incorporating real-world physical constraints. These approaches
may produce synthetic data that lacks behavioral interpretability or
alignment with actual traffic dynamics. Meanwhile, advanced traffic
simulation platforms like SUMO have been extensively used for traf-
fic modeling and control  evaluation,  but their  potential  as tools for
generating physically grounded synthetic data to improve anomaly
detection  models  remains  underexplored.  Furthermore,  very  few
studies investigate the ability of augmented models to generalize in
zero-shot  or  data-scarce  scenarios,  particularly  across  different
temporal or spatial domains.

To address the aforementioned challenges, the paper proposes a
SUMO  (Simulation  of  Urban  Mobility) -based  simulation  data
augmentation method aimed at improving the performance of traf-
fic accident detection and prediction by enhancing data quality and
coverage.  Specifically,  the  main  contributions  of  the  paper  are  as
follows:

(1)  Incorporation  of  physical  constraints:  by  integrating  traffic-
related  physical  information,  the  paper  introduces  a  physical-
informed model that incorporates physical constraints into the data
augmentation process, addressing the lack of physical constraints in
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existing  methods.  These  physical  constraints  include  maximum
acceleration,  comfortable  deceleration,  minimum  safe  distance,
acceleration index, and driver reaction time. While these five param-
eters  capture  key  aspects  of  vehicle  dynamics  and  are  directly
supported  in  SUMO,  other  influential  real-world  factors,  such  as
weather conditions or driver behavior variability, were not included
due to limited simulator support and the scope of this study. Future
work will explore incorporating such factors to further enhance the
realism of the augmented data.

(2) Temporal and spatial transfer modeling: using the SUMO soft-
ware, the study conducts temporal transfer modeling for roads with
limited  accident  data  and  spatial  transfer  modeling  for  roads  with-
out accident data, thereby extending the temporal and spatial appli-
cability of the data.

(3)  Deep  learning-based  accident  detection:  the  study  utilized
three commonly applied neural network models for accident detec-
tion  and  validated  the  model's  detection  performance  using  real-
world  data  and  simulation  data.  Experimental  results  demonstrate
that  the  model  significantly  improves  detection  performance  and
reliability.

The  remainder  of  this  paper  is  organized  as  follows:  the  'related
work'  section  reviews  existing  studies  on  traffic  accident  detection
and  prediction,  and  surveys  relevant  research  on  traffic  flow  data
augmentation.  The  'methodology'  section  introduces  the  SUMO
simulation  techniques  and  the  accident  prediction  and  detection
models, including multilayer perceptron (MLP), convolutional neural
network  (CNN),  and  long  short-term  memory  (LSTM).  The  'data
preparation'  section  details  the  data  sources,  selected  roads,  and
data preprocessing methods. The 'results' section presents the simu-
lation-generated  normal  traffic  flows,  temporal  and  spatial  transfer
modeling,  and  experimental  results.  Finally,  the  'discussion  and
contributions'  section  summarizes  the  main  contributions  of  the
paper and highlights potential directions for future research.

 Related work

Accident prediction and detection have long been central  topics
in transportation research. With the rapid advancement of machine
learning (ML),  AI-based models  have gradually  become a  core area
of research, leading to numerous studies that utilize traffic accident
data for analysis, prediction, and detection.

 Accident prediction
Research in accident prediction primarily falls into two categories:

statistical  analysis  models  and  machine  learning-based  models.
Statistical  analysis,  such  as  logistic  regression[6−8],  log-linear
models[9],  Bayesian  logistic  models[10],  and  Bayesian  dynamic  logis-
tic  regression  models[11],  provide  valuable  insights,  however,  they
often struggle to capture the complex nonlinear relationships inher-
ent in traffic flow data, leading to limited performance.

In contrast, ML models demonstrate greater potential due to their
ability  to  handle  high-dimensional  and  nonlinear  data.  Huang  et
al.[12] utilized  deep  learning  techniques  to  predict  crash  risks,
employing data from radar sensors on Interstate 235 in Des Moines,
IA.  Their  model  demonstrated  notable  improvements  in  detection
accuracy.  Pourroostaei  et  al.[13] explored  road  car  accident  data
patterns and proposed a data preprocessing model, including miss-
ing  data  removal,  attribute  generalization,  and  outlier  removal,  to
improve  the  accuracy  of  traffic  accident  prediction  using  machine
learning techniques.

There are likewise many other studies that have investigated acci-
dent  risk  prediction by  fusing traffic  data  and combining statistical
and ML methods. For instance, Yu et al.[14] proposed a Deep Spatio-
Temporal Graph Convolutional Network (DSTGCN) to predict traffic

accidents by effectively learning spatial, temporal, and external data
correlations,  and  achieved  superior  performance  on  real-world
datasets. Guo et al.[15] incorporated risky driving behavior and traffic
flow  data  to  predict  traffic  accident  risks,  achieving  a  prediction
accuracy of 84.48%. Zhang et al.[16] developed a bidirectional LSTM
model  with  convolutional  layers  to  analyze  roadside  detector  data
and  connected  vehicle  information,  reaching  a  recall  of  0.772  and
an AUC of 0.857. Yuan et al.[17] combined statistical and ML models
to  explore  the  relationship  between  traffic  conflicts  and  flow
features  using  the  HighD  dataset,  highlighting  the  significant  in-
fluence of traffic flow on conflict probability.

 Accident detection
Early-stage  methods  for  incident  detection  predominantly  relied

on comparative algorithms, such as the well-known California algo-
rithm[18], which compares traffic parameters (e.g., speed, occupancy)
to predefined thresholds[19]. While effective, these methods depend
heavily on fixed detector readings and lack adaptability.

With  the  development  of  computational  intelligence,  Artificial
Intelligence  algorithms  apply  AI  and  ML  models  to  identify  the
normal  and  abnormal  traffic  patterns  and  then  classify  the  given
input  data  as  either  incident  or  normal  conditions[20].  For  example,
Dogru  et  al.[21] proposed  an  intelligent  traffic  accident  detection
system based on VANETs and machine learning, using vehicle speed
and  position  data  for  high-accuracy  accident  detection  with  the
Random  Forest  algorithm.  White  et  al.[22] proposed  a  smartphone-
based traffic  accident detection system that combines accelerome-
ters,  acoustic  data,  and context  information to  automatically  notify
emergency services, provide situational awareness, and reduce false
positives.  Ozbayoglu  et  al.[23] designed  a  real-time  autonomous
detection  system  using  computational  intelligence  techniques  to
analyze  Istanbul's  traffic  data,  predicting  accidents  with  nearest
neighbor  models  and  feed-forward  neural  networks.  Gu  et  al.[24]

explored social  media as an alternative data source,  mining Twitter
for real-time traffic incident detection and classification.  Mehrannia
et  al.[25] applied  LSTM  networks  for  freeway  accident  detection,
improving class separability and reducing dimensionality.

 Data augmentation
The  above  AI-based  solutions  for  incident  detection  have  high-

lighted challenges, particularly regarding data quantity and quality.
Traditional  traffic  datasets  often  lack  sufficient  volume  and  exhibit
quality  issues,  limiting  their  applicability.  To  address  these  chal-
lenges,  data  enhancement  techniques  have  emerged  as  a  critical
research focus.

Lin  et  al.[26] introduced  a  hybrid  model  using  Generative  Adver-
sarial Networks (GANs) to expand sample size and balance datasets,
complemented  by  Temporal  and  Spatially  Stacked  Autoencoders
(TSSAE)  for  feature  extraction.  Xie  et  al.[27] proposed  SASYNO-RF-
RSKNN,  a  hybrid  method  tackling  imbalanced  datasets  using  over-
sampling  techniques  and  ensemble  algorithms.  Similarly,  Jilani  et
al.[28] utilized  GAN-based  augmentation  to  train  CNN  models,
achieving  high  classification  accuracy.  Other  studies  emphasize
advanced augmentation strategies. Huang et al.[29] integrated GANs
with TSSAE to address  sample limitations and detect  temporal  and
spatial traffic patterns. Dabboussi et al.[30] employed GANs to gener-
ate  realistic  traffic  speed  data,  improving  prediction  for  specific
scenarios.  Benabdallah  Benarmas  et  al.[31] highlighted  the  role  of
Deep Generative Models  (DGMs) in enhancing traffic  speed predic-
tions through synthetic dataset generation.

Summarily,  these  advancements  underscore  the  significant
progress  in  accident  prediction  and  detection,  particularly  through
the integration of  deep learning and data augmentation.  However,
challenges  remain  in  addressing  the  dependency  on  high-quality
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data  and  balancing  the  scalability  of  models  for  diverse  traffic
scenarios  are  key.  Based  on  these  insights,  this  paper  proposes  a
method that combines SUMO simulation data with real-world data.
This  method  not  only  increases  the  diversity  of  the  data  but  also
effectively improves the performance of the model.

 Data preparation

This  study  collected  and  processed  160  accident  and  non-acci-
dent  cases,  with  data  sourced  from  the  California  Department  of
Transportation's Performance Measurement System (PeMS) and the
California  Highway  Patrol  (CHP).  The  study  focuses  on  two  major
highways  in  California—Interstate  10  East  (I10-E)  and  Interstate  80
East  (I80-E)—covering  the  period  from  December  1  to  June  30  in
both 2016 and 2021, thereby capturing traffic conditions before and
after  the  COVID-19  pandemic.  The  dataset  encompasses  traffic
records  from  8,041  mainline  detector  stations  distributed  across
5,360 miles of highway. Data from the year 2017 was used for model
training,  while  2022  data  was  utilized  to  evaluate  temporal  and
spatial transferability.

Although PeMS performs automated imputation to address short-
term  missing  data,  the  dataset  remains  vulnerable  to  residual
anomalies  resulting  from  intermittent  hardware  failures  and
communication  disruptions  at  detector  stations.  To  enhance  data
integrity  and  ensure  the  reliability  of  downstream  modeling,  a
comprehensive preprocessing framework was implemented.  Speci-
fically,  data  entries  were  excluded  under  the  following  conditions:
(1) a complete absence of recorded measurements from a detector
station;  (2)  simultaneous  zero  values  in  average  speed,  flow,  and
occupancy,  indicating  likely  sensor  malfunction;  (3)  identical  read-
ings across multiple detectors, suggesting data duplication or trans-
mission  errors;  and  (4)  repeated  values  at  a  given  detector  that
exactly  matched  those  recorded  at  the  same  timestamp  on  the
previous day or week, indicating placeholder or default imputations.

 I10-E
I-10E[32] is  the  eastbound  section  of  Interstate  10  in  the  United

States,  spanning  multiple  states  and  connecting  major  cities  from
Los Angeles, California, to Jacksonville, Florida. With a total length of
approximately  2,460 miles  (3,960 km),  it  is  the fourth-longest  high-
way in the United States, following I-90, I-80, and I-40. It is also one
of the longest and busiest east-west highways in the country. I-10E
traverses  key  economic,  cultural,  and  logistical  hubs,  playing  a
crucial role in freight transportation and interstate travel. It connects
major regions in the southwestern and southeastern United States,
serving as an essential corridor for east-west transportation.

 I80-E
The I80-E[33] highway is part of the US Interstate Highway System,

spanning over 4,600 km and connecting California and New Jersey,
which is commonly used in identifying normal traffic flow. This road
traverses  11  states,  with  I80-E  being  its  eastbound  segment.  It
features  a  wide  roadway,  typically  comprising  three  to  five  lanes,
with the specific number of lanes varying by state and region. As a

vital  transportation  corridor,  I80-E  serves  a  large  volume  of
commuter  and  freight  vehicles,  exhibiting  significant  variations  in
traffic  characteristics across its  segments.  From urban core areas to
suburban  and  rural  regions,  this  highway  provides  a  wealth  of
sample  data  for  studying  dynamic  behaviors  under  different  traffic
environments.  Moreover,  due  to  its  complex  traffic  conditions,
frequent  peak  flows,  and  diverse  traffic  patterns,  I80-E  is  an  ideal
choice for traffic simulation studies.

Overall,  I80-E  and  I10-E  differ  significantly  in  both  traffic  scale
and  functional  context.  I80-E,  an  urban  freeway  segment,  carries
approximately  110,000  vehicles  per  day,  while  I10-E,  located  in  a
more  suburban  to  rural  area,  sees  around  80,000.  These  structural
and  environmental  differences  introduce  a  substantial  geographic
domain shift, making the spatial transfer task more challenging and
meaningful.

 Data preprocessing techniques
To  better  demonstrate  the  generalizability  of  the  model,  basic

information  that  can  typically  be  extracted  by  conventional  high-
way  detectors  is  selected  as  the  model  input.  These  inputs  usually
include  fundamental  statistical  measures  such  as  the  average  and
standard  deviation  of  traffic  flow.  Specifically,  based  on  previous
experience[34−36],  data  collected by two detectors  is  used upstream
and  downstream  of  the  accident  point  to  extract  traffic  flow  para-
meters within 0 to 15 min after the accident for analysis, as shown in
Fig.  1.  When  an  accident  occurs,  it  often  causes  congestion  and
sudden  deceleration  upstream,  generating  shock  waves  that  pro-
pagate backward in space. Monitoring the upstream area allows us
to capture early  indicators of  abnormal traffic  conditions,  such as a
sudden drop in speed or an increase in occupancy.  In contrast,  the
downstream  detectors  serve  as  a  control  reference,  where  traffic
may be unaffected or return to normal faster.

For  analysis,  the  time  is  divided  into  three  intervals,  each  with  a
five-minute gap, labeled as T1, T2, and T3. Specifically, the time from
0 to 5 min before the accident corresponds to T1, 5 to 10 min corre-
sponds to T2,  and 10 to 15 min corresponds to T3.  Additionally,  the
detectors  are  numbered  sequentially  from  upstream  to  down-
stream in relation to the accident point, designated as S1, S2, S3 and
S4. The selected traffic flow parameters include flow rate, speed, and
occupancy, represented by the symbols Q, V, and O, respectively. To
provide a  more comprehensive description of  the data characteris-
tics,  the  average  values  and  standard  deviations  of  these  parame-
ters are further calculated, denoted as Aver and Std, and serve as the
initial  input  variables.  In  total,  72  variables  were  constructed  to
support the model's input and analysis.

 Methodology

To  enhance  the  performance  of  traffic  accident  detection
systems,  the  SUMO  was  utilized  for  data  augmentation  and
advanced  deep  learning  techniques  for  traffic  accident  detection.
The  following  section  first  introduces  SUMO,  followed  by  an  intro-
duction to the deep learning models used.

 

Fig. 1    Accident location and detector selection.
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 Introduction to SUMO
SUMO  is  a  microscopic  traffic  simulation  platform  designed  for

modeling  multi-modal  transportation  systems,  including  vehicles,
public  transit,  pedestrians,  and  cyclists,  developed  by  the  Dresden
University  of  Technology  in  Germany[37].  Since  its  inception  in
2001,  the  SUMO  software  suite  has  been  widely  applied  in  numer-
ous domestic  and international  research projects.  Its  primary appli-
cations  include  traffic  signal  evaluation[38],  route  selection  and
re-planning[39],  traffic  monitoring  method  assessment[40],  vehicle
communication simulation[41], and traffic forecasting[42]. As an open-
source  software,  SUMO  allows  users  to  customize  and  extend  it
according to their needs. It supports multiple traffic modes, such as
cars,  pedestrians,  and  public  transport,  and  can  be  integrated  with
tools  like  Python and MATLAB,  facilitating data  analysis  and model
training.  Its  high  efficiency  enables  SUMO  to  quickly  process  large
volumes  of  traffic  data  and  simulate  complex  traffic  scenarios,
making  it  particularly  suitable  for  tasks  such  as  traffic  anomaly
detection  and  model  optimization.  Additionally,  SUMO  possesses
powerful  data  generation  and  enhancement  capabilities,  enabling
the  creation  of  simulation  data  with  complex  traffic  patterns  and
diverse scenarios, which are especially well-suited for training deep
learning models. Finally, SUMO simulates based on real-world traffic
network  data  and  employs  precise  vehicle  behavior  modeling,
ensuring  that  the  simulation  results  closely  align  with  real-world
traffic  conditions,  demonstrating  applicability  in  real-world  scenar-
ios.  Due  to  the  various  advantages  of  SUMO  mentioned  above,
SUMO was ultimately chosen as the simulation environment in this
paper to generate traffic accident augmented data.

 Simulation calibration
The  Intelligent  Driver  Model  (IDM),  a  microscopic  traffic  simula-

tion  model  designed  to  replicate  vehicle  dynamics  and  driver
behavior,  was  calibrated  using  an  exhaustive  grid  search  method.
IDM  employs  precise  mathematical  formulations  to  simulate  how
vehicles adjust their speed and spacing in response to leading vehi-
cles  under  various  traffic  conditions,  considering  factors  such  as
desired  speed,  current  speed,  gap  distance,  and  traffic  density  to
determine optimal acceleration or deceleration strategies.

The  IDM  model  assumes  that  the  driver  will  dynamically  adjust
the  acceleration  according  to  the  behavior  of  the  vehicle  in  front
and the current traffic conditions.  The acceleration of the vehicle is
determined by the following factors: (1) Expected free travel speed:
When there is  no interference from the vehicle in front,  the vehicle
tends to travel at a desired speed (such as the speed limit); (2) Safety
distance: The vehicle will adjust its speed according to the distance
and  relative  speed  to  the  vehicle  in  front  to  avoid  a  rear-end  colli-
sion; and (3) Acceleration and deceleration capabilities: The physical
properties of the vehicle also constrain driving behavior.

The acceleration formula of the IDM model is as follows:

v̇ = a
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where, a represents  the  maximum  acceleration, v represents  the
current vehicle speed, v0 represents the expected speed, δ represents
the  acceleration  index.  Specifically, δ controls  how  aggressively  or
smoothly  a  vehicle  approaches  its  desired  speed.  A  larger  value  of δ
leads to smoother, more gradual acceleration, promoting comfort and
stability,  while  a  smaller  value  results  in  faster,  more  abrupt  accele-
ration responses. s represents the distance between the current vehicle
and the vehicle in front, and s*(v, Δv) represents the expected distance,
which can be expressed as:
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where, Δv represents  the  relative  speed,  that  is,  the  speed  difference
between the current vehicle and the vehicle in front; s0 represents the
minimum  safe  distance, b represents  the  comfortable  deceleration.  If
the  current  vehicle  suddenly  decelerates,  the  vehicle  will  adjust  the
current speed with the deceleration of b to avoid a rear-end collision;
T represents time headway, which refers to the driver's reaction time.

Parameter  calibration  is  used  to  determine  the  IDM  parameters.
The objective of calibration was to minimize the Root Mean Square
Error (RMSE) between simulated traffic flow and real-world detector
readings.  The  calibration  process  was  conducted  over  a  defined
search  space  constrained  by  physically  reasonable  ranges  for  each
IDM  parameter,  including  maximum  acceleration  and  comfortable
deceleration.  The  upstream  section  of  the  three-lane  road  section
I80-E,  which  is  monitored  by  four  detectors  (402241,  402243,
402245,  402246)  was selected.  The vehicle  data from the upstream
detectors  is  used  as  input,  and  the  difference  between  the  simu-
lated and actual readings from the downstream detectors is used to
fine-tune  the  IDM  parameters  to  ensure  that  the  simulation  accu-
rately reflects the observed traffic behavior.

 Vehicle inject
After adopting the calibrated parameters,  let  the probability of  a

vehicle  appearing  per  second  be p.  Then,  the  number  of  vehicles
departing  on  this  lane  within  5  min, X,  follows  a  binomial  distri-
bution:

X ∼ B (300, p) (3)
The  mean  of  this  distribution  can  be  expressed  as E(X)  =  300p,

which  equals  the  actual  number  of  vehicles N detected  by  the
detector  during  the  5  mins.  Therefore,  the  input  probability p =
N/300.

 Accident detection methods
MLP  is  a  classic  feedforward  neural  network  architecture  com-

posed  of  multiple  layers,  typically  including  an  input  layer,  one  or
more hidden layers, and an output layer. Each neuron in one layer is
fully connected to the neurons in the previous layer, processing data
through  weighted  sums,  biases,  and  activation  functions  to  trans-
mit  information  through  the  network.  The  goal  of  MLP  is  to  accu-
rately  model  the  complex  nonlinear  relationships  between  input
data and outputs, enabling precise classification or regression tasks.

CNNs  are  a  class  of  deep  learning  models  primarily  used  for
processing and analyzing grid-like data structures, such as images or
time-series  data.  CNNs  excel  at  automatically  learning  spatial  hier-
archies  of  features,  making  them  particularly  effective  in  tasks  like
image classification, object detection, and anomaly detection.

LSTM  networks  are  a  specialized  type  of  Recurrent  Neural
Network  (RNN)  designed  to  handle  and  predict  long-term  depen-
dencies  in  sequential  data.  Traditional  RNNs  often  struggle  with
long  sequences  due  to  the  vanishing  or  exploding  gradient  pro-
blem,  making  it  difficult  to  effectively  retain  information  from
distant  points  in  the  sequence.  LSTM  addresses  this  issue  by  intro-
ducing  'memory  cells'  and  'gating  mechanisms,'  which  enable  the
model to manage information flow more effectively.

This paper implements the prediction of normal traffic flow using
LSTM to validate the feasibility of using SUMO simulation data, and
accident  detection  of  abnormal  traffic  flow  using  MLP,  CNN,  and
LSTM,  using  multiple  neural  networks  with  the  aim  of  eliminating
chance.  These  models  are  chosen  for  their  simplicity,  interpret-
ability,  and  compatibility  with  small-sample  datasets.  While  more
advanced  models  such  as  spatiotemporal  graph  convolutional
networks  (STGCNs)  or  graph  neural  networks  (GNNs)  can  more
effectively  capture  complex  spatiotemporal  dependencies,  they
usually  require  larger-scale  graph-structured  data  and  more  exten-
sive  training  samples.  Given  the  small-sample  and  data-scarce
scenarios  emphasized  in  this  work,  simpler  models  provide  more
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robust  and  interpretable  benchmarks  to  evaluate  the  effectiveness
of  simulation-based  data  augmentation.  Moreover,  the  consistent
improvements  demonstrated  in  these  commonly  used  models
reinforce the practical value of our proposed approach.

 Experimental workflows

The experimental workflows comprises two key components:
(1) Normal traffic flow prediction: By comparing the differences in

prediction  results  generated  using  real-world  data  alone  versus
hybrid data (real-world data + SUMO simulation data), the feasibility
of SUMO simulation data in model training was validated;

(2) Abnormal traffic flow detection: Three neural network models
were  first  brought  to  convergence,  followed  by  joint  fine-tuning
with  SUMO  simulation  data  and  real-world  data,  demonstrating
the  effectiveness  of  simulation  data  in  enhancing  detection
performance.

 Generation and prediction of normal traffic flow
To demonstrate that SUMO simulation can be effectively used for

traffic  flow  simulation,  traffic  flow  simulation  was  first  performed
using  SUMO,  and  its  effectiveness  was  validated  by  comparing  the
simulation results with real-world data.

Traffic  flow  data  was  used  as  the  input  for  the  LSTM  model  to
predict  future  traffic  flow.  The  input  sequence  is  represented  as  [qt,
qt+1, qt+2, qt+3, qt+4],  where qt denotes  the  traffic  flow  at  time t.  A  25
min traffic flow sequence is used as the input, and the model predicts
the  traffic  flow  for  the  next  5  min.  This  approach  enables  effective
modeling of short-term traffic fluctuations and dynamic changes.

C

To  validate  the  effectiveness  of  SUMO  simulation  data,  three
training datasets were used, as shown in Fig. 2, where the dataset A
included  28  d  of  real  traffic  flow  data  (from  December  1,  2016,  to
December 29, 2016); the dataset B comprised 1 d of real traffic flow
data  (from  December  28,  2016,  to  December  29,  2016);  and  the
dataset  combined simulated traffic  flow data (from December 1,
2016,  to  December  28,  2016)  with  an  additional  day  of  real  data
(from  December  28,  2016  to  December  29,  2016).  The  test  set
consists of 7 d of real traffic flow data (from December 29, 2016, to
January 5, 2017).

 Accident simulation and transfer experiment
 Accident simulation

As shown in Fig. 3,  the accident simulation is conducted by clos-
ing  lanes  in  the  simulation.  When  an  accident  occurs,  the  lanes  in

the fixed areas upstream and downstream of the accident point are
closed.  Two types of  accident  simulation are  defined:  existing acci-
dent enhancement and virtual accident enhancement.

Existing  accident  enhancement  involves  altering  the  impact
range  and  affected  lanes  based  on  the  existing  accidents,  used  for
time  transfer  experiments.  Virtual  accident  generation  involves
randomly  specifying  a  non-accident  time  and  creating  virtual  acci-
dents at random locations and times, used for spatial enhancement
in simulation experiments. The simulation process is shown in Fig. 4,
and the details will be explained later.

To  simulate  rare  accident  scenarios  and  enrich  the  training
dataset, SUMO was used to generate synthetic traffic data based on
real-world  detector  inputs.  By  calculating  the  error  under  different
numbers  of  lanes  and  impact  ranges,  the  accident  scenario  was
simulated  by  blocking  a  single  lane.  The  simulation  incorporated
five  core  physical  parameters—minimum  vehicle  gap,  maximum
acceleration,  comfortable  deceleration,  acceleration  exponent,  and
simulation  time  step—which  govern  vehicle  behavior  and  interac-
tion. The resulting traffic patterns exhibit realistic congestion effects,
including upstream queuing, abrupt speed drops, and downstream
flow  disruptions,  which  are  key  indicators  of  anomaly  conditions.
Subsequently, these simulated data will be spliced with real data for
use in subsequent research. The core of this research is to combine
real  data  with  simulation  data  for  data  augmentation,  thereby
improving  the  model's  transfer  ability  in  different  temporal  and
spatial  contexts,  particularly  in  scenarios  with  small  samples  and
data scarcity. This approach primarily focuses on two types of trans-
fer: temporal transfer and spatial transfer.

 Temporal transfer
Temporal  transfer  refers  to  the  model's  ability  to  transfer  knowl-

edge  across  different  time  periods  (e.g.,  2017  vs  2022).  To  validate
the  model's  performance  in  temporal  transfer  scenarios,  the  study
uses  real  data  from  the  I80-E  road  in  2017  as  the  training  set  and
trains a baseline model without data augmentation for the accident
detection  task.  Subsequently,  the  SUMO  simulation  software  was
used  to  generate  augmented  simulation  data  by  combining  the
accident data and normal traffic flow data from the 2022 I80-E road.
These  simulation  data  are  then  used  to  fine-tune  the  model  to
enhance its transfer capability to a new time period.

During  the  temporal  transfer  model  training  process,  the  Adam
optimizer was used with the initial learning rate set to 1e-5. Due to
the  limited  size  of  the  input  data,  the  batch  size  was  set  to  eight.

 

Fig. 2    Mixed dataset strategy for model training.
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When the model  was trained to a converged state,  it  was saved.  In
the  subsequent  fine-tuning  phase,  the  learning  rate  was  further
reduced  to  1e-6,  and  the  batch  size  was  adjusted  to  16,  32,  or  64
depending  on  the  size  of  the  new  training  set.  During  the  fine-
tuning  process,  the  previously  saved  model  was  loaded,  and  train-
ing was continued based on it.

In  the  experiment,  100  real  data  points  were  randomly  selected
from the I80-E road in 2017 (including 20 accident data and 80 non-
accident  data,  with  a  1:4  positive-to-negative  sample  ratio)  as  the
training  set,  and  the  model  was  trained  using  neural  networks  to
obtain the baseline model. Then, 25 real data points from the I80-E
road  in  2022  were  randomly  selected  as  the  first  training  set,  and
samples were extracted from the simulated data at ratios of 1:1, 1:9,
and  1:19,  resulting  in  three  training  sets  with  simulated  data
volumes  of  25,  225,  and  475,  respectively.  These  four  training  sets
were then used for model fine-tuning. Finally, the real data from the
I80-E road in 2022 was uniformly used as the test set to evaluate the
performance of the baseline model and the fine-tuned models.

 Spatial transfer
Spatial transfer refers to the model's ability to transfer knowledge

across different geographical environments or traffic flow character-
istics. To validate the model's spatial transfer ability, a test involving
transfer  between  different  roads  (I80-E  and  I10-E)  was  conducted.
Initially, accident data from the I80-E road in 2017 and normal traffic
flow data from the I10-E road were used to train a  baseline model.

Subsequently,  the  SUMO  simulation  software,  combining  the  acci-
dent data from the 2017 I80-E road with the normal traffic flow data
from the 110-E road, was used to generate augmented data for the
I10-E road, which was then used to fine-tune the model. The specific
experimental details will be described in the results section.

For spatial transfer model training, the optimizer used was Adam
with a  learning rate  of  1e-5  and batch size  set  to  eight.  The model
was saved when training converged, and for fine-tuning, the learn-
ing rate was set to 1e-6, the batch size was adjusted to 64 based on
the size of the new training set, and the previously saved model was
read to perform the training.

In the spatial transfer testing experiment, it was assumed that the
I10-E road in 2017 had just  begun operation,  resulting in a  scarcity
of normal traffic flow data and a complete lack of accident data. To
address  this,  a  baseline  model  was  first  constructed  by  randomly
selecting 100 real data samples from the 2017 I80-E road—compris-
ing  20  accident  samples  and  80  non-accident  samples  (a  case
matching ratio of 1:4, which was consistently used thereafter)—and
trained  neural  networks  on  this  set.  To  generate  training  data  for
fine-tuning under spatial transfer conditions, the accident data from
the  2017  I80-E  road  was  combined  with  the  limited  normal  traffic
flow data from the 2017 I10-E road, and the SUMO simulation soft-
ware  was  used  to  simulate  accidents,  applying  simulation-based
data  augmentation  to  generate  enhanced  I10-E  road  samples.
From  this  augmented  dataset,  100  samples  (20  accident  and  80
non-accident)  were  then  extracted  to  fine-tune  the  pre-trained
baseline model. Finally, real data from the 2017 I10-E road was used
as  the  test  set  to  evaluate  the  performance  of  both  the  baseline
and  fine-tuned  models,  thereby  assessing  the  effectiveness  of
simulation-based augmentation in enhancing spatial transferability.

 Results

 Generation and prediction of normal traffic flow
 Traffic flow generation

An exhaustive search with a step size of 0.1 was performed across
the parameter space constrained by five physical constraints, result-
ing in the optimal parameter combination that minimizes the error

 

Fig. 3    SUMO accident simulation diagram.

 

Fig. 4    Temporal and spatial transfer simulation diagram.
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as follows: a = 2.6 m/s2, b = 1 m/s2, s0 = 3 m, δ = 4, T = 0.5 s.  After-
wards, real traffic data was used to generate the number of vehicles;
using  binomial  distribution  to  control  whether  the  vehicle  is
injected  at  a  certain  second  to  form  natural  fluctuations;  and  IDM
physical parameters to control the micro-behavior of each vehicle to
ensure the physical rationality of the behavior. Using those as input,
a  seven-day  simulation  is  illustrated  in Fig.  5 and  conducted  to
obtain  the  traffic  flow  data  extracted  by  the  detector  during  the
seven-day simulation.

 Traffic flow prediction
Using  the  three  training  datasets  mentioned  in  Experimental

Workflows  for  training  and  predicting  the  traffic  flow  data  in  the
next 7 d, the results are shown in Fig. 6. Where the 'Real data (28 d)'
curve shows the prediction results for the next 7 d after training the
model  with  dataset A;  the  'Real  data  (1  d)'  curve shows the predic-
tion  results  for  the  next  seven  days  after  training  the  model  with
dataset B; and the 'SUMO and real data' curve shows the prediction
results for the next 7 d after training the model with dataset C.  The
'Ground  truth'  curve  shows  the  actual  observed  changes  in  traffic
flow  over  the  7  d,  which  is  used  as  a  baseline.  It  was  found  that
analyzing  SUMO  simulation  data  in  combination  with  a  small
amount  of  real-world  data  yields  predictions  that  differ  very  little
from  predictions  based  on  a  large  amount  of  real-world  data,
compared  to  using  only  one  day  of  real  data.  Additionally, Fig.  7
shows  that  during  non-peak  hours,  the  combined  dataset  demon-
strates particularly significant improvements,  with errors approach-
ing  the  level  achieved  by  training  on  the  complete  dataset.  This
further  validates  the  reliability  and  utility  of  the  simulated  data  in
relevant analyses.

 Abnormal traffic flow detection
 Temporal transfer testing experiment

Normal  traffic  flow  data  from  January  1,  2022,  was  first  selected.
The  IDM  model  was  calibrated  based  on  the  error  between  the
simulation  detector  data  and  the  real  data,  yielding  the  following
model parameters: a = 2.3 m/s2, b = 2.6 m/s2, s0 = 5 m, δ = 4, T = 1 s.
Next,  the  SUMO  simulation  was  used  to  simulate  traffic  flow  after
accidents,  and  by  calculating  errors  under  different  lane  numbers
and impact ranges, the simulation settings that best replicated real-
world conditions were selected: the impact range was 20 m, and the
affected  lane  number  was  1.  The  accident  time  and  location  were
randomly selected from five real accidents that occurred on the I80-
E road in 2022. Based on the times and locations of these real acci-
dents,  combined  with  the  aforementioned  settings,  simulations
were  performed  using  SUMO,  resulting  in  five  simulated  datasets
based  on  real  accident  data.  The  five  randomly  selected  accidents

represent approximately 1.85% of the available accident sample for
2017.  This  significant  reduction  highlights  the  challenge  of  data
scarcity  and  underscores  the  need  to  use  simulations  to  supple-
ment data under such constraints.

The  experimental  results  are  shown  in Fig.  8.  The  results  show
that  the  samples  generated  through  data  augmentation  not  only
significantly  improved  the  model's  performance  but  also  demon-
strated  good  temporal  transferability.  Although  real  data  from  the
I80-E  road  in  2017  were  used  during  training,  the  testing  was  still
based  on  real  data  from  the  I80-E  road  in  2022.  The  fine-tuned
models  showed significant  improvements in  key performance indi-
cators  such  as  accuracy  and  AUC.  Specifically,  the  MLP,  CNN,  and
LSTM  neural  network  models  all  exhibited  varying  degrees  of  per-
formance improvement after fine-tuning.

For the MLP model, when using the 2022 small sample with a 1:1
sample  ratio  for  training,  the  model's  accuracy  was  relatively  poor.
However,  when  the  sample  ratio  was  adjusted  to  1:9,  the  accuracy
increased from 69.39% to  73.23%,  and further  increased to  73.29%
when  the  sample  ratio  was  1:19.  In  terms  of  AUC,  all  fine-tuning
methods  showed  improvement,  with  the  most  significant  increase
seen  at  a  1:19  sample  ratio,  where  the  AUC  rose  from  52.02%  to
52.96%.

For  the  CNN  model,  all  fine-tuning  strategies  outperformed  the
baseline model, further confirming the performance-boosting effect
of  data  augmentation.  Specifically,  when  using  the  2022  small
sample,  the  accuracy  improved  from  76.55%  to  76.81%.  As  the
sample  ratio  increased,  the  accuracy  continued  to  improve,  reach-
ing  77.19%,  78.36%,  and  78.4%.  In  terms  of  AUC,  the  AUC  for  the

 

Fig. 5    Seven-day simulation traffic flow variation curve.

 

Fig. 6    Comparison of prediction results.

 

Fig. 7    Twenty four hour traffic flow MAE variation.
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2022  small  sample  increased  from  50.36%  to  50.52%,  and  the  AUC
for different sample ratios also showed gradual improvements: from
50.36%  to  50.76%  for  a  1:1  ratio,  from  50.36%  to  50.72%  for  a  1:9
ratio,  and  from  50.36%  to  50.92%  for  a  1:19  ratio,  showing  stable
and progressive enhancement.

For the LSTM model, there was also a significant improvement in
accuracy.  When  using  the  2022  small  sample,  accuracy  increased
from  70.86%  to  75.02%.  As  the  sample  ratio  changed,  accuracy
reached 74.5% for a 1:1 ratio, 78.27% for a 1:9 ratio, and 79.49% for a
1:19 ratio. AUC also increased from 50.16% to 50.52%. These results
further  indicate  that  data  augmentation  significantly  improved  the
LSTM model's performance in temporal transfer scenarios.

Overall,  the experimental results validate the effectiveness of the
simulation-based  data  augmentation  training  method  in  temporal
transfer  scenarios.  Especially  in  small  sample  situations,  data
augmentation not only enhances the model's  generalization ability
but also effectively improves transfer performance across time peri-
ods. These findings provide strong empirical support for model opti-
mization  using  data  augmentation  techniques,  further  proving  the
potential and advantages of simulation data as augmented samples
in  data-scarce  situations.  In  addition,  as  the  sample  proportion
increases,  the  diversity  of  the  data  gradually  improves,  and  the
performance  of  the  model  shows  an  overall  upward  trend.  This
result suggests that in the absence of real data, simulated data helps
to improve the generalization ability and performance of the model.
Therefore,  combining  real  data  with  simulation  data  for  data
augmentation  is  an  effective  strategy  to  improve  model  perfor-
mance  and  address  data  scarcity,  offering  significant  guidance  for
future research and applications.

 Spatial transfer testing experiment
Data was selected from January 1,  2017, and the IDM model was

calibrated based on the error between simulated detector data and
real  data,  obtaining parameters: a =  3  m/s2, b =  2.6  m/s2, s0 =  5  m,
δ = 4, T = 0.25 s. Next, SUMO was used to simulate traffic flow after

an  accident  and  selected  the  most  realistic  simulation  settings  by
calculating  the  error  under  different  lane  counts  and  influence
ranges,  obtaining  an  influence  range  of  20  and  an  affected  lane
number  of  0.  The  time  and  location  of  accidents  were  randomly
generated  to  meet  the  requirements  of  the  spatial  transferability
test.  The time and location of  the  accident  are  determined using a
completely  randomized  approach.  Combining  the  above  setup,  a
simulation  dataset  is  obtained.  This  simulation  setup  is  consistent
with the definition of zero-shot scenarios introduced in the abstract.
Since no real accident data exists for the I10-E road, the experiment
tests  whether  models  fine-tuned  with  simulated  accident  data—
originating  from  different  roads—can  generalize  to  such  unseen
environments.

The experimental results are shown in Fig. 9. From Fig. 9, it is seen
that the samples generated were validated through data augmenta-
tion not only improving the model's  performance but also demon-
strating  good  spatial  transferability.  Although  accident  data  from
the I80-E road and normal traffic flow data from the I10-E road were
used  for  augmentation  during  training,  the  testing  was  still  based
on  real  data  from  the  I10-E  road.  The  results  show  that  the  fine-
tuned  model  showed  significant  improvement  in  key  metrics  such
as  accuracy  (acc)  and  AUC  value.  Specifically,  the  three  neural
network  models,  MLP,  CNN,  and  LSTM,  all  showed  performance
improvements  after  fine-tuning.  The  accuracy  of  MLP  increased
from 75.53% to 76.58%, and AUC increased from 53.62% to 56.74%;
CNN's  accuracy  improved from 75% to  75.79%,  and AUC increased
from  50.33%  to  51.32%;  LSTM's  accuracy  rose  from  74.74%  to
77.37%, and AUC increased from 52.63% to 53.39%.

Combining the results of the temporal transfer experiments with
the spatial transfer experiments, it can be found that in the tempo-
ral transfer experiment, LSTM and CNN perform better because they
are able to capture spatial and temporal features, respectively. In the
spatial transfer experiment, there is not much difference among the
three models because the performance improvement of MLP mainly
relies on the increase of data diversity, and more training data than

 

a

b

Fig. 8    Temporal transfer experiment simulation results. (a) The convergence curves of accuracy and AUC under MLP, CNN, and LSTM neural networks.
(b)  The  comparison  of  accuracy  and  AUC  curves  before  and  after  fine-tuning  the  model  using  the  2022  small  sample  dataset  with  a  1:1,  1:9,  and  1:19
sample ratio as the fine-tuning training set.
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in  the  temporal  transfer  experiment  leads  to  the  improvement  of
the performance of the MLP model.

Overall,  the  experimental  results  have  demonstrated  the  effec-
tiveness of the data augmentation training method based on simu-
lation  in  spatial  transfer  scenarios.  Even  in  the  absence  of  accident
samples, the performance after fine-tuning has also been improved,
indicating  that  data  augmentation,  not  only  improved  the  training
data for the model but also enhanced the model's transfer learning
ability,  demonstrating  the  advantage  of  generated  data  over  the
original  data  in  terms  of  spatial  transferability  and  performance
improvement.  Moreover,  despite  the  training  and  testing  data
coming  from  different  geographical  environments  and  traffic  flow
characteristics, the data augmentation method was still able to help
the  model  effectively  transfer  and  improve  its  performance  in  the
new environment, further validating the method's effectiveness and
generalization ability.

To  further  illustrate  the  effectiveness  of  the  method,  the  model
performance  was  compared  under  different  data  configurations
under  the  cross-model  (MLP,  CNN,  LSTM)  setting.  Specifically,  the
experimental  results  of  the  spatial  migration  experiment  and  the
experimental  results  of  the  time  migration  experiment  were
selected  when  the  ratio  of  real  data  to  simulated  data  was  1:19,  a
total of six groups of paired data, and paired t-tests were performed
on  the  accuracy  and  AUC  indicators,  respectively.  The  test  results
show  that  the p-value  of  'accuracy'  is  0.0046  and  the p-value  of
AUC  is  0.0121,  which  are  significantly  lower  than  the  commonly
used  significance  level  (α =  0.05),  indicating  that  the  proposed
method  based  on  simulation  data  enhancement  is  statistically
significant in improving model performance.

 Discussion and conclusions

The main  contribution of  this  paper  is  to  demonstrate  the  effec-
tiveness  of  simulation  data  augmentation  in  improving  the  perfor-
mance  of  traffic  anomaly  detection  models.  The  experimental  re-
sults provide strong empirical evidence across multiple dimensions:

Time transfer performance: using simulated data generated from
2017 I80-E road data improved model performance when tested on
2022 I80-E road data. After fine-tuning with simulation data, models
showed  improvements  in  key  metrics  such  as  accuracy  and  AUC,
effectively addressing time-related traffic pattern changes.

Spatial transfer performance: the spatial transfer experiment veri-
fied  that  combining  simulated  data  generated  from  accident  data
on  the  I80-E  road  with  normal  traffic  flow  data  on  the  I10-E  road
enhanced  model  performance  on  the  I10-E  road,  despite  differ-
ences  in  geographic  environment  and  traffic  flow  characteristics
between the two roads.

Statistical significance: To further illustrate the effectiveness of the
method,  model  performance  was  compared  under  different  data
configurations  across  three  architectures  (MLP,  CNN,  LSTM).  Using
experimental  results  from  spatial  and  time  transfer  experiments
with a 1:19 ratio of real to simulated data, the test results show that
the p-value of 'accuracy' is 0.0046 and the p-value of AUC is 0.0121,
which are  significantly  lower  than the commonly  used significance
level (α = 0.05), confirming the statistical significance of the simula-
tion data augmentation approach.

Cross-architecture  benefits:  all  three  evaluated  models—MLP,
CNN,  and  LSTM—showed  varying  degrees  of  improvement  after
using augmented data,  demonstrating that  different deep learning
architectures  benefit  from  data  augmentation,  though  to  different
extents.

 Limitation
This  study  acknowledges  that  other  critical  factors—such  as

adverse weather conditions, road surface quality, lighting, and vari-
ability  in  driver  behavior—can  significantly  influence  accident
occurrence  and  traffic  dynamics.  These  were  not  included  in  the
current simulation due to limitations in SUMO's built-in capabilities
and our study's focus on evaluating the core feasibility of physically
constrained data augmentation.

 

Fig. 9    Spatial transfer experiment simulation results. (a) The convergence curves of accuracy and AUC under MLP, CNN, and LSTM neural networks. (b)
Comparison of accuracy and AUC convergence curves between the fine-tuned model using SUMO simulation data and the baseline model.
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 Future directions
Future  research  should  focus  on  incorporating  the  aforemen-

tioned  factors  by  extending  SUMO  through  external  modules  or
coupling  it  with  more  sophisticated  behavior  models  to  construct
more  comprehensive  simulation  environments  that  better  reflect
real-world driving conditions, diversity, and uncertainty.

Additional  research  directions  include  exploring  the  integration
of  other  simulation  tools,  such  as  the  CityFlow  platform  based  on
the  SUMO  framework  with  built-in  self-driving  decision  models,
and  the  AIMSUN  system,  which  natively  supports  hybrid  micro-
meso-macro  modeling  with  real-time  data  interfaces.  The  simula-
tion setup for accident scenarios can be further optimized by intro-
ducing  more  physical  constraints,  using  neural  networks  to
construct  more  accurate  following  models,  and  employing  rein-
forcement learning for parameter selection. Mixed traffic flow envi-
ronments  containing  self-driving  vehicles  could  be  constructed,
incorporating  more  complex  neural  network  architectures  to
improve  model  performance.  Expanding  the  dataset  to  cover  a
wider  range  of  accident  scenarios  and  traffic  conditions  could
further  strengthen  this  method's  applicability  in  various  traffic
management tasks.

 Conclusions
This paper provides strong empirical  support  for  simulation data

augmentation as an optimization method for traffic anomaly detec-
tion models, particularly when real-world data is scarce or difficult to
obtain.  Using  SUMO  simulation  software  to  generate  accident
scenarios and augment real  data has proven statistically  significant
and  effective  in  improving  model  robustness  and  transferability,
especially in small sample scenarios.

 Author contributions

The authors  confirm contributions to the paper as  follows:  study
conception and design: Yang H, Liao C; data collection: Liao C; analy-
sis  and  interpretation  of  results:  Yang  H,  Chen  C;  draft  manuscript
preparation:  Yang  H,  Dong  Z,  Chen  C.  All  authors  reviewed  the
results and approved the final version of the manuscript.

 Data availability

The  data  that  support  the  findings  of  this  study  are  available  in
the  Caltrans  Performance  Measurement  System  repository.  These
data  were  derived  from  the  following  resources  available  in  the
public domain: https://pems.dot.ca.gov.

Acknowledgments

This  research  is  financially  supported  by  the  Zhejiang  Provincial
Natural  Science  Foundation  of  China  (Grant  Nos  LDT23F01011F01,
LZ23E080002),  'Pioneer'  and  'Leading  Goose'  R&D  Program  of
Zhejiang (Grant Nos 2023C01038, 2023C03155), and National Natu-
ral Science Foundation of China (Grant No. 72171210).

Conflict of interest

The authors declare that they have no conflict of interest.

Dates

Received  2  January  2025; Revised  29  July  2025; Accepted  22
September 2025; Published online 31 December 2025

References 

 World Health Organization. 2023. Road traffic  injuries. www.who.int/zh/
news-room/fact-sheets/detail/road-traffic-injuries (Retrieved  December
21, 2024)

1.

 Ghosh  B,  Smith  DP. 2014. Customization  of  automatic  incident  detec-
tion algorithms for signalized urban arterials. Journal of Intelligent Trans-
portation Systems 18(4):426−41

2.

 Li  L,  Qin  L,  Qu  X,  Zhang  J,  Wang  Y,  et  al. 2019. Day-ahead  traffic  flow
forecasting  based  on  a  deep  belief  network  optimized  by  the  multi-
objective particle swarm algorithm. Knowledge-Based Systems 172:1−14

3.

 Al Kuwaiti A, Nazer K, Al-Reedy A, Al-Shehri S, Al-Muhanna A, et al. 2023.
A  review  of  the  role  of  artificial  intelligence  in  healthcare. Journal  of
Personalized Medicine 13(6):951

4.

 Wang H, Fu T, Du Y, Gao W, Huang K, et al. 2023. Scientific discovery in
the age of artificial intelligence. Nature 620:47−60

5.

 Abdel-Aty  M,  Uddin  N,  Pande  A,  Abdalla  MF,  Hsia  L. 2004. Predicting
freeway crashes from loop detector data by matched case-control logis-
tic regression. Transportation Research Record 1897:88−95

6.

 Abdel-Aty M, Uddin N, Pande A. 2005. Split models for predicting multi-
vehicle crashes during high-speed and low-speed operating conditions
on freeways. Transportation Research Record 1908(1):51−58

7.

 Oh  C,  Oh  JS,  Ritchie  SG. 2005. Real-time  hazardous  traffic  condition
warning system: Framework and evaluation. IEEE Transactions on Intelli-
gent Transportation Systems 6(3):265−72

8.

 Lee C, Abdel-Aty M. 2006. Temporal variations in traffic flow and ramp-
related crash risk. In Applications of Advanced Technology in Transporta-
tion.  Chicago:  American  Society  of  Civil  Engineers.  pp.  244–49  doi:
10.1061/40799(213)40

9.

 Yu  R,  Abdel-Aty  M. 2013. Multi-level  Bayesian  analyses  for  single-and
multi-vehicle freeway crashes. Accident Analysis & Prevention 58:97−105

10.

 Yang K, Wang X, Yu R. 2018. A Bayesian dynamic updating approach for
urban  expressway  real-time  crash  risk  evaluation. Transportation
Research Part C: Emerging Technologies 96:192−207

11.

 Huang  T,  Wang  S,  Sharma  A. 2020. Highway  crash  detection  and  risk
estimation  using  deep  learning. Accident  Analysis  &  Prevention
135:105392

12.

 Pourroostaei Ardakani S, Liang X, Mengistu KT, So RS, Wei X, et al. 2023.
Road  car  accident  prediction  using  a  machine-learning-enabled  data
analysis. Sustainability 15(7):5939

13.

 Yu L, Du B, Hu X, Sun L, Han L, et al. 2021. Deep spatio-temporal graph
convolutional  network  for  traffic  accident  prediction. Neurocomputing
423:135−47

14.

 Guo M, Zhao X, Yao Y, Yan P, Su Y, et al. 2021. A study of freeway crash
risk  prediction  and  interpretation  based  on  risky  driving  behavior  and
traffic flow data. Accident Analysis & Prevention 160:106328

15.

 Zhang  S,  Abdel-Aty  M. 2022. Real-time  crash  potential  prediction  on
freeways  using  connected  vehicle  data. Analytic  Methods  in  Accident
Research 36:100239

16.

 Yuan C, Li Y, Huang H, Wang S, Sun Z, et al. 2022. Using traffic flow char-
acteristics  to  predict  real-time  conflict  risk:  a  novel  method  for  trajec-
tory data analysis. Analytic Methods in Accident Research 35:100217

17.

 Payne  HJ,  Tignor  SC. 1978. Freeway  incident-detection  algorithms
based  on  decision  trees  with  states. Transportation  Research  Record
1978(682):30−37

18.

 Parkany  E,  Xie  C.  2005.  A  complete  review  of  incident  detection  algo-
rithms  &  their  deployment:  what  works  and  what  doesn't. Technical
Report  NETCR37.  New  England  Transportation  Consortium,  USA.
https://onlinepubs.trb.org/onlinepubs/trispdfs/00988875.pdf

19.

 Jin  X,  Srinivasan  D,  Cheu  RL. 2001. Classification  of  freeway  traffic
patterns  for  incident  detection  using  constructive  probabilistic  neural
networks. IEEE Transactions on Neural Networks 12(5):1173−87

20.

 Dogru N, Subasi A. 2018. Traffic accident detection using random forest
classifier. 2018  15th Learning  and  Technology  Conference  (L&T),  Jeddah,
Saudi  Arabia,  25–26  February  2018.  USA:  IEEE.  pp.  40–45  doi:
10.1109/LT.2018.8368509

21.

Traffic anomaly detection using data augmentation
 

Yang et al. Digital Transportation and Safety 2025, 4(4): 264−274   Page 273 of 274

https://pems.dot.ca.gov/
https://www.who.int/zh/news-room/fact-sheets/detail/road-traffic-injuries
https://www.who.int/zh/news-room/fact-sheets/detail/road-traffic-injuries
https://www.who.int/zh/news-room/fact-sheets/detail/road-traffic-injuries
https://www.who.int/zh/news-room/fact-sheets/detail/road-traffic-injuries
https://www.who.int/zh/news-room/fact-sheets/detail/road-traffic-injuries
https://www.who.int/zh/news-room/fact-sheets/detail/road-traffic-injuries
https://www.who.int/zh/news-room/fact-sheets/detail/road-traffic-injuries
https://www.who.int/zh/news-room/fact-sheets/detail/road-traffic-injuries
https://www.who.int/zh/news-room/fact-sheets/detail/road-traffic-injuries
https://www.who.int/zh/news-room/fact-sheets/detail/road-traffic-injuries
https://doi.org/10.1080/15472450.2013.806843
https://doi.org/10.1080/15472450.2013.806843
https://doi.org/10.1080/15472450.2013.806843
https://doi.org/10.1016/j.knosys.2019.01.015
https://doi.org/10.1016/j.knosys.2019.01.015
https://doi.org/10.1016/j.knosys.2019.01.015
https://doi.org/10.3390/jpm13060951
https://doi.org/10.3390/jpm13060951
https://doi.org/10.1038/s41586-023-06221-2
https://doi.org/10.3141/1897-12
https://doi.org/10.1177/0361198105190800107
https://doi.org/10.1109/TITS.2005.853693
https://doi.org/10.1109/TITS.2005.853693
https://doi.org/10.1109/TITS.2005.853693
https://doi.org/10.1061/40799(213)40
https://doi.org/10.1016/j.aap.2013.04.025
https://doi.org/10.1016/j.trc.2018.09.020
https://doi.org/10.1016/j.trc.2018.09.020
https://doi.org/10.1016/j.aap.2019.105392
https://doi.org/10.3390/su15075939
https://doi.org/10.1016/j.neucom.2020.09.043
https://doi.org/10.1016/j.aap.2021.106328
https://doi.org/10.1016/j.amar.2022.100239
https://doi.org/10.1016/j.amar.2022.100239
https://doi.org/10.1016/j.amar.2022.100217
https://onlinepubs.trb.org/onlinepubs/trispdfs/00988875.pdf
https://doi.org/10.1109/72.950145
https://doi.org/10.1109/LT.2018.8368509


 White J, Thompson C, Turner H, Dougherty B, Schmidt DC. 2011. Wreck-
Watch: Automatic traffic accident detection and notification with smart-
phones. Mobile Networks and Applications 16:285−303

22.

 Ozbayoglu  M,  Kucukayan  G,  Dogdu  E.  2016.  A  real-time  autonomous
highway  accident  detection  model  based  on  big  data  processing  and
computational  intelligence. 2016  IEEE  International  Conference  on  Big
Data  (Big  Data),  Washington,  DC,  USA,  5–8  December  2016.  USA:  IEEE.
pp. 1807–13 doi: 10.1109/BigData.2016.7840798

23.

 Gu  Y,  Qian  Z,  Chen  F. 2016. From  Twitter  to  detector:  Real-time  traffic
incident detection using social media data. Transportation Research Part
C: Emerging Technologies 67:321−42

24.

 Mehrannia P, Bagi SSG, Moshiri B, Al‐Basir OA. 2023. Deep representa-
tion of imbalanced spatio-temporal traffic flow data for traffic accident
detection. IET Intelligent Transport Systems 17(3):606−19

25.

 Li L, Lin Y, Du B, Yang F, Ran B. 2022. Real-time traffic incident detection
based  on  a  hybrid  deep  learning  model. Transportmetrica  A:  Transport
Science 18(1):78−98

26.

 Xie T, Shang Q, Yu Y. 2022. Automated traffic incident detection: Coping
with imbalanced and small datasets. IEEE Access 10:35521−40

27.

 Jilani  U,  Asif  M,  Rashid  M,  Siddique  AA,  Talha  SMU,  et  al. 2022. Traffic
congestion  classification  using  GAN-based  synthetic  data  augmenta-
tion  and  a  novel  5-layer  convolutional  neural  network  model. Elec-
tronics 11(15):2290

28.

 Huang  Y,  Wei  W,  Yang  H,  Wu  Q,  Xu  K. 2023. Intelligent  algorithms  for
incident  detection  and  management  in  smart  transportation  systems.
Computers and Electrical Engineering 110:108839

29.

 Dabboussi AH, Jammal M. 2024. Traffic data augmentation using GANs
for  ITS. 2024  20th International  Conference  on  Distributed  Computing  in
Smart  Systems and the Internet  of  Things (DCOSS-IoT),  Abu Dhabi,  United
Arab  Emirates,  29  April  2024−01  May  2024.  USA:  IEEE.  pp.  66-73  doi:
10.1109/DCOSS-IoT61029.2024.00020

30.

 Benabdallah  Benarmas  R,  Beghdad  Bey  K. 2024. Improving  road  traffic
speed prediction using data augmentation: a deep generative models-
based approach. Annals of Data Science 11(6):2199−216

31.

 Liao C, Chen XM. 2024. A meta-learning approach to improving transfer-
ability for freeway traffic crash risk prediction. Digital Transportation and
Safety 4(1):21−30

32.

 Avila  A  M,  Mezić I . 2020. Data-driven  analysis  and  forecasting  of  high-
way traffic dynamics. Nature Communications 11(1):2090

33.

 Qu  Q,  Shen  Y,  Yang  M,  Zhang  R. 2024. Towards  efficient  traffic  crash
detection  based  on  macro  and  micro  data  fusion  on  expressways:  a
digital twin framework. IET Intelligent Transport Systems 18(12):2725−43

34.

 Yang K, Quddus M, Antoniou C. 2022. Developing a new real-time traf-
fic safety management framework for urban expressways utilizing rein-
forcement learning tree. Accident Analysis & Prevention 178:106848

35.

 Zaitouny A, Fragkou AD, Stemler T, Walker DM, Sun Y, et al. 2022. Multi-
ple  sensors  data  integration  for  traffic  incident  detection  using  the
quadrant scan. Sensors 22(8):2933

36.

 German Aerospace Center. n.d. SUMO at a glance. SUMO Documentation.
https://sumo.dlr.de/docs/SUMO_at_a_Glance.html (Retrieved  Decem-
ber 21, 2024)

37.

 Krajzewicz D, Brockfeld E, Mikat J, Ringel J, Rössel C, et al. 2005. Simula-
tion  of  modern  traffic  lights  control  systems  using  the  open  source
traffic  simulation  SUMO. Proceedings  of  the  3rd Industrial  Simulation
Conference  2005.  Berlin,  Germany:  EUROSIS-ETI.  pp.  299–302
https://elib.dlr.de/21012

38.

 Koh  SS,  Zhou  B,  Yang  P,  Yang  Z,  Fang  H,  et  al.  2018.  Reinforcement
learning for vehicle route optimization in SUMO. 2018 IEEE 20th Interna-
tional Conference on High Performance Computing and Communications;
IEEE  16th International  Conference  on  Smart  City;  IEEE  4th International
Conference  on  Data  Science  and  Systems  (HPCC/SmartCity/DSS),  Exeter,
UK,  28–30  June  2018.  USA:  IEEE.  pp.  1468–73  doi: 10.1109/HPCC/Smart
City/DSS.2018.00242

39.

 Kastner  KH,  Pau  P.  2015.  Experiences  with  SUMO  in  a  real-life  traffic
monitoring  system. SUMO  2015–Intermodal  Simulation  for  Intermodal
Transport  28,  Berlin.  pp.  1–10 www.researchgate.net/publication/
291339917

40.

 Fernandes  P,  Nunes  U.  2010.  Platooning  of  autonomous  vehicles  with
intervehicle  communications  in  SUMO  traffic  simulator. 13th Interna-
tional  IEEE  Conference  on  Intelligent  Transportation  Systems,  Funchal,
Portugal,  19–22  September  2010.  USA:  IEEE.  pp.  1313–18  doi: 10.1109/
ITSC.2010.5625277

41.

 Shamsashtiany R, Ameri M. 2018. Road accidents prediction with multi-
layer  perceptron  (MLP)  modelling  case  study:  roads  of  Qazvin,  Zanjan
and  Hamadan. Journal  of  Civil  Engineering  and  Materials  Application
2(4):181−92

42.

Copyright:  ©  2025  by  the  author(s).  Published  by
Maximum Academic Press, Fayetteville, GA. This article

is  an  open  access  article  distributed  under  Creative  Commons
Attribution  License  (CC  BY  4.0),  visit https://creativecommons.org/
licenses/by/4.0/.

 
Traffic anomaly detection using data augmentation

Page 274 of 274   Yang et al. Digital Transportation and Safety 2025, 4(4): 264−274

https://doi.org/10.1007/s11036-011-0304-8
https://doi.org/10.1109/BigData.2016.7840798
https://doi.org/10.1016/j.trc.2016.02.011
https://doi.org/10.1016/j.trc.2016.02.011
https://doi.org/10.1049/itr2.12287
https://doi.org/10.1080/23249935.2020.1813214
https://doi.org/10.1080/23249935.2020.1813214
https://doi.org/10.1109/ACCESS.2022.3161835
https://doi.org/10.3390/electronics11152290
https://doi.org/10.3390/electronics11152290
https://doi.org/10.3390/electronics11152290
https://doi.org/10.1016/j.compeleceng.2023.108839
https://doi.org/10.1109/DCOSS-IoT61029.2024.00020
https://doi.org/10.1109/DCOSS-IoT61029.2024.00020
https://doi.org/10.1109/DCOSS-IoT61029.2024.00020
https://doi.org/10.1007/s40745-023-00508-x
https://doi.org/10.48130/dts-0024-0027
https://doi.org/10.48130/dts-0024-0027
https://doi.org/10.1038/s41467-020-15582-5
https://doi.org/10.1049/itr2.12498
https://doi.org/10.1016/j.aap.2022.106848
https://doi.org/10.3390/s22082933
https://sumo.dlr.de/docs/SUMO_at_a_Glance.html
https://elib.dlr.de/21012/
https://doi.org/10.1109/HPCC/SmartCity/DSS.2018.00242
https://doi.org/10.1109/HPCC/SmartCity/DSS.2018.00242
https://www.researchgate.net/publication/291339917
https://www.researchgate.net/publication/291339917
https://doi.org/10.1109/ITSC.2010.5625277
https://doi.org/10.1109/ITSC.2010.5625277
https://doi.org/10.22034/jcema.2018.91998
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

	Introduction
	Related work
	Accident prediction
	Accident detection
	Data augmentation

	Data preparation
	I10-E
	I80-E
	Data preprocessing techniques

	Methodology
	Introduction to SUMO
	Simulation calibration
	Vehicle inject
	Accident detection methods

	Experimental workflows
	Generation and prediction of normal traffic flow
	Accident simulation and transfer experiment
	Accident simulation
	Temporal transfer
	Spatial transfer


	Results
	Generation and prediction of normal traffic flow
	Traffic flow generation
	Traffic flow prediction

	Abnormal traffic flow detection
	Temporal transfer testing experiment
	Spatial transfer testing experiment


	Discussion and conclusions
	Limitation
	Future directions
	Conclusions

	Author contributions
	Data availability
	References

