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Abstract

Traffic anomaly detection is crucial for road safety and traffic efficiency, but the scarcity of accident data poses challenges for model training. Although
current research has utilized deep neural networks for data augmentation in small-sample scenarios, it has largely overlooked real-world physical
constraints and lacks exploration into zero-shot scenarios, areas that still require further development. The paper proposes a SUMO-based simulation-driven
data augmentation approach that enhances detection performance under limited real-world data conditions. Synthetic accident data are generated under
five physical constraints and integrated with real traffic data to augment the training set. This study evaluates the method using three deep learning models
(MLP, CNN, and LSTM) on PeMS datasets from two California highways (I80-E and 110-E). Experimental results demonstrate that the simulation-augmented
training significantly improves model performance. In the spatial transfer experiment, the MLP model's accuracy improved from 75.53% to 76.58%, and AUC
increased from 53.62% to 56.74%. These findings indicate that this approach effectively enhances both temporal and spatial transferability for traffic

anomaly detection in small-sample scenarios.
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Introduction

Highways, as a critical component of modern transportation
systems, have significantly promoted interconnectivity between
regions and provided a solid foundation for national economic
development. However, traffic accidents remain one of the primary
public safety challenges worldwide, causing substantial fatalities,
injuries, and economic losses annually. According to the World
Health Organization (WHO), traffic accidents are the leading cause of
death for individuals aged five to 29, accounting for approximately
1.19 million fatalities per year'l. Additionally, millions of injuries
resulting from these accidents impose a heavy burden on society.
With the acceleration of urbanization and the increasing number of
vehicles, the issue of frequent traffic accidents has become more
pronounced, prompting academia and industry to urgently develop
efficient technologies for rapid accident detection and response.

Currently, various accident prediction and detection techniques
have been developed to improve traffic safety through risk identifi-
cation. These techniques can be categorized into two types: statisti-
cal models and machine learning-based models?., Traditional statis-
tical models rely on historical data and mathematical analysis to
uncover patterns within the data. However, they exhibit limitations
when addressing complex scenarios and large-scale datasetsEl. In
contrast, with the rapid development of artificial intelligence (Al)
technology™3!, Al-based models have shown greater potential in
traffic accident prediction and detection. These methods extract
complex features from large-scale data and achieve high-precision
predictions. Nevertheless, Al-based solutions are highly dependent
on high-quality data, and the traffic accident data often suffers from

© The Author(s)

insufficient quantity and quality. This issue limits the effectiveness of
Al technologies in practical applications. Advanced data cleaning
and preprocessing methods can address this challenge by improv-
ing data quality and enriching traffic event datasets with additional
information.

Despite increasing interest in using deep learning for traffic acci-
dent prediction and detection, significant limitations remain. Most
existing data augmentation strategies—such as those using Genera-
tive Adversarial Networks (GANs)—focus on statistical realism with-
out incorporating real-world physical constraints. These approaches
may produce synthetic data that lacks behavioral interpretability or
alignment with actual traffic dynamics. Meanwhile, advanced traffic
simulation platforms like SUMO have been extensively used for traf-
fic modeling and control evaluation, but their potential as tools for
generating physically grounded synthetic data to improve anomaly
detection models remains underexplored. Furthermore, very few
studies investigate the ability of augmented models to generalize in
zero-shot or data-scarce scenarios, particularly across different
temporal or spatial domains.

To address the aforementioned challenges, the paper proposes a
SUMO (Simulation of Urban Mobility) -based simulation data
augmentation method aimed at improving the performance of traf-
fic accident detection and prediction by enhancing data quality and
coverage. Specifically, the main contributions of the paper are as
follows:

(1) Incorporation of physical constraints: by integrating traffic-
related physical information, the paper introduces a physical-
informed model that incorporates physical constraints into the data
augmentation process, addressing the lack of physical constraints in
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existing methods. These physical constraints include maximum
acceleration, comfortable deceleration, minimum safe distance,
acceleration index, and driver reaction time. While these five param-
eters capture key aspects of vehicle dynamics and are directly
supported in SUMO, other influential real-world factors, such as
weather conditions or driver behavior variability, were not included
due to limited simulator support and the scope of this study. Future
work will explore incorporating such factors to further enhance the
realism of the augmented data.

(2) Temporal and spatial transfer modeling: using the SUMO soft-
ware, the study conducts temporal transfer modeling for roads with
limited accident data and spatial transfer modeling for roads with-
out accident data, thereby extending the temporal and spatial appli-
cability of the data.

(3) Deep learning-based accident detection: the study utilized
three commonly applied neural network models for accident detec-
tion and validated the model's detection performance using real-
world data and simulation data. Experimental results demonstrate
that the model significantly improves detection performance and
reliability.

The remainder of this paper is organized as follows: the 'related
work' section reviews existing studies on traffic accident detection
and prediction, and surveys relevant research on traffic flow data
augmentation. The 'methodology’ section introduces the SUMO
simulation techniques and the accident prediction and detection
models, including multilayer perceptron (MLP), convolutional neural
network (CNN), and long short-term memory (LSTM). The 'data
preparation’ section details the data sources, selected roads, and
data preprocessing methods. The 'results' section presents the simu-
lation-generated normal traffic flows, temporal and spatial transfer
modeling, and experimental results. Finally, the 'discussion and
contributions' section summarizes the main contributions of the
paper and highlights potential directions for future research.

Related work

Accident prediction and detection have long been central topics
in transportation research. With the rapid advancement of machine
learning (ML), Al-based models have gradually become a core area
of research, leading to numerous studies that utilize traffic accident
data for analysis, prediction, and detection.

Accident prediction

Research in accident prediction primarily falls into two categories:
statistical analysis models and machine learning-based models.
Statistical analysis, such as logistic regression®-8l, log-linear
modelsl, Bayesian logistic models!'%, and Bayesian dynamic logis-
tic regression models!'!], provide valuable insights, however, they
often struggle to capture the complex nonlinear relationships inher-
ent in traffic flow data, leading to limited performance.

In contrast, ML models demonstrate greater potential due to their
ability to handle high-dimensional and nonlinear data. Huang et
all'2l utilized deep learning techniques to predict crash risks,
employing data from radar sensors on Interstate 235 in Des Moines,
IA. Their model demonstrated notable improvements in detection
accuracy. Pourroostaei et al.l'3l explored road car accident data
patterns and proposed a data preprocessing model, including miss-
ing data removal, attribute generalization, and outlier removal, to
improve the accuracy of traffic accident prediction using machine
learning techniques.

There are likewise many other studies that have investigated acci-
dent risk prediction by fusing traffic data and combining statistical
and ML methods. For instance, Yu et al.l'¥ proposed a Deep Spatio-
Temporal Graph Convolutional Network (DSTGCN) to predict traffic
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accidents by effectively learning spatial, temporal, and external data
correlations, and achieved superior performance on real-world
datasets. Guo et al.'>! incorporated risky driving behavior and traffic
flow data to predict traffic accident risks, achieving a prediction
accuracy of 84.48%. Zhang et al.l'é! developed a bidirectional LSTM
model with convolutional layers to analyze roadside detector data
and connected vehicle information, reaching a recall of 0.772 and
an AUC of 0.857. Yuan et al.l'”? combined statistical and ML models
to explore the relationship between traffic conflicts and flow
features using the HighD dataset, highlighting the significant in-
fluence of traffic flow on conflict probability.

Accident detection

Early-stage methods for incident detection predominantly relied
on comparative algorithms, such as the well-known California algo-
rithm['8], which compares traffic parameters (e.g., speed, occupancy)
to predefined thresholds!'9l. While effective, these methods depend
heavily on fixed detector readings and lack adaptability.

With the development of computational intelligence, Artificial
Intelligence algorithms apply Al and ML models to identify the
normal and abnormal traffic patterns and then classify the given
input data as either incident or normal conditions?%l. For example,
Dogru et al.l2l proposed an intelligent traffic accident detection
system based on VANETs and machine learning, using vehicle speed
and position data for high-accuracy accident detection with the
Random Forest algorithm. White et al.l?2l proposed a smartphone-
based traffic accident detection system that combines accelerome-
ters, acoustic data, and context information to automatically notify
emergency services, provide situational awareness, and reduce false
positives. Ozbayoglu et al.l?3] designed a real-time autonomous
detection system using computational intelligence techniques to
analyze Istanbul's traffic data, predicting accidents with nearest
neighbor models and feed-forward neural networks. Gu et al.l24!
explored social media as an alternative data source, mining Twitter
for real-time traffic incident detection and classification. Mehrannia
et al.l?5l applied LSTM networks for freeway accident detection,
improving class separability and reducing dimensionality.

Data augmentation

The above Al-based solutions for incident detection have high-
lighted challenges, particularly regarding data quantity and quality.
Traditional traffic datasets often lack sufficient volume and exhibit
quality issues, limiting their applicability. To address these chal-
lenges, data enhancement techniques have emerged as a critical
research focus.

Lin et al.l29 introduced a hybrid model using Generative Adver-
sarial Networks (GANSs) to expand sample size and balance datasets,
complemented by Temporal and Spatially Stacked Autoencoders
(TSSAE) for feature extraction. Xie et al.2”! proposed SASYNO-RF-
RSKNN, a hybrid method tackling imbalanced datasets using over-
sampling techniques and ensemble algorithms. Similarly, Jilani et
al.l?8 utilized GAN-based augmentation to train CNN models,
achieving high classification accuracy. Other studies emphasize
advanced augmentation strategies. Huang et al.l?”) integrated GANs
with TSSAE to address sample limitations and detect temporal and
spatial traffic patterns. Dabboussi et al.% employed GANs to gener-
ate realistic traffic speed data, improving prediction for specific
scenarios. Benabdallah Benarmas et al.B"l highlighted the role of
Deep Generative Models (DGMs) in enhancing traffic speed predic-
tions through synthetic dataset generation.

Summarily, these advancements underscore the significant
progress in accident prediction and detection, particularly through
the integration of deep learning and data augmentation. However,
challenges remain in addressing the dependency on high-quality
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data and balancing the scalability of models for diverse traffic
scenarios are key. Based on these insights, this paper proposes a
method that combines SUMO simulation data with real-world data.
This method not only increases the diversity of the data but also
effectively improves the performance of the model.

Data preparation

This study collected and processed 160 accident and non-acci-
dent cases, with data sourced from the California Department of
Transportation's Performance Measurement System (PeMS) and the
California Highway Patrol (CHP). The study focuses on two major
highways in California—Interstate 10 East (I110-E) and Interstate 80
East (I80-E)—covering the period from December 1 to June 30 in
both 2016 and 2021, thereby capturing traffic conditions before and
after the COVID-19 pandemic. The dataset encompasses traffic
records from 8,041 mainline detector stations distributed across
5,360 miles of highway. Data from the year 2017 was used for model
training, while 2022 data was utilized to evaluate temporal and
spatial transferability.

Although PeMS performs automated imputation to address short-
term missing data, the dataset remains vulnerable to residual
anomalies resulting from intermittent hardware failures and
communication disruptions at detector stations. To enhance data
integrity and ensure the reliability of downstream modeling, a
comprehensive preprocessing framework was implemented. Speci-
fically, data entries were excluded under the following conditions:
(1) a complete absence of recorded measurements from a detector
station; (2) simultaneous zero values in average speed, flow, and
occupancy, indicating likely sensor malfunction; (3) identical read-
ings across multiple detectors, suggesting data duplication or trans-
mission errors; and (4) repeated values at a given detector that
exactly matched those recorded at the same timestamp on the
previous day or week, indicating placeholder or default imputations.

110-E

I-10EB2 is the eastbound section of Interstate 10 in the United
States, spanning multiple states and connecting major cities from
Los Angeles, California, to Jacksonville, Florida. With a total length of
approximately 2,460 miles (3,960 km), it is the fourth-longest high-
way in the United States, following 1-90, I-80, and I-40. It is also one
of the longest and busiest east-west highways in the country. I-10E
traverses key economic, cultural, and logistical hubs, playing a
crucial role in freight transportation and interstate travel. It connects
major regions in the southwestern and southeastern United States,
serving as an essential corridor for east-west transportation.

180-E

The I180-EB3! highway is part of the US Interstate Highway System,
spanning over 4,600 km and connecting California and New Jersey,
which is commonly used in identifying normal traffic flow. This road
traverses 11 states, with I80-E being its eastbound segment. It
features a wide roadway, typically comprising three to five lanes,
with the specific number of lanes varying by state and region. As a

Traffic anomaly detection using data augmentation

vital transportation corridor, 180-E serves a large volume of
commuter and freight vehicles, exhibiting significant variations in
traffic characteristics across its segments. From urban core areas to
suburban and rural regions, this highway provides a wealth of
sample data for studying dynamic behaviors under different traffic
environments. Moreover, due to its complex traffic conditions,
frequent peak flows, and diverse traffic patterns, I80-E is an ideal
choice for traffic simulation studies.

Overall, 180-E and 110-E differ significantly in both traffic scale
and functional context. I80-E, an urban freeway segment, carries
approximately 110,000 vehicles per day, while 110-E, located in a
more suburban to rural area, sees around 80,000. These structural
and environmental differences introduce a substantial geographic
domain shift, making the spatial transfer task more challenging and
meaningful.

Data preprocessing techniques

To better demonstrate the generalizability of the model, basic
information that can typically be extracted by conventional high-
way detectors is selected as the model input. These inputs usually
include fundamental statistical measures such as the average and
standard deviation of traffic flow. Specifically, based on previous
experiencel34-39], data collected by two detectors is used upstream
and downstream of the accident point to extract traffic flow para-
meters within 0 to 15 min after the accident for analysis, as shown in
Fig. 1. When an accident occurs, it often causes congestion and
sudden deceleration upstream, generating shock waves that pro-
pagate backward in space. Monitoring the upstream area allows us
to capture early indicators of abnormal traffic conditions, such as a
sudden drop in speed or an increase in occupancy. In contrast, the
downstream detectors serve as a control reference, where traffic
may be unaffected or return to normal faster.

For analysis, the time is divided into three intervals, each with a
five-minute gap, labeled as T;, T,, and Ts. Specifically, the time from
0 to 5 min before the accident corresponds to T;, 5 to 10 min corre-
sponds to T,, and 10 to 15 min corresponds to T;. Additionally, the
detectors are numbered sequentially from upstream to down-
stream in relation to the accident point, designated as S;, S,, S5 and
S4 The selected traffic flow parameters include flow rate, speed, and
occupancy, represented by the symbols Q, V, and O, respectively. To
provide a more comprehensive description of the data characteris-
tics, the average values and standard deviations of these parame-
ters are further calculated, denoted as Aver and Std, and serve as the
initial input variables. In total, 72 variables were constructed to
support the model's input and analysis.

Methodology

To enhance the performance of traffic accident detection
systems, the SUMO was utilized for data augmentation and
advanced deep learning techniques for traffic accident detection.
The following section first introduces SUMO, followed by an intro-
duction to the deep learning models used.

---»> Traffic flow direction

e
T

Accident

Detector

Fig.1 Accident location and detector selection.
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Introduction to SUMO

SUMO is a microscopic traffic simulation platform designed for
modeling multi-modal transportation systems, including vehicles,
public transit, pedestrians, and cyclists, developed by the Dresden
University of Technology in GermanyB7l. Since its inception in
2001, the SUMO software suite has been widely applied in numer-
ous domestic and international research projects. Its primary appli-
cations include traffic signal evaluationB38], route selection and
re-planningB9, traffic monitoring method assessmentl“?, vehicle
communication simulation®', and traffic forecasting“2. As an open-
source software, SUMO allows users to customize and extend it
according to their needs. It supports multiple traffic modes, such as
cars, pedestrians, and public transport, and can be integrated with
tools like Python and MATLAB, facilitating data analysis and model
training. Its high efficiency enables SUMO to quickly process large
volumes of traffic data and simulate complex traffic scenarios,
making it particularly suitable for tasks such as traffic anomaly
detection and model optimization. Additionally, SUMO possesses
powerful data generation and enhancement capabilities, enabling
the creation of simulation data with complex traffic patterns and
diverse scenarios, which are especially well-suited for training deep
learning models. Finally, SUMO simulates based on real-world traffic
network data and employs precise vehicle behavior modeling,
ensuring that the simulation results closely align with real-world
traffic conditions, demonstrating applicability in real-world scenar-
ios. Due to the various advantages of SUMO mentioned above,
SUMO was ultimately chosen as the simulation environment in this
paper to generate traffic accident augmented data.

Simulation calibration

The Intelligent Driver Model (IDM), a microscopic traffic simula-
tion model designed to replicate vehicle dynamics and driver
behavior, was calibrated using an exhaustive grid search method.
IDM employs precise mathematical formulations to simulate how
vehicles adjust their speed and spacing in response to leading vehi-
cles under various traffic conditions, considering factors such as
desired speed, current speed, gap distance, and traffic density to
determine optimal acceleration or deceleration strategies.

The IDM model assumes that the driver will dynamically adjust
the acceleration according to the behavior of the vehicle in front
and the current traffic conditions. The acceleration of the vehicle is
determined by the following factors: (1) Expected free travel speed:
When there is no interference from the vehicle in front, the vehicle
tends to travel at a desired speed (such as the speed limit); (2) Safety
distance: The vehicle will adjust its speed according to the distance
and relative speed to the vehicle in front to avoid a rear-end colli-
sion; and (3) Acceleration and deceleration capabilities: The physical
properties of the vehicle also constrain driving behavior.

The acceleration formula of the IDM model is as follows:

e
v=a ” "

where, a represents the maximum acceleration, v represents the
current vehicle speed, v, represents the expected speed, J represents
the acceleration index. Specifically, 6 controls how aggressively or
smoothly a vehicle approaches its desired speed. A larger value of §
leads to smoother, more gradual acceleration, promoting comfort and
stability, while a smaller value results in faster, more abrupt accele-
ration responses. s represents the distance between the current vehicle
and the vehicle in front, and s*(v, Av) represents the expected distance,
which can be expressed as:

vAv
s*(v,Av) = s, +max(0, vT + —) ?2)
0 2ab

M
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where, Av represents the relative speed, that is, the speed difference
between the current vehicle and the vehicle in front; s, represents the
minimum safe distance, b represents the comfortable deceleration. If
the current vehicle suddenly decelerates, the vehicle will adjust the
current speed with the deceleration of b to avoid a rear-end collision;
T represents time headway, which refers to the driver's reaction time.

Parameter calibration is used to determine the IDM parameters.
The objective of calibration was to minimize the Root Mean Square
Error (RMSE) between simulated traffic flow and real-world detector
readings. The calibration process was conducted over a defined
search space constrained by physically reasonable ranges for each
IDM parameter, including maximum acceleration and comfortable
deceleration. The upstream section of the three-lane road section
I180-E, which is monitored by four detectors (402241, 402243,
402245, 402246) was selected. The vehicle data from the upstream
detectors is used as input, and the difference between the simu-
lated and actual readings from the downstream detectors is used to
fine-tune the IDM parameters to ensure that the simulation accu-
rately reflects the observed traffic behavior.

Vehicle inject
After adopting the calibrated parameters, let the probability of a
vehicle appearing per second be p. Then, the number of vehicles
departing on this lane within 5 min, X, follows a binomial distri-
bution:
X ~ B(300, p) 3)
The mean of this distribution can be expressed as E(X) = 300p,
which equals the actual number of vehicles N detected by the
detector during the 5 mins. Therefore, the input probability p =
N/300.

Accident detection methods

MLP is a classic feedforward neural network architecture com-
posed of multiple layers, typically including an input layer, one or
more hidden layers, and an output layer. Each neuron in one layer is
fully connected to the neurons in the previous layer, processing data
through weighted sums, biases, and activation functions to trans-
mit information through the network. The goal of MLP is to accu-
rately model the complex nonlinear relationships between input
data and outputs, enabling precise classification or regression tasks.

CNNs are a class of deep learning models primarily used for
processing and analyzing grid-like data structures, such as images or
time-series data. CNNs excel at automatically learning spatial hier-
archies of features, making them particularly effective in tasks like
image classification, object detection, and anomaly detection.

LSTM networks are a specialized type of Recurrent Neural
Network (RNN) designed to handle and predict long-term depen-
dencies in sequential data. Traditional RNNs often struggle with
long sequences due to the vanishing or exploding gradient pro-
blem, making it difficult to effectively retain information from
distant points in the sequence. LSTM addresses this issue by intro-
ducing 'memory cells' and 'gating mechanisms,' which enable the
model to manage information flow more effectively.

This paper implements the prediction of normal traffic flow using
LSTM to validate the feasibility of using SUMO simulation data, and
accident detection of abnormal traffic flow using MLP, CNN, and
LSTM, using multiple neural networks with the aim of eliminating
chance. These models are chosen for their simplicity, interpret-
ability, and compatibility with small-sample datasets. While more
advanced models such as spatiotemporal graph convolutional
networks (STGCNs) or graph neural networks (GNNs) can more
effectively capture complex spatiotemporal dependencies, they
usually require larger-scale graph-structured data and more exten-
sive training samples. Given the small-sample and data-scarce
scenarios emphasized in this work, simpler models provide more
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robust and interpretable benchmarks to evaluate the effectiveness
of simulation-based data augmentation. Moreover, the consistent
improvements demonstrated in these commonly used models
reinforce the practical value of our proposed approach.

Experimental workflows

The experimental workflows comprises two key components:

(1) Normal traffic flow prediction: By comparing the differences in
prediction results generated using real-world data alone versus
hybrid data (real-world data + SUMO simulation data), the feasibility
of SUMO simulation data in model training was validated;

(2) Abnormal traffic flow detection: Three neural network models
were first brought to convergence, followed by joint fine-tuning
with SUMO simulation data and real-world data, demonstrating
the effectiveness of simulation data in enhancing detection
performance.

Generation and prediction of normal traffic flow

To demonstrate that SUMO simulation can be effectively used for
traffic flow simulation, traffic flow simulation was first performed
using SUMO, and its effectiveness was validated by comparing the
simulation results with real-world data.

Traffic flow data was used as the input for the LSTM model to
predict future traffic flow. The input sequence is represented as [g,,
Qi1 Qv Qi3 Gesal, Where g; denotes the traffic flow at time t. A 25
min traffic flow sequence is used as the input, and the model predicts
the traffic flow for the next 5 min. This approach enables effective
modeling of short-term traffic fluctuations and dynamic changes.

To validate the effectiveness of SUMO simulation data, three
training datasets were used, as shown in Fig. 2, where the dataset A
included 28 d of real traffic flow data (from December 1, 2016, to
December 29, 2016); the dataset B comprised 1 d of real traffic flow
data (from December 28, 2016, to December 29, 2016); and the
dataset C combined simulated traffic flow data (from December 1,
2016, to December 28, 2016) with an additional day of real data
(from December 28, 2016 to December 29, 2016). The test set
consists of 7 d of real traffic flow data (from December 29, 2016, to
January 5,2017).

Accident simulation and transfer experiment

Accident simulation
As shown in Fig. 3, the accident simulation is conducted by clos-
ing lanes in the simulation. When an accident occurs, the lanes in

12-28

Traffic anomaly detection using data augmentation

the fixed areas upstream and downstream of the accident point are
closed. Two types of accident simulation are defined: existing acci-
dent enhancement and virtual accident enhancement.

Existing accident enhancement involves altering the impact
range and affected lanes based on the existing accidents, used for
time transfer experiments. Virtual accident generation involves
randomly specifying a non-accident time and creating virtual acci-
dents at random locations and times, used for spatial enhancement
in simulation experiments. The simulation process is shown in Fig. 4,
and the details will be explained later.

To simulate rare accident scenarios and enrich the training
dataset, SUMO was used to generate synthetic traffic data based on
real-world detector inputs. By calculating the error under different
numbers of lanes and impact ranges, the accident scenario was
simulated by blocking a single lane. The simulation incorporated
five core physical parameters—minimum vehicle gap, maximum
acceleration, comfortable deceleration, acceleration exponent, and
simulation time step—which govern vehicle behavior and interac-
tion. The resulting traffic patterns exhibit realistic congestion effects,
including upstream queuing, abrupt speed drops, and downstream
flow disruptions, which are key indicators of anomaly conditions.
Subsequently, these simulated data will be spliced with real data for
use in subsequent research. The core of this research is to combine
real data with simulation data for data augmentation, thereby
improving the model's transfer ability in different temporal and
spatial contexts, particularly in scenarios with small samples and
data scarcity. This approach primarily focuses on two types of trans-
fer: temporal transfer and spatial transfer.

Temporal transfer

Temporal transfer refers to the model's ability to transfer knowl-
edge across different time periods (e.g., 2017 vs 2022). To validate
the model's performance in temporal transfer scenarios, the study
uses real data from the 180-E road in 2017 as the training set and
trains a baseline model without data augmentation for the accident
detection task. Subsequently, the SUMO simulation software was
used to generate augmented simulation data by combining the
accident data and normal traffic flow data from the 2022 180-E road.
These simulation data are then used to fine-tune the model to
enhance its transfer capability to a new time period.

During the temporal transfer model training process, the Adam
optimizer was used with the initial learning rate set to 1e-5. Due to
the limited size of the input data, the batch size was set to eight.

12-29

Data_test

Data simulation

Data_test

Flow_simulation

J—

Data_simulation

Data_test

—

Fig.2 Mixed dataset strategy for model training.
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Accident impact range

Fig.3 SUMO accident simulation diagram.

When the model was trained to a converged state, it was saved. In
the subsequent fine-tuning phase, the learning rate was further
reduced to 1e-6, and the batch size was adjusted to 16, 32, or 64
depending on the size of the new training set. During the fine-
tuning process, the previously saved model was loaded, and train-
ing was continued based on it.

In the experiment, 100 real data points were randomly selected
from the 180-E road in 2017 (including 20 accident data and 80 non-
accident data, with a 1:4 positive-to-negative sample ratio) as the
training set, and the model was trained using neural networks to
obtain the baseline model. Then, 25 real data points from the 180-E
road in 2022 were randomly selected as the first training set, and
samples were extracted from the simulated data at ratios of 1:1, 1:9,
and 1:19, resulting in three training sets with simulated data
volumes of 25, 225, and 475, respectively. These four training sets
were then used for model fine-tuning. Finally, the real data from the
180-E road in 2022 was uniformly used as the test set to evaluate the
performance of the baseline model and the fine-tuned models.

Spatial transfer

Spatial transfer refers to the model's ability to transfer knowledge
across different geographical environments or traffic flow character-
istics. To validate the model's spatial transfer ability, a test involving
transfer between different roads (I80-E and [10-E) was conducted.
Initially, accident data from the 180-E road in 2017 and normal traffic
flow data from the 110-E road were used to train a baseline model.

2022 180
other accident

data

Temporal

2022 180 data
augmentation

transfer model model
baseline
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Subsequently, the SUMO simulation software, combining the acci-
dent data from the 2017 I80-E road with the normal traffic flow data
from the 110-E road, was used to generate augmented data for the
110-E road, which was then used to fine-tune the model. The specific
experimental details will be described in the results section.

For spatial transfer model training, the optimizer used was Adam
with a learning rate of 1e-5 and batch size set to eight. The model
was saved when training converged, and for fine-tuning, the learn-
ing rate was set to 1e-6, the batch size was adjusted to 64 based on
the size of the new training set, and the previously saved model was
read to perform the training.

In the spatial transfer testing experiment, it was assumed that the
110-E road in 2017 had just begun operation, resulting in a scarcity
of normal traffic flow data and a complete lack of accident data. To
address this, a baseline model was first constructed by randomly
selecting 100 real data samples from the 2017 180-E road—compiris-
ing 20 accident samples and 80 non-accident samples (a case
matching ratio of 1:4, which was consistently used thereafter)—and
trained neural networks on this set. To generate training data for
fine-tuning under spatial transfer conditions, the accident data from
the 2017 180-E road was combined with the limited normal traffic
flow data from the 2017 110-E road, and the SUMO simulation soft-
ware was used to simulate accidents, applying simulation-based
data augmentation to generate enhanced [10-E road samples.
From this augmented dataset, 100 samples (20 accident and 80
non-accident) were then extracted to fine-tune the pre-trained
baseline model. Finally, real data from the 2017 110-E road was used
as the test set to evaluate the performance of both the baseline
and fine-tuned models, thereby assessing the effectiveness of
simulation-based augmentation in enhancing spatial transferability.

Results

Generation and prediction of normal traffic flow

Traffic flow generation

An exhaustive search with a step size of 0.1 was performed across
the parameter space constrained by five physical constraints, result-
ing in the optimal parameter combination that minimizes the error
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Fig.4 Temporal and spatial transfer simulation diagram.
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as follows: a = 2.6 m/s%, b=1m/s2, so=3m, d =4, T= 0.5 s. After-
wards, real traffic data was used to generate the number of vehicles;
using binomial distribution to control whether the vehicle is
injected at a certain second to form natural fluctuations; and IDM
physical parameters to control the micro-behavior of each vehicle to
ensure the physical rationality of the behavior. Using those as input,
a seven-day simulation is illustrated in Fig. 5 and conducted to
obtain the traffic flow data extracted by the detector during the
seven-day simulation.

Traffic flow prediction

Using the three training datasets mentioned in Experimental
Workflows for training and predicting the traffic flow data in the
next 7 d, the results are shown in Fig. 6. Where the 'Real data (28 d)'
curve shows the prediction results for the next 7 d after training the
model with dataset A; the 'Real data (1 d)' curve shows the predic-
tion results for the next seven days after training the model with
dataset B; and the 'SUMO and real data' curve shows the prediction
results for the next 7 d after training the model with dataset C. The
'Ground truth' curve shows the actual observed changes in traffic
flow over the 7 d, which is used as a baseline. It was found that
analyzing SUMO simulation data in combination with a small
amount of real-world data yields predictions that differ very little
from predictions based on a large amount of real-world data,
compared to using only one day of real data. Additionally, Fig. 7
shows that during non-peak hours, the combined dataset demon-
strates particularly significant improvements, with errors approach-
ing the level achieved by training on the complete dataset. This
further validates the reliability and utility of the simulated data in
relevant analyses.

Abnormal traffic flow detection

Temporal transfer testing experiment

Normal traffic flow data from January 1, 2022, was first selected.
The IDM model was calibrated based on the error between the
simulation detector data and the real data, yielding the following
model parameters: a =23 m/s2, b=26m/s%, s,=5m,0=4,T=1s.
Next, the SUMO simulation was used to simulate traffic flow after
accidents, and by calculating errors under different lane numbers
and impact ranges, the simulation settings that best replicated real-
world conditions were selected: the impact range was 20 m, and the
affected lane number was 1. The accident time and location were
randomly selected from five real accidents that occurred on the 180-
E road in 2022. Based on the times and locations of these real acci-
dents, combined with the aforementioned settings, simulations
were performed using SUMO, resulting in five simulated datasets
based on real accident data. The five randomly selected accidents
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Fig.5 Seven-day simulation traffic flow variation curve.
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represent approximately 1.85% of the available accident sample for
2017. This significant reduction highlights the challenge of data
scarcity and underscores the need to use simulations to supple-
ment data under such constraints.

The experimental results are shown in Fig. 8. The results show
that the samples generated through data augmentation not only
significantly improved the model's performance but also demon-
strated good temporal transferability. Although real data from the
180-E road in 2017 were used during training, the testing was still
based on real data from the I180-E road in 2022. The fine-tuned
models showed significant improvements in key performance indi-
cators such as accuracy and AUC. Specifically, the MLP, CNN, and
LSTM neural network models all exhibited varying degrees of per-
formance improvement after fine-tuning.

For the MLP model, when using the 2022 small sample with a 1:1
sample ratio for training, the model's accuracy was relatively poor.
However, when the sample ratio was adjusted to 1:9, the accuracy
increased from 69.39% to 73.23%, and further increased to 73.29%
when the sample ratio was 1:19. In terms of AUC, all fine-tuning
methods showed improvement, with the most significant increase
seen at a 1:19 sample ratio, where the AUC rose from 52.02% to
52.96%.

For the CNN model, all fine-tuning strategies outperformed the
baseline model, further confirming the performance-boosting effect
of data augmentation. Specifically, when using the 2022 small
sample, the accuracy improved from 76.55% to 76.81%. As the
sample ratio increased, the accuracy continued to improve, reach-
ing 77.19%, 78.36%, and 78.4%. In terms of AUC, the AUC for the
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Fig. 8 Temporal transfer experiment simulation results. (a) The convergence curves of accuracy and AUC under MLP, CNN, and LSTM neural networks.
(b) The comparison of accuracy and AUC curves before and after fine-tuning the model using the 2022 small sample dataset with a 1:1, 1:9, and 1:19

sample ratio as the fine-tuning training set.

2022 small sample increased from 50.36% to 50.52%, and the AUC
for different sample ratios also showed gradual improvements: from
50.36% to 50.76% for a 1:1 ratio, from 50.36% to 50.72% for a 1:9
ratio, and from 50.36% to 50.92% for a 1:19 ratio, showing stable
and progressive enhancement.

For the LSTM model, there was also a significant improvement in
accuracy. When using the 2022 small sample, accuracy increased
from 70.86% to 75.02%. As the sample ratio changed, accuracy
reached 74.5% for a 1:1 ratio, 78.27% for a 1:9 ratio, and 79.49% for a
1:19 ratio. AUC also increased from 50.16% to 50.52%. These results
further indicate that data augmentation significantly improved the
LSTM model's performance in temporal transfer scenarios.

Overall, the experimental results validate the effectiveness of the
simulation-based data augmentation training method in temporal
transfer scenarios. Especially in small sample situations, data
augmentation not only enhances the model's generalization ability
but also effectively improves transfer performance across time peri-
ods. These findings provide strong empirical support for model opti-
mization using data augmentation techniques, further proving the
potential and advantages of simulation data as augmented samples
in data-scarce situations. In addition, as the sample proportion
increases, the diversity of the data gradually improves, and the
performance of the model shows an overall upward trend. This
result suggests that in the absence of real data, simulated data helps
to improve the generalization ability and performance of the model.
Therefore, combining real data with simulation data for data
augmentation is an effective strategy to improve model perfor-
mance and address data scarcity, offering significant guidance for
future research and applications.

Spatial transfer testing experiment

Data was selected from January 1, 2017, and the IDM model was
calibrated based on the error between simulated detector data and
real data, obtaining parameters: a = 3 m/s2, b = 2.6 m/s, s, =5m,
0=4,T=0.25s. Next, SUMO was used to simulate traffic flow after
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an accident and selected the most realistic simulation settings by
calculating the error under different lane counts and influence
ranges, obtaining an influence range of 20 and an affected lane
number of 0. The time and location of accidents were randomly
generated to meet the requirements of the spatial transferability
test. The time and location of the accident are determined using a
completely randomized approach. Combining the above setup, a
simulation dataset is obtained. This simulation setup is consistent
with the definition of zero-shot scenarios introduced in the abstract.
Since no real accident data exists for the 110-E road, the experiment
tests whether models fine-tuned with simulated accident data—
originating from different roads—can generalize to such unseen
environments.

The experimental results are shown in Fig. 9. From Fig. 9, it is seen
that the samples generated were validated through data augmenta-
tion not only improving the model's performance but also demon-
strating good spatial transferability. Although accident data from
the I80-E road and normal traffic flow data from the 110-E road were
used for augmentation during training, the testing was still based
on real data from the 110-E road. The results show that the fine-
tuned model showed significant improvement in key metrics such
as accuracy (acc) and AUC value. Specifically, the three neural
network models, MLP, CNN, and LSTM, all showed performance
improvements after fine-tuning. The accuracy of MLP increased
from 75.53% to 76.58%, and AUC increased from 53.62% to 56.74%;
CNN's accuracy improved from 75% to 75.79%, and AUC increased
from 50.33% to 51.32%; LSTM's accuracy rose from 74.74% to
77.37%, and AUC increased from 52.63% to 53.39%.

Combining the results of the temporal transfer experiments with
the spatial transfer experiments, it can be found that in the tempo-
ral transfer experiment, LSTM and CNN perform better because they
are able to capture spatial and temporal features, respectively. In the
spatial transfer experiment, there is not much difference among the
three models because the performance improvement of MLP mainly
relies on the increase of data diversity, and more training data than
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Fig. 9 Spatial transfer experiment simulation results. (a) The convergence curves of accuracy and AUC under MLP, CNN, and LSTM neural networks. (b)
Comparison of accuracy and AUC convergence curves between the fine-tuned model using SUMO simulation data and the baseline model.

in the temporal transfer experiment leads to the improvement of
the performance of the MLP model.

Overall, the experimental results have demonstrated the effec-
tiveness of the data augmentation training method based on simu-
lation in spatial transfer scenarios. Even in the absence of accident
samples, the performance after fine-tuning has also been improved,
indicating that data augmentation, not only improved the training
data for the model but also enhanced the model's transfer learning
ability, demonstrating the advantage of generated data over the
original data in terms of spatial transferability and performance
improvement. Moreover, despite the training and testing data
coming from different geographical environments and traffic flow
characteristics, the data augmentation method was still able to help
the model effectively transfer and improve its performance in the
new environment, further validating the method's effectiveness and
generalization ability.

To further illustrate the effectiveness of the method, the model
performance was compared under different data configurations
under the cross-model (MLP, CNN, LSTM) setting. Specifically, the
experimental results of the spatial migration experiment and the
experimental results of the time migration experiment were
selected when the ratio of real data to simulated data was 1:19, a
total of six groups of paired data, and paired t-tests were performed
on the accuracy and AUC indicators, respectively. The test results
show that the p-value of 'accuracy' is 0.0046 and the p-value of
AUC is 0.0121, which are significantly lower than the commonly
used significance level (a = 0.05), indicating that the proposed
method based on simulation data enhancement is statistically
significant in improving model performance.

Discussion and conclusions

The main contribution of this paper is to demonstrate the effec-
tiveness of simulation data augmentation in improving the perfor-
mance of traffic anomaly detection models. The experimental re-
sults provide strong empirical evidence across multiple dimensions:
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Time transfer performance: using simulated data generated from
2017 180-E road data improved model performance when tested on
2022 180-E road data. After fine-tuning with simulation data, models
showed improvements in key metrics such as accuracy and AUC,
effectively addressing time-related traffic pattern changes.

Spatial transfer performance: the spatial transfer experiment veri-
fied that combining simulated data generated from accident data
on the 180-E road with normal traffic flow data on the 110-E road
enhanced model performance on the I10-E road, despite differ-
ences in geographic environment and traffic flow characteristics
between the two roads.

Statistical significance: To further illustrate the effectiveness of the
method, model performance was compared under different data
configurations across three architectures (MLP, CNN, LSTM). Using
experimental results from spatial and time transfer experiments
with a 1:19 ratio of real to simulated data, the test results show that
the p-value of 'accuracy' is 0.0046 and the p-value of AUC is 0.0121,
which are significantly lower than the commonly used significance
level (a = 0.05), confirming the statistical significance of the simula-
tion data augmentation approach.

Cross-architecture benefits: all three evaluated models—MLP,
CNN, and LSTM—showed varying degrees of improvement after
using augmented data, demonstrating that different deep learning
architectures benefit from data augmentation, though to different
extents.

Limitation

This study acknowledges that other critical factors—such as
adverse weather conditions, road surface quality, lighting, and vari-
ability in driver behavior—can significantly influence accident
occurrence and traffic dynamics. These were not included in the
current simulation due to limitations in SUMO's built-in capabilities
and our study's focus on evaluating the core feasibility of physically
constrained data augmentation.
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Future directions

Future research should focus on incorporating the aforemen-
tioned factors by extending SUMO through external modules or
coupling it with more sophisticated behavior models to construct
more comprehensive simulation environments that better reflect
real-world driving conditions, diversity, and uncertainty.

Additional research directions include exploring the integration
of other simulation tools, such as the CityFlow platform based on
the SUMO framework with built-in self-driving decision models,
and the AIMSUN system, which natively supports hybrid micro-
meso-macro modeling with real-time data interfaces. The simula-
tion setup for accident scenarios can be further optimized by intro-
ducing more physical constraints, using neural networks to
construct more accurate following models, and employing rein-
forcement learning for parameter selection. Mixed traffic flow envi-
ronments containing self-driving vehicles could be constructed,
incorporating more complex neural network architectures to
improve model performance. Expanding the dataset to cover a
wider range of accident scenarios and traffic conditions could
further strengthen this method's applicability in various traffic
management tasks.

Conclusions

This paper provides strong empirical support for simulation data
augmentation as an optimization method for traffic anomaly detec-
tion models, particularly when real-world data is scarce or difficult to
obtain. Using SUMO simulation software to generate accident
scenarios and augment real data has proven statistically significant
and effective in improving model robustness and transferability,
especially in small sample scenarios.
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