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Abstract
With the development of autonomous driving technology, the human–machine mixed driving environment has become the predominant form of future

road  traffic.  This  paper  presents  a  systematic  review  of  lane  change  decision-making  in  mixed  driving  scenarios.  First,  the  behavioral  characteristics  of

discretionary  and  mandatory  lane  changes  are  analyzed,  and  the  lane  change  process  is  divided  into  decision-making  and  execution  stages.  From  the

perspective  of  driving  safety,  the  importance  of  behavior  prediction  and  risk  assessment  in  ensuring  the  safety  of  decision-making  is  emphasized.  It

comprehensively reviews existing lane change risk evaluation methods, including probabilistic models and traffic conflict indicators, aiming to reduce traffic

accidents caused by hazardous lane change behaviors through accurate risk evaluation. Then, through the analysis of existing lane change decision models,

they are categorized into three major types: rule-based, data-driven, and game theory-based models. From the perspectives of input features and applied

algorithms, the advantages, limitations, and applicable scenarios of models are compared and analyzed. Finally, current shortcomings and challenges are

discussed. Key issues include insufficient consideration of human–machine interactions, low efficiency in multi-vehicle coordination, and high dependency

on data. Future research directions are proposed to address these challenges. This study provides theoretical support for constructing safe and efficient lane

change decision models in mixed traffic environments.
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 Introduction

With  the  rapid  advancements  in  communication  technologies,
artificial  intelligence,  and  autonomous  driving,  autonomous  vehi-
cles  (AVs)  are  gradually  penetrating  the  roads,  forming  a  situation
where  traditional  human-driven  vehicles  (HVs)  and  AVs  coexist  in
mixed traffic. Moreover, this will become the main form of road traf-
fic  for  a long time in the future[1].  Although AVs are equipped with
advanced  control  capabilities  and  agile,  reliable  motion  control
systems,  the  inherent  differences  between  automated  driving
systems  and  human  driving  behaviors  generate  complex  vehicle–
vehicle  interactions  in  mixed  traffic.  Such  interactions  pose  signifi-
cant challenges to both traffic safety and operational efficiency[2].

Within  the  domain  of  traffic  flow  theory,  car-following  and  lane
changing  are  recognized  as  two  fundamental  driving  maneuvers,
constituting  essential  components  of  microscopic  traffic  flow
models[3]. Compared to car-following, lane changing presents inher-
ently elevated risks and exerts a more direct impact on traffic safety
and  operational  efficiency.  The  lane  change  necessitates  the  intri-
cate  coupling  of  longitudinal  speed  control  and  lateral  trajectory
planning,  while  simultaneously  managing  interactions  with  multi-
ple  surrounding  vehicles,  a  complexity  that  is  further  amplified  in
mixed traffic flows. With the advancement of high-precision percep-
tion  and  data  acquisition  technologies,  recent  studies  have  exam-
ined  lane  change  mechanisms  at  the  microscopic  driving  behavior
level  in  mixed  traffic.  Research  shows  that  among  accidents
attributed  to  lane  changing,  unsafe  maneuvers  by  human  drivers
account  for  75%  of  incidents[4],  highlighting  the  critical  role  of
drivers'  risk  perception  and  behavioral  response  in  lane  change
safety.  According  to  statistics  from  the  National  Highway  Traffic

Safety  Administration  (NHTSA),  approximately  240,000  to  610,000
traffic  accidents  in  the  United  States  each  year  are  related  to  lane
change  decision-making  maneuvers,  resulting  in  at  least  60,000
injuries[5].  These findings underscore the critical importance of lane
change  decision-making  for  traffic  safety.  Accurate  lane  change
decisions can minimize adverse perturbations to surrounding traffic
and enhance road safety, whereas erroneous decisions may precipi-
tate  traffic  congestion  or  severe  collisions.  Therefore,  research
focused on lane change decision-making is  essential  for  improving
road safety, enhancing traffic efficiency, and mitigating congestion.

In  mixed  traffic  environments,  heterogeneous  vehicle  types
exhibit  significant  differences  in  perception  capabilities,  decision-
making  logic,  and  execution  mechanisms.  AVs  rely  on  sensors  to
collect  comprehensive  real-time  data,  executing  decisions  through
algorithm-driven  systems.  Conversely,  human  drivers  depend  on
sensory perception, driving experience, emotional state, and subjec-
tive  judgment[6].  Moreover,  AVs  communicate  using  structured,
machine-readable  signals  through  technologies  such  as  V2X,
whereas  human  drivers  depend  on  unstructured  sensory  signals,
including turn  signals,  gestures,  and horn use.  These  differences  in
decision-making  mechanisms  create  fundamental  distinctions  in
information  timeliness,  behavioral  determinacy,  and  interaction
patterns  between AVs and HVs.  Consequently,  mixed traffic  consti-
tutes  a  human–machine–environment  multi-layered  interaction
system,  where  operational  characteristics  are  jointly  influenced  by
the variability of individual driving behaviors, communication laten-
cies, and dynamic environmental evolution. In this context, while AV
behavior  is  generally  predictable,  its  presence  introduces  uncer-
tainty  into  human  drivers'  decision-making  processes[7].  Human
driving  behavior  is  affected  by  subjective  emotions,  driving  style,
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trust  and acceptance of  autonomous technologies,  and perception
of  traffic  flow  states,  resulting  in  uncertainty  and  stochasticity[8].
Consequently,  the  stability  of  mixed  traffic  flow  is  significantly
reduced,  and  complex  vehicle  interactions  can  readily  precipitate
local congestion, traffic oscillations, and safety risks[9].

Existing lane change decision-making models exhibit certain limi-
tations  in  mixed  traffic  environments.  The  irrational  behaviors,
limited  control  capabilities,  and  unpredictable  intentions  of  HVs
often  cause  the  collective  movement  of  mixed  traffic  streams  to
evolve into disordered states[10].  In addition, the absence of explicit
information exchange mechanisms between HVs and AVs impedes
the  ability  of  automated  systems  to  accurately  perceive  the  kine-
matic  states  of  surrounding  traffic  in  real  time.  To  address  these
challenges,  this  study  initially  employs  the  VOSviewer  tool  to
conduct  a  bibliometric  analysis  and  visualization  of  relevant  litera-
ture. From the perspective of driving safety, the importance of driver
behavior  prediction  and  risk  assessment  is  highlighted.  Further-
more,  existing  lane  change  decision-making  studies  are  classified
into  three  categories:  rule-based  models,  data-driven  models,  and
game theory models. A comprehensive review of related literature is
provided.  Finally,  the  current  research  outcomes  are  summarized,
and  prospective  research  directions  are  delineated.  This  work
provides researchers with a systematic understanding of the emerg-
ing paradigms and technologies in lane change studies, offers multi-
dimensional  perspectives for developing models within mixed traf-
fic environments, and contributes to the further optimization of lane
change decision-making systems.

 Literature collection and analysis

 Annual distribution of publications
To  reveal  the  evolutionary  trends  in  research  on  vehicle  lane

change,  this  study  used  the  Web  of  Science  (WoS)  Core  Collection
database  as  the  source  of  literature  data.  The  literature  retrieval
covered  the  period  from  2000  to  2025,  using  the  following  topic
search  strategy:  TS  =  ('lane  changing'  OR  'lane  change'  OR  'vehicle
lane  change'  OR  'lane  changing  behavior'  OR  'lane  change
decisions')  AND  TS  =  ('risk  assessment'  OR  'deep  learning'  OR  'rein-
forcement  learning'  OR  'game  theory').  To  ensure  relevance  and
comparability, only journal articles were included, while conference
papers,  reviews,  and  book  chapters  were  excluded.  In  addition,  a
manual  screening of  titles,  abstracts,  and keywords was conducted
to  remove  entries  unrelated  to  vehicle  lane  change.  After  rigorous
screening  and  deduplication,  a  total  of  1,936  English-language
articles  were  selected  for  subsequent  analysis.  The  publication
year  distribution reflects,  to some extent,  the research status,  level,
and  development  pace  of  this  field,  and  visual  analysis  can  help
identify  periods  of  intensified  research  activity[11].  As  illustrated  in
Fig.  1,  the  annual  publication  volume  remained  relatively  stable
between  2000  and  2010.  However,  a  continuous  upward  trend  is
observable  post-2011.  This  surge  is  largely  attributed  to  the  wide-
spread application of  artificial  intelligence in  transportation,  along-
side advancements in data acquisition and processing technologies,
which have significantly bolstered research into lane change.

 Keyword co-occurrence analysis
VOSviewer serves as a prominent visualization instrument within

the  domain  of  bibliometric  analysis.  Utilizing  advanced  network
layouts  and efficient  clustering algorithms,  it  graphically  elucidates
complex  relational  structures  among  publications,  including  co-
authorship,  co-citation,  bibliographic  coupling,  and  keyword  co-
occurrence.  In  this  study,  1,936  sample  papers  were  imported  into
VOSviewer for bibliometric analysis,  focusing on keyword co-occur-

rence.  From  the  1,936  articles,  a  total  of  5,221  keywords  were
extracted  for  visualization.  To  enhance  representativeness  and
focus, a minimum occurrence threshold of ten was applied. Further-
more,  synonymous  terms  were  consolidated,  and  generic  or  irrele-
vant descriptors were excluded. Ultimately,  86 core keywords satis-
fying  these  criteria  were  identified.  The  resulting  co-occurrence
network is illustrated in Fig. 2. Each node in the network represents
a  keyword,  with  the  node  size  proportional  to  its  occurrence
frequency. The node color indicates the average publication year of
the  related  literature,  ranging  from  early  studies  (blue)  to  recent
ones  (yellow),  thus  illustrating  the  temporal  evolution  of  research
hotspots.  As  shown  in Fig.  2,  early  studies  mainly  focused  on  lane
change,  vehicle  dynamics,  and  optimal  control.  Subsequently,
research gradually expanded to topics such as driving behavior and
safety. In recent years, with the rapid development of artificial intelli-
gence, research on lane change has increasingly shifted toward AVs,
leading  to  the  emergence  of  numerous  data-driven  lane  change
prediction and vehicle trajectory planning models.  In  the future,  as
vehicle–infrastructure  cooperation  continues  to  advance,  develop-
ing more accurate lane change models and exploring driver behav-
ior  characteristics  to improve safety,  comfort,  and efficiency during
lane changes have become key directions in this field.

 Analysis and risk assessment of vehicle lane
change behavior in human-machine mixed
driving environments

 Lane change behavior classification and process
Lane change behavior is a complex process requiring a vehicle to

make decisions and adjustments based on its own driving character-
istics  and  external  factors  such  as  surrounding  vehicle  speed  and
distance, road occupancy, and traffic conditions. The current classifi-
cation  of  lane  changing  behavior  typically  divides  it  into  two
types—discretionary  lane  change  and  mandatory  lane  change—
based on different behavioral motivations[12].

 Discretionary lane change
Discretionary  lane  change  refers  to  a  voluntary  maneuver  initi-

ated to enhance travel efficiency and ride comfort, contingent upon
favorable traffic conditions. The primary impetus for a discretionary
lane change is typically the pursuit of a higher travel velocity or the
alleviation  of  speed  impedance.  As  illustrated  in Fig.  3,  when  the
subject  vehicle  (red  vehicle)  operates  below  its  desired  speed  due
to slower preceding traffic, the driver evaluates the kinematic states
of  surrounding  vehicles  in  the  target  lane  to  execute  a  maneuver.
In  mixed  traffic,  AVs  generally  determine  the  optimal  lane  change
timing  through  algorithmic  calculations.  In  contrast,  HVs  make
decisions based on individual judgment and driving preferences[13],

 

Fig. 1    Annual trend in publication volume.
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thereby  introducing  elements  of  randomness  and  flexibility.  The
inability  of  AVs  to  accurately  perceive  human  drivers'  intentions
further increases the complexity of discretionary lane change.

 Mandatory lane change
Mandatory lane change refers to a vehicle's required maneuver to

change  lanes  within  a  specific  road  section  due  to  constraints
imposed  by  traffic  or  road  conditions[14].  Typical  scenarios  necessi-
tating mandatory  lane  change include highway merging/diverging
maneuvers or navigating lane closures due to construction zones or
obstacles. As illustrated in Fig. 4, when the subject vehicle (red vehi-
cle)  encounters  an  obstacle,  it  must  complete  the  lane  change
maneuver  within  a  designated  area.  In  mixed  traffic,  a  mandatory
lane  change  carries  higher  risks  because  it  is  unavoidable  and
follows  a  strongly  constrained  path.  Compared  to  a  discretionary
lane change, it has a clear objective and must be completed within a
specific  spatial  and  temporal  range,  with  the  latest  possible  lane
change position.

In  a  mixed human–machine driving environment,  lane changing
behavior  is  influenced  by  the  dynamic  evolution  of  surrounding
traffic  and  the  heterogeneous  driving  styles  of  human  drivers.
To  systematically  analyze  the  lane  change  mechanism  in  such
environments,  the  process  can  be  divided  into  a  decision-making

stage  and  an  execution  stage,  as  shown  in Fig.  5.  The  decision-
making  stage  refers  to  the  stage  from  the  moment  the  vehicle
generates the intention to change lanes until  the decision to begin
the  lane  change  is  made.  The  execution  stage  begins  at  the  lane
change starting point  and ends at  the lane change endpoint.  After
the  decision  is  made,  the  vehicle  executes  a  steering  maneuver  to
achieve  a  significant  lateral  displacement,  moving  continuously
from  the  center  line  of  the  original  lane  towards  the  center  line  of
the  target  lane.  This  phase  requires  handling  complex  dynamic
interaction issues. Constructing a safe and robust lane change deci-
sion  model  in  a  mixed  driving  environment  mandates  the  com-
prehensive  consideration  of  proactive  longitudinal  maneuvers  of
preceding  and  following  vehicles.  Additionally,  the  model  must
accurately  predict  the behavioral  intentions  of  surrounding human
drivers  and  closely  monitor  the  dynamic  interactions  between
surrounding vehicles.

 Driver behavior prediction
In mixed traffic environments characterized by complex vehicular

interactions, accurately predicting the behavior of HVs is pivotal for
optimizing lane change decision-making models.  The prediction of
lane change maneuvers necessitates the integration of multifaceted
influencing  factors,  including  traffic  environmental  data,  vehicle

 

Fig. 2    Keyword visualization.

 

Fig. 3    Discretionary lane change.

 

Fig. 4    Mandatory lane change.

 
Review of lane change decisions in mixed traffic

Page 300 of 311   Huang et al. Digital Transportation and Safety 2025, 4(4): 298−311



dynamics,  and  driver  behavioral  metrics[15].  Mitrovic[16] collected
parameters  such  as  the  speed  and  acceleration  of  target  vehicles
passing  through  intersections  and  utilized  Hidden  Markov  Models
(HMM)  to  identify  specific  driving  behaviors.  Liu  et  al.[17] collected
driver  visual  information,  head  orientation,  and  vehicle  dynamics.
They  employed  a  long  short-term  memory  network  (LSTM)  to
predict  potential  future  driving  behaviors.  Guo  et  al.[18] analyzed
driver's  eye  movement,  head  rotation,  vehicle  movement,  and  the
driver's maneuver parameters,  and developed a lane change inten-
tion  model  using  an  attention-based  bidirectional  long  short-term
memory  network  (AT-BiLSTM),  which  improved  the  accuracy  of
behavior prediction.

The  aforementioned  studies  have  predominantly  analyzed  vehi-
cle states and driver information in isolation,  often overlooking the
dynamic coupling between these factors  and failing to account for
individual  behavioral  heterogeneity.  Therefore,  integrating  multi-
source  information  while  considering  personalized  differences  has
become  a  key  direction  for  improving  prediction  accuracy.  Du  et
al.[19] integrated the vehicle driving states, surrounding traffic condi-
tions, and driving styles to predict lane changing behavior using an
HMM. Wang et al.[20] considered the relationship between the driv-
ing  environment  and  drivers  to  predict  lane  changes.  They
employed a fuzzy inference system (FIS) to simulate drivers' percep-
tion of the driving environment and input both environmental infor-
mation  and  vehicle  trajectories  into  an  LSTM  network,  achieving
accurate  lane  change  prediction.  Liao  et  al.[21] constructed  a  driver
digital twin (DDT) model and used historical driving data to perform
personalized modeling of driver behavior. They further utilized edge
servers  to  enable  real-time  prediction  of  lane-changing  behavior.
Current research has achieved notable progress in predicting driver
lane-changing  behavior  in  mixed  traffic  environments,  primarily
through  multi-source  information  fusion  and  personalized  driver
modeling.  However,  limitations  remain.  Dynamic  interactions
among  vehicle-driver-environment  are  not  fully  captured,  and  the
generalizability  of  personalized  models  is  limited.  Future  research
should  focus  on  modeling  these  dynamic  interactions  and  validat-
ing prediction models in more complex mixed traffic scenarios. This
approach  will  enhance  the  robustness  of  behavior  prediction
models and improve the reliability and safety of AV decision-making
in real-world traffic.

 Lane change risk assessment
During  a  lane  change,  various  potential  driving  risks  exist.  Accu-

rately  assessing  these  risks  is  a  crucial  prerequisite  for  ensuring
safety and optimizing traffic efficiency. A comprehensive risk assess-
ment  requires  considering  multiple  factors,  including  traffic  flow,
vehicle  speed,  road  conditions,  and  driver  behavior
characteristics[22].  In  mixed  traffic  environments,  lane  change  risks
stem not only from the intrinsic dynamic properties of the ego vehi-
cle  but  also  from  interaction  complexity  and  information  uncer-
tainty.  The  heterogeneity  regarding  perception,  communication,
and  behavioral  responses  between  AVs  and  HVs  induces  strongly
coupled risk evolution patterns. Current risk assessment approaches
primarily  include  trajectory-based  analytical  methods,  probabilistic
models,  and  traffic  conflict  indicator  methods,  as  summarized  in
Table  1.  Trajectory-based  approaches  leverage  high-fidelity  data
and intention prediction to characterize risk features. Huang et al.[23]

proposed  a  probabilistic  driving  risk  assessment  framework  based
on  intention  recognition  and  surrounding  vehicle  risk  evaluation,
considering  the  ego-vehicle's  and  adjacent  vehicles'  spatial  posi-
tions  and  driving  states.  The  framework  employs  an  LSTM-based
Intention  Identification  Model  (IIM)  and  a  Risk  Assessment  Model
(RAM)  to  recognize  intentions  and  output  potential  risks.  Wang  et
al.[24] introduced a probabilistic driving risk field based on two-stage
multimodal trajectory prediction. This architecture integrates intent
and  trajectory  prediction  modules,  thereby  circumventing  depen-
dence  on  explicit  dynamic  system  models  or  predefined  distribu-
tions.  Risk  is  assessed  via  lane  change  pattern  probability,  collision
likelihood, and expected severity, improving both accuracy and real-
time performance. Hu et al.[25] analyzed the dynamic mechanism of
risk variation under spatiotemporal influences using trajectory data
and applied fuzzy logic to integrate conflict  frequency and severity
into  a  comprehensive  risk  indicator.  A  spatial  Markov  model  and
panel regression were further employed for real-time assessment of
dynamic risk evolution. Considering the uncertainty of driver behav-
ior in mixed traffic  environments,  Li  et  al.[26] proposed a probabilis-
tic  risk  assessment  method.  This  approach  evaluates  driving  risk
using position uncertainty and distance-based safety indicators and
applies  deep  reinforcement  learning  to  find  strategies  with  the
minimum expected risk.

 

Fig. 5    Schematic diagram of the phases of lane change.

 

Table 1.    Lane change risk assessment methods.

Method used Advantages Year Ref.

Long short-term memory Analyzes the factors affecting driving safety and the scope of potential risks 2020 [23]
Multimodal trajectory
prediction

Explains human driving behavior by adjusting subjective risk parameters; suitable for mixed traffic scenarios. 2022 [24]

Fuzzy logic theory Reveals the spatiotemporal dynamics of risk states and quantifies the influencing factors of risk. 2023 [25]
Probabilistic model Fully considers position uncertainty and distance-based safety indicators. 2022 [26]
Traffic conflict index Breaks through traditional single-threshold methods and enables dynamic risk grading. 2020 [28]
Traffic conflict index Dynamically expands the TTC model based on high-precision microscopic trajectory data. 2022 [29]
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Traffic  conflict  indicators  serve  as  pivotal  instruments  for  the
safety  evaluation of  lane change maneuvers.  By quantifying critical
collision  risk  parameters,  these  indicators  render  risk  assessment
more intuitive and operationally viable. Common indicators include
time to collision (TTC),  time to brake (TTB),  and post-encroachment
time  (PET).  These  metrics  are  frequently  adapted  or  extended  to
accommodate diverse driving scenarios, thereby facilitating a more
targeted  evaluation  of  lane  change  risks.  Park  et  al.[27] investigated
the  continuous  distribution  of  the  stopping  distance  index  (SDI)
during  lane  change  maneuvers  to  probe  the  interactions  between
the  ego  vehicle  and  neighboring  traffic.  They  proposed  a  lane
change risk index (LCRI)  and applied fault tree analysis (FTA) to the
evaluation framework. Zhou[28] used TTC as a risk metric to analyze
two  types  of  interaction  conflicts.  By  dynamically  calculating  TTC,
they  assessed  risk  levels  under  different  interaction  patterns  and
revealed their spatiotemporal characteristics and formation mecha-
nisms.  Liu  et  al.[29] improved  the  traditional  TTC  model  by  apply-
ing  mutual  information  theory.  Their  method  considered  lane
change  position,  direction,  and  the  dynamics  of  adjacent  vehicles,
which  enabled  real-time  identification  of  dynamic  risks  in  complex
scenarios.

Current  risk  assessment  methodologies  exhibit  significant  diver-
sity,  encompassing  trajectory-based  analysis,  probabilistic  model-
ing,  and  traffic  conflict  indicators.  Notwithstanding  substantial
advancements,  lane  change  risk  assessment  continues  to  confront
systemic  impediments.  Specifically,  constraints  such as  fragmented
data  sharing,  inadequate  fusion  of  multi-source  heterogeneous
data, and limited adaptability to complex scenarios may exacerbate
evaluation  errors.  Future  research  should  strengthen  multi-source
data  fusion  and  cross-scenario  data  sharing.  By  integrating  vehicle
sensor data, V2X communication, road monitoring information, and
driver state data, a unified risk data framework can be established. In
addition,  intelligent  risk  assessment  systems  should  be  developed
by  combining  reinforcement  learning  with  real-time  decision-
making  mechanisms  to  achieve  dynamic  risk  evaluation  and  adap-
tive  control.  Through  multidimensional  analysis  and  risk  modeling
of lane changing behavior in mixed traffic, these advancements can
provide more accurate safety decision support for autonomous driv-
ing systems and promote the safe, efficient, and intelligent develop-
ment of human–machine co-driving traffic systems.

 Evaluation indicators and validation methods for
mixed traffic flow

In mixed traffic environments characterized by the coexistence of
AVs and HVs, traditional univariate evaluation approaches are insuf-
ficient to adequately capture the safety and coordination dynamics
of  lane-changing  maneuvers.  Contemporary  research  predomi-
nantly  utilizes  surrogate  safety  measures,  such  as  TTC  and  PET,  to
assess risks across varying AV penetration rates and roadway condi-
tions via simulation. However, these metrics typically quantify safety
solely  from  a  temporal  or  unidimensional  perspective.  They  fail  to
account  for  the  distinct  disparities  in  communication,  perception,
and  decision-making  mechanisms  between  AVs  and  HVs,  thereby
compromising  their  ability  to  reflect  the  holistic  safety  risk.  There-
fore,  it  is  necessary  to  establish  a  multi-dimensional  evaluation
framework,  supported  by  multi-layered  validation—from  simula-
tion to field testing and from offline to online assessment—to more
accurately  and  comprehensively  evaluate  safety  in  mixed  traffic
flow.

 Evaluation indicator system
To  conduct  a  comprehensive  and  objective  evaluation  of  safety

and  coordination  within  mixed  traffic  flows,  a  multi-dimensional

indicator system is established. To capture the risk of rear-end colli-
sions  and  speed  fluctuations,  time-based  surrogate  measures  such
as  Modified  Time-to-Collision  (MTTC)  and  Lane  Change  Time-to-
Collision  (LCTTC)  are  adopted.  Furthermore,  deceleration-based
indicators, including the Deceleration Rate to Avoid a Crash (DRAC)
and the Collision Potential Index (CPI), are utilized to assess braking
requirements.  In  addition,  Time  Headway  (TH),  Speed  Standard
Deviation  (SD),  Velocity  Coefficient  of  Variation  (VCS),  and  Emer-
gency Lane Change Risk Frequency (ELCRF) are employed to evalu-
ate  the  overall  safety  performance  of  the  traffic  stream.  Detailed
definitions and explanations of each indicator are provided below.

 Modified time-to-collision (MTTC)
MTTC  is  an  improved  metric  for  evaluating  longitudinal  conflict

risk  in  car-following  scenarios.  Unlike  the  traditional  TTC,  MTTC
incorporates  the  accelerations  of  both  the  leading  and  following
vehicles.  This  enhancement  enables  a  more  realistic  assessment  of
potential  collision  risks  for  HVs  and  AVs  in  mixed  traffic.  MTTC  is
calculated using:

MTTC =
−∆V ±

√
∆V2

f +2a f∆D

a f

∆

∆

∆

where, V denotes  the  speed  difference  between  the  leading  and
following  vehicles  (m/s), Vf represents  the  speed  of  the  following
vehicle  (m/s); af represents  the  acceleration  of  the  following  vehicle
(m/s2); and D is the distance between the two vehicles (m).

 Lane change time-to-collision (LCTTC)
LCTTC  is  used  to  assess  lateral  conflict  risk  during  lane  change

maneuvers.  It  represents  the  remaining  time  before  a  potential
lateral collision occurs between a lane-change vehicle and a vehicle
in  the  target  lane.  This  indicator  captures  the  dynamic  interaction
between  vehicles  and  is  essential  for  evaluating  safety  in  lane
change scenarios. LCTTC is calculated as:

LCTTC = − da,b

Va,b
= − (Pb−Pa)T × (Pb−Pa)

(Pb−Pa)T × (Vb−−)

where, da,b is the distance between the lane changing vehicle and the
vehicle  in  the  target  lane  (m); Va,b is  the  relative  speed  of  the  two
vehicles (m/s); Pb = (xb, yb) and Pa = (xa, ya) denote the position vectors
of the target-lane vehicle and the lane changing vehicle,  respectively;
represent  the  velocity  vector  of  the  target-lane  vehicle; Va represent
the velocity vector of the lane change vehicle.

 Deceleration rate to avoid a crash (DRAC)
DRAC is an indicator used to evaluate longitudinal conflict risk. It

refers  to  the  minimum  required  deceleration  that  a  vehicle  must
apply to avoid a collision, assuming that the conflicting target vehi-
cle maintains its  current speed and trajectory.  In mixed traffic  flow,
DRAC reflects the emergency braking capability of  AVs when inter-
acting with HVs exhibiting diverse behaviors. DRAC is calculated as:

DRAC(t) =
[vi(t)− vi−1(t)]2

2[xi−1(t)− xi(t)− li−1]

where, vi(t)  is  the speed of the following vehicle at time t (m/s); vi−1(t)
denotes the speed of the leading vehicle at time t (m/s); xi−1(t) denote
the  position  of  the  leading  vehicle  at  time  t  (m); xi(t)  denote  the
position of the following vehicle at time t (m); and li−1 is the length of
the leading vehicle (m).

 Collision potential index (CPI)
The  Collision  Potential  Index  (CPI)  provides  a  macroscopic

measure  of  longitudinal  conflict  risk  for  the  entire  traffic  stream  or
vehicle  platoon.  By  integrating DRAC values  over  time and averag-
ing  across  space,  CPI  aggregates  instantaneous  microscopic
conflicts  into  an  indicator  that  reflects  the  overall  safety  level  of  a
roadway segment.
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CPI =

∑N
n=2
∑T

t=t0 DRACn (t)∆t

(T − t0) (N −1)
∆where, t  denotes  the  time  interval  between  the  leading  and

following vehicles (s); T is the total evaluation time (t); N is the number
of  vehicles;  and  DRACn(t)  denotes  the  minimum  deceleration  rate
required for the following vehicle n to avoid a collision with the leading
vehicle at time t.

 Time headway (TH)
TH  is  defined  as  the  time  interval  between  two  successive  vehi-

cles passing a fixed point in the same lane.  It  reflects differences in
car-following  behavior  between  AVs  and  HVs  and  is  an  important
indicator for assessing following safety. TH is calculated as:

T H = ti− ti−1

where, ti is  the  moment  when  the  ith  vehicle  passes  the  fixed  point;
and ti−1 is the moment when the (i−1)th vehicle passes the fixed point.

 Speed standard deviation (SD)
SD is a statistical metric used to describe the dispersion of vehicle

speed  distribution.  It  reflects  fluctuations  and  asymmetry  in  mixed
traffic  flow,  where  AVs  tend  to  maintain  stable  speeds  while  HVs
exhibit significant speed fluctuations. SD is computed as:

σ =

√√∑N
i=1

(
Vi−V

)2
N −1

V
where, N represents the total number of vehicles (veh); Vi denotes the
speed of the i (m/s);  is the average speed of all vehicles (m/s).

 Velocity coefficient of variation (VCS)
VCS  is  used  to  measure  the  relative  dispersion  of  a  speed  distri-

bution.  By  eliminating  the  influence  of  scale  and  mean  speed,
VCS  allows  better  comparison  of  speed  variability  across  different
traffic states or roadway segments. This metric can more effectively
evaluate  the  stability  and  safety  of  a  traffic  stream.  VCS  is  defined
as  the  ratio  of  the  speed  standard  deviation  to  the  mean  speed.
VCS is computed as:

VCS =
σ

V
σ Vwhere,  denotes  the  standard  deviation  of  speed;  is  the  average

speed of all vehicles (m/s).

 Emergency lane change risk frequency (ELCRF)
ELCRF  is  a  behavioral  indicator  that  indirectly  captures  lateral

conflict  risk  through  the  frequency  of  urgent  lane  changes.  It  is
defined  as  the  ratio  of  emergency  lane  changes  to  total  lane
changes,  reflecting  the  intensity  of  vehicle  interactions  and  poten-
tial conflicts. Emergency lane changes refer to maneuvers that must
be  executed  urgently,  typically  due  to  imminent  conflict,  conges-
tion  avoidance,  or  safety  enhancement  needs.  These  lane  change
requests  are  characterized  by  a  higher  priority  and  greater  imme-
diacy compared to regular lane changes. ELCRF is calculated as:

ELCRF(t) =
ne(t)
nt(t)

where, ne(t)  is  the  number  of  emergency  lane  changes,  and nt(t)
denotes the total number of lane changes.

 Validation methods
Given  the  complexity  of  mixed  traffic  environments,  validating

lane-changing  decision  models  necessitates  a  combination  of
complementary methods. A multi-level validation framework—from
simulation  to  real-vehicle  testing,  and  from  offline  evaluation  to
online verification—is established

(1) Simulation-based validation is currently the most efficient and
widely  adopted approach.  Microscopic  traffic  simulation tools  such
as  SUMO  and  VISSIM  are  utilized  to  assess  the  model's  impact  on
overall  traffic  efficiency  and  stability.  Concurrently,  high-fidelity
simulation  platforms,  including  CARLA  and  LGSVL  Simulator,

provide realistic perception interfaces and control environments for
evaluating  safety  and  comfort.  Furthermore,  Human-in-the-loop
simulation captures the complexity of mixed human–machine driv-
ing  by  involving  real  drivers  interacting  with  virtual  scenarios.  This
enables  an  effective  assessment  of  an  AV's  capability  and  robust-
ness when facing human irrationality and diverse driving styles.

(2)  Real-vehicle  testing  is  essential  for  verifying  the  engineering
feasibility  of  decision  models,  but  faces  challenges  such  as  high
cost,  safety  risks,  difficulty  of  data  collection,  and  limited  scenario
reproducibility.  Closed-track  testing  facilitates  the  evaluation  of
safety  limits  and  decision  stability  under  controlled  conditions.
Conversely,  open-road  testing  examines  interaction  adaptability
and  risk  management  within  naturalistic,  mixed-traffic  environ-
ments.  To  ensure  the  representativeness  and  generalizability  of
experimental  outcomes,  the  testing  protocol  must  incorporate  a
diverse  array  of  roadway  scenarios  and  varying  intensities  of
human–machine interaction.

(3)  Adversarial  and  robustness  testing  is  gaining  increasing
attention  due  to  the  inherent  uncertainty  in  mixed  traffic  flow.  By
introducing  perturbations,  extreme  scenarios,  or  irrational  human
behaviors  in  simulation  or  real-vehicle  platforms,  weaknesses  of
the  model  under  abnormal  or  unexpected  conditions  can  be  iden-
tified.  This  process  yields  critical  insights  for  subsequent  model
optimization.

In  summary,  within  mixed  traffic  environments  characterized  by
the coexistence of AVs and HVs,  fundamental  disparities in percep-
tion,  decision-making,  control,  and  communication  significantly
increase interaction variability and uncertainty. Consequently, safety
evaluation  must  comprehensively  encompass  longitudinal  and
lateral  conflicts,  microscopic  behavioral  heterogeneity,  and  macro-
scopic  flow  stability.  Meanwhile,  the  multi-level  validation  frame-
work  integrating  simulation,  real-vehicle  testing,  and  adversarial
testing  ensures  both  the  reliability  of  evaluation  results  and  the
engineering feasibility of the models.

 Research progress on lane change decision-
making models

Lane  change  decision  models  are  designed  to  determine  the
feasibility,  timing,  and execution location of  lane-changing maneu-
vers. Existing research can be broadly categorized into three primary
paradigms:  rule-based  models,  data-driven  models,  and  game
theory  models.  To  elucidate  the  developmental  trajectories  and
temporal  evolution  of  these  approaches, Fig.  6 presents  a  chrono-
logical  organization  of  representative  studies,  highlighting  the
progression  from  rule-based  methods  to  data-driven  approaches
and  multi-agent  game-theoretic  frameworks.  Rule-based  models
predicate  decisions  on  predefined  logical  rules  or  kinematic  prin-
ciples.  They  are  suitable  for  simple  scenarios  but  lack  flexibility  in
decision-making.  Data-driven  models  learn  lane  change  patterns
by  mining  large  volumes  of  driving  behavior  data.  While  they
demonstrate strong adaptability, their performance relies heavily on
extensive  labeled  datasets  and  often  lacks  interpretability.  Game-
theoretic  models  treat  lane  changing  as  a  strategic  interaction
among  vehicles  and  can  better  capture  driver  behavior,  but  face
challenges  with  irrationality  modeling,  information  requirements,
and  computational  complexity.  This  chapter  reviews  these  three
decision-making models, analyzing their respective advantages and
limitations.

 Rule-based lane change decision making
Rule-based lane change decision-making methods establish a rule

set  for  lane-changing  behavior  based  on  traffic  regulations,  expert
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demonstrations, and surrounding environmental data. The AVs then
match  real-time  information  with  the  predefined  conditions  in  this
rule  base  to  make  a  lane  change  decision.  The  theoretical  founda-
tion  of  this  approach  can  be  traced  back  to  the  Gipps  model
proposed  by  Gipps  in  1986[30].  It  divides  the  lane  change  decision
process  into  three  aspects:  lane  change  intention,  lane  change
conditions, and lane change safety, laying the groundwork for rule-
driven  methods.  Yang  et  al.[31] improved  the  Gipps  model  to
propose the MITSIM model. This model accounts for the uncertainty
of lane change decisions by introducing a driver's lane change pro-
bability.  It  refines  the  decision-making  process  into  a  four-stage
continuous  sequence:  decision  to  change  lanes,  target  lane  selec-
tion,  acceptable  gap  calculation,  and  execution.  The  MOBIL
model[32] innovatively introduced a dual-indicator system for target
lane  desirability  and  safety.  It  also  considers  the  impact  of  the  ego
vehicle's  maneuver  on  the  following  vehicle's  braking.  This
propelled rule-based models to evolve from static to dynamic inter-
active scenarios.

Finite State Machine (FSM) models are widely used in lane change
decision-making due to their ability to intuitively and logically repre-
sent discrete state relationships through directed graphs. Ji et al.[33]

proposed  a  lane  change  decision  method  that  integrates  a  virtual
danger potential field with an FSM to meet the behavioral decision
needs of intelligent vehicles. Xiong et al.[34] designed a lane-chang-
ing  behavior  decision  framework  based  on  a  Hierarchical  State
Machine  (HSM).  They  incorporated  the  environment  perception,
decision planning, and execution control modules into a distributed
system  architecture  based  on  a  Real-Time  Control  System  (RCS).
Wang et al.[35] proposed a decision-making algorithm that combines
finite  state  machines  with  fuzzy  reasoning  for  unidirectional  two-
lane  scenarios,  enhancing  scene  traversal  depth  and  adaptive
adjustment to improve decision accuracy. In human-machine mixed
traffic,  Liu  et  al.[36] constructed  a  cellular  automaton  model  for
heterogeneous traffic flow. They analyzed three driving styles of HVs
using  actual  data  sets  and  introduced  the  Gipps  rule  to  establish
safe  conditions  for  following  and  lane  change  rules.  To  further
improve  the  accuracy  of  lane  change  decision-making,  Jia  et  al.[37]

innovatively  combined  rule  abstraction  with  machine  learning.
They  employed  a  support  vector  machine  (SVM)  to  build  a  lane
change decision model, where lane change rules are converted into
new  features  and  safety  constraints  and  then  integrated  into  the
model's  training  process.  By  introducing  new  rule-related  features,

this  method  significantly  improved  the  accuracy  of  predicting
lane-changing behaviors.

Rule-based  lane  change  decision  methods  offer  strong
interpretability  and  reliability.  In  simple  traffic  scenarios,  they  can
generate  lane  change  decisions  with  low  complexity  and  compu-
tational  cost.  However,  their  applicability  is  notably  constrained
within  complex,  mixed-traffic  environments.  Specifically,  it's  chal-
lenging  for  them  to  fully  account  for  dynamic  factors  like  driver
characteristics  and  actual  road  conditions,  leading  to  insufficient
adaptability  to  real-time  traffic  changes.  Furthermore,  traditional
rule-based  methods  rely  on  static  rules  for  decision-making  and
cannot  effectively  capture  the  variable  behaviors  and  intentions
of  human  drivers,  which  increases  the  uncertainty  of  lane-change
decisions. Table  2 provides  a  summary  of  rule-based  lane  change
decision methods.

 Data-driven lane change decision making
With  the  continuous  advancement  of  computer  science  and

data  mining  techniques,  data-driven  lane  change  decision-making
methods  have  attracted  increasing  attention  from  researchers.  The
core  of  this  approach  lies  in  the  iterative  interaction  between  the
agent and its environment, whereby driving strategies are continu-
ously learned and optimized through environmental feedback, ulti-
mately enabling autonomous decision-making of vehicles. Owing to
its  adaptability  to  various  lane  change  demands  across  different
driving  scenarios,  this  method  has  become  a  mainstream  research
direction  in  autonomous  lane  change  decision  studies.  However,
challenges  remain,  particularly  regarding  limited  interpretability
and  strong  dependence  on  dataset  quality.  Consequently,
researchers  focus  on  improving  data  reliability  and  model  robust-
ness.  Depending  on  the  learning  mechanism,  these  methods  are
generally categorized into three distinct classes: traditional machine
learning, deep learning, and reinforcement learning.

 Traditional machine learning methods
Methods  based  on  traditional  machine  learning  rely  heavily  on

manual  feature  engineering.  By  mining  statistical  patterns  in  the
data through models,  they are particularly suitable for lane change
decisions  in  small-sample  datasets  or  specific  scenarios,  and  they
offer  relatively  strong  interpretability.  To  address  the  problem  of
incomplete  feature  selection  in  vehicle  lane  change  decision
models,  Gu  et  al.[38] extracted  decision  variables  from  physical
states, interactional perception information, and roadway structural
characteristics,  and  developed  an  SVM  decision  model  optimized

 

Fig. 6    Classification diagram of lane change decision model.
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using a Bayesian algorithm. Li et al.[39] proposed an innovative SVM
algorithm  optimized  by  the  artificial  bee  colony  (ABC)  method,  in
which the penalty factor and kernel function parameters of the SVM
were  optimized  to  construct  a  lane  change  recognition  model.  In
mixed  traffic  environments,  the  uncertainty  of  vehicle  lane-chang-
ing  behavior  increases,  making  decision  detection  more  challeng-
ing. Zhao et al.[40] constructed a vehicle lane change decision model
based on Bayesian networks using vehicle speed,  acceleration,  and
relative  time  headway  of  surrounding  vehicles  as  feature  parame-
ters.  Wang  et  al.[41] proposed  an  adaptive  lane  change  prediction
model  based  on  Bayesian  inference.  The  model  combined  LSTM
networks  with  adaptive  decision  thresholds,  where  Bayesian  infer-
ence  was  applied  to  dynamically  update  the  thresholds,  enabling
adaptation  to  different  road  and  traffic  conditions  and  improving
prediction accuracy.  To address the weak capabilities in identifying
and  predicting  risks  associated  with  continuous  lane  changing,
Hu  et  al.[42] employed  a  Bayesian  global  optimization  (BO)  gated
recurrent unit (GRU) neural network (BO-GRU) model. By optimizing
GRU network parameters,  the model improved the precision of risk
identification  and  prediction,  and  further  allowed  for  personalized
adjustment according to individual driving styles. Xu et al.[43] consi-
dered  the  differences  in  driver  styles  in  mandatory  lane  change
decisions and proposed a mixed architecture that integrates Evolu-
tionary  Game  Theory  (EGT)  with  machine  learning  (ML).  By  intro-
ducing  physical  information  through  EGT,  the  model  can  capture
the progressive cooperative interactions among drivers and predict
the decisions of drivers with various driving styles.

In  the  complex  environment  of  human–machine  mixed  driving,
accurately  predicting  human  driver  behavior  is  crucial  for  ensuring
safe  vehicle  lane  changes.  Chen  et  al.[44] developed  an  improved
input–output hidden Markov model (IOHMM) that captures histori-
cal  memory and models  continuous outputs,  establishing a predic-
tion model that accounts for both driver lane change intentions and

behaviors.  Zhang  et  al.[45] proposed  a  framework  that  combines
primitive-based  interaction  pattern  recognition  and  risk  analysis.
The lane changing scenarios were first  decomposed into primitives
using  a  Hidden  Markov  Model  with  the  Gaussian  Mixture  Model
(GMM-HMM)  approach.  Then,  K-means  clustering  with  Dynamic
Time  Warping  (DTW)  was  applied  to  group  the  primitives  into  13
lane  change  interaction  patterns.  Two  types  of  vehicle  interactions
were  considered  to  calculate  the  TTC,  which  was  further  used  to
identify high-risk lane change interaction patterns. Table 3 provides
a  summary  of  traditional  machine learning methods  in  data-driven
lane change decision-making approaches.

 Deep learning-based methods
Deep  learning  can  handle  nonlinear  problems  in  complex,  high-

dimensional  time  series,  extracting  lane  change  decision  informa-
tion  from  human  driving  data  and  capturing  uncertainties  in
dynamic traffic.  Xie et al.[46] combined a deep belief  network (DBN)
with  an  LSTM  network  to  predict  vehicle  lane  changes,  identifying
the  relative  position  of  the  preceding  vehicle  as  the  key  factor.
However,  the  model  did  not  incorporate  personalized  modeling  of
driver  heterogeneity.  Considering  that  multi-vehicle  interactions
affect  the  safety  of  lane  change  decisions,  Qie  et  al.[47] proposed  a
decision-making approach that  integrates  LSTM with  Graph Neural
Networks (GNN) to model multi-vehicle interactions, as illustrated in
Fig.  7.  The  method  takes  vehicles'  historical  trajectories  as  input,
where the LSTM layer captures temporal dependencies in the trajec-
tories  and  encodes  the  potential  driving  behavior  of  each  vehicle.
Meanwhile, the GNN layer models interactions among multiple vehi-
cles,  including  not  only  those  between  the  AVs  and  surrounding
vehicles  (SVs),  but  also  interactions  among  SVs  themselves.  Finally,
the output of the GNN layer is fed into a SoftMax layer to make lane
change decisions. Experimental results demonstrate that, compared
with the conventional LSTM-based method, this approach improves
lane change decision accuracy by 19.8%.

 

Table 2.    Rule-based lane change decision method.

Input variables Algorithm Issues Advantages Year Ref.

Vehicle state and driver behavior
features

Rule-based two-stage
decision model

Driver behavior is not classified Quantitatively considered the response of
following vehicles in the target lane

1986 [30]

Traffic flow data and vehicle dynamic
information

MITSIM Does not consider nearby
vehicles during lane changes

Incorporated probabilistic logic, reflecting
driver risk preferences

1996 [31]

Position, speed, and acceleration of
the vehicle and surrounding vehicles

MOBIL Ignored vehicle dynamics during
lane changes

Applied benefit–safety dual-condition
mechanism, closer to human driving

2007 [32]

Road information, vehicle
information, and other obstacle data

HSM + RCS Insufficient model generalization
and simplified safety evaluation

Used real-road data and RCS to quantify
lane change risk

2018 [34]

Dynamic traffic data of vehicles Fuzzy inference +
FSM

Limited applicability of the
algorithm, strong rule
dependence

Effectively handled uncertain information 2023 [35]

NGSIM database Cellular automata
model

Overly simplified model Quantifying the differences in human
driving styles

2023 [36]

US-101 NGSIM database Rule-based +
machine learning

Motion prediction model
remained relatively simple

Balanced interpretability with adaptability
to complex scenarios

2022 [37]

 

Table 3.    Lane change decision-making method based on traditional learning.

Input variables Algorithm Issues Advantages Year Ref.

US-101 and I-80 NGSIM database SVM Relies on manual feature extraction,
limited dynamic scene adaptability

Incorporates physical, interaction, and road
structure features

2020 [38]

US-101 NGSIM database ABC-SVM Relies on ego-vehicle data, neglects
surrounding traffic environment

Avoids grid search inefficiency and local
optima

2021 [39]

US-101 NGSIM database Bayesian Network Lacks a real-time updating mechanism;
limited adaptability

Transforms driver decision uncertainty into
quantifiable probabilistic outputs

2020 [40]

High D dataset LSTM + Bayesian
Network

Neglects personalized factors such as
driver style and vehicle type

Dynamically updates decision thresholds,
adapts to diverse traffic environments

2021 [41]

Vehicle state, driver operations,
and environmental data

Improved IOHMM Lacks validation under real-world
driving environments

Addresses IOHMM limitations in sequential
memory and continuous outputs

2021 [44]

High D GMM-HMM Does not consider applicability in
mixed traffic flows

Identifies spatiotemporal interactions and
high-risk patterns in lane changes

2023 [45]
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To  improve  decision  performance,  researchers  have  developed
various  innovative  approaches.  Cheng  et  al.[48] proposed  a  CNN-
based  lane  change  decision  method  using  dynamic  motion  image
representation,  which  enhances  decision  accuracy  by  integrating
multi-vehicle  interaction  information  and  safety  constraints.  How-
ever, it ignores the temporal relationships between frames, limiting
prediction  accuracy.  Han  et  al.[49] designed  an  end-to-end  deep
learning  framework  based  on  a  temporal  and  spatial  attention
mechanism. By combining Squeeze-and-Excitation Network, ConvL-
STM,  and  CNN  structures,  temporal  attention  is  used  to  capture
short- and  long-term  memory  in  visual  information,  while  spatial
attention  identifies  key  objects  and  their  locations  in  images,
improving  both  prediction  accuracy  and  model  interpretability.  To
address the issue of high computational cost, Li et al.[50] developed a
lightweight  end-to-end  lane  change  decision  model  based  on
Transformer.  By  incorporating  depth-wise  separable  convolutions
and  Transformer  modules,  the  lightweight  network  extracts  image
semantics  from  the  temporal  sequence  of  trajectory  data,  thereby
reducing computational  overhead. Table 4 summarizes deep learn-
ing-based approaches in data-driven lane change decision-making.

 Reinforcement learning-based methods
Reinforcement  learning  (RL)  enables  an  agent  to  continuously

interact with its environment and learn an optimal policy based on
cumulative  reward feedback.  Its  core  idea is  similar  to  human trial-
and-error learning, requiring no manual labeling of data, and it can
effectively  overcome  the  limitations  of  deep  learning  imposed  by
training  sample  constraints[51].  Although  RL  can  adapt  to  complex
traffic environments and make real-time driving decisions, its perfor-
mance heavily  depends on the quality  and quantity  of  the training
dataset, necessitating model optimization for practical applications.

Considering  the  uncertainty  and  complexity  of  the  driving  envi-
ronment  during  lane  changes,  Yavas  et  al.[52] proposed  a  lane
change  decision  model  based  on  Rainbow  Deep  Q-Network(DQN).
The  model  is  trained  using  a  reward  function  provided  by  a  safety
layer,  and  simulation  results  show  good  applicability  in  dynamic,
uncertain,  and  noisy  highway  lane  change  scenarios.  Li  et  al.[26]

combined deep reinforcement learning with a risk assessment func-
tion, evaluating driving risk using position uncertainty and distance-
based safety metrics to find a strategy with minimum expected risk,
thereby generating robust and safe lane change decisions. However,
lane change decision-making must balance safety with other objec-
tives.  Peng et  al.[53] proposed a  double-layer  decision model  based

on  deep  reinforcement  learning,  simultaneously  considering  driv-
ing  efficiency,  safety,  and  comfort,  and  capable  of  handling  large-
scale  mixed  state  spaces  while  ensuring  composite  actions  for
vehicle  following  and  lane  change.  Ran  et  al.[54] addressed  the
safety  challenges  of  lane  change  in  dense  highway  traffic  and
proposed a dense reinforcement learning approach based on DQN
and prioritized experience replay (PER).  However,  the approach did
not take into account mixed traffic flow conditions.

To  address  the  insufficient  interaction  and  cooperation  capabili-
ties among vehicles in complex traffic environments, Wang et al.[55]

proposed  a  lane  change  model  based  on  DRL,  training  AVs  to
perform lane changes while interacting with diverse human driving
behaviors.  Liang  et  al.[56] proposed  a  framework  integrating  beha-
vior  decision-making,  path  planning,  and  motion  control.  The
framework  leverages  a  bootstrapped  DQN  to  enhance  exploration
in  reinforcement  learning  and  applies  inverse  reinforcement  learn-
ing  (IRL)  to  derive  reward  functions  from  human  driving  data  for
human-like  path  generation.  To  ensure  safe  under  perception
uncertainty,  He  et  al.[57] proposed  a  robust  lane  change  decision-
making  model  based  on  observation  adversarial  reinforcement
learning  (OARL).  Lane  changing  behavior  is  modeled  using  a
constrained  observation-robust  Markov  decision  process,  and  a
Bayesian-optimized  black-box  attack  technique  is  employed  to
approximate optimal adversarial observation perturbations. Further-
more,  a  constrained  observation-robust  actor-critic  algorithm  is
introduced to optimize lane change strategies and enhance robust-
ness.  Li  et  al.[58] incorporated  a  multi-head  self-attention  mecha-
nism  within  the  twin  delayed  deep  deterministic  policy  gradient
(TD3)  framework  to  extract  traffic  flow  features.  A  mixed  action
representation mechanism is  used to coordinate longitudinal  acce-
leration  control  and  lateral  lane  change  decisions,  and  attention
outputs  are  integrated  to  stabilize  strategy  shifts. Table  5 summa-
rizes  reinforcement  learning-based  approaches  in  data-driven  lane
change decision-making.

 Game theory-based lane change decision-making
Game  theory-based  decision-making  methods  address  beha-

vioral decision-making in complex traffic scenarios by modeling the
ego vehicle and surrounding vehicles as strategic agents. The funda-
mental  objective  of  this  approach  is  to  mathematically  formulate
the  interaction  between  the  ego  vehicle's  maneuvering  intentions
and  the  yielding  or  adversarial  responses  of  surrounding  vehicles.
These  models  aim  to  achieve  either  individual  utility  maximization

 

Fig. 7    LSTM-GNN network architecture. 'sv1–sv8' respectively represent different surrounding vehicles.
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within  non-cooperative  contexts  or  collective  system  optimization
in cooperative scenarios. Game theory enables a rational analysis of
influencing  factors  and  the  intrinsic  nature  of  cooperation  and
competition  among  multiple  vehicles.  Moreover,  game-theoretic
approaches  offer  robustness  in  handling  strategy  selection  under
uncertainty and incomplete information. Consequently, game-theo-
retic frameworks have been extensively integrated into lane change
decision  protocols  to  augment  the  intelligence  and  safety  of  auto-
mated driving systems.

Game  theory  can  capture  the  interactions  between  vehicles  and
execute  corresponding  control  actions.  Kita[59] proposed  a  game-
theoretic  model  to  analyze  the  interactions  between  merging  and
straight-going  vehicles.  The  interaction  was  formulated  as  a  two-
player  non-zero-sum  non-cooperative  game,  where  the  vehicle
predicts  the  opponent's  behavior  to  select  its  optimal  strategy.
Meng et al.[60] developed a dynamic lane change decision model by
incorporating  predictability  into  game  theory.  In  this  model,  game
participants rely not only on real-time environmental perception but
also  on  feasible  prediction  of  future  environmental  information.
Based on multi-player dynamic game theory, Yu et al.[61] proposed a
lane  change  decision  model  for  AV  in  mixed  traffic  environments,
introducing  an  overtaking  expectation  parameter  to  estimate  the
utility  of  following  vehicles.  In  human-machine  mixed  traffic,  vehi-
cle  interactions  inevitably  affect  efficiency  and  safety.  Fu  et  al.[62]

integrated the theory of perceived risk fields to quantify the driving
risks  induced  by  the  uncertainty  of  HVs.  The  multi-vehicle  conflict
problem was decomposed into multiple two-vehicle lane-changing
games,  which  improved  both  efficiency  and  safety.  Deng  et  al.[63]

proposed  an  incomplete-information  game  model  based  on  the
concept  of  driver  aggressiveness.  A  risk–response  map  was  deve-
loped to quantify social driving preferences, and naturalistic driving
data  from  the  high  D  dataset  were  used  to  train  a  GMM  for  risk
estimation.  This  approach  enabled  adaptive  and  human-like

decision-making  in  real-world  interactive  driving  scenarios.  How-
ever,  some  existing  studies  neglect  differences  in  driving  styles
among  interacting  vehicles.  To  overcome  this  limitation,  Huang  et
al.[64] developed a variable-structure game model that incorporates
diverse  driving  styles.  Based  on  relative  driving  style  (RDS),  the
model  dynamically  adjusts  its  structure  and  achieves  an  average
decision  accuracy  of  98%,  outperforming  conventional  game-
theoretic algorithms.

To enhance the flexibility  of  lane change decisions in traffic  flow
environments,  Lu  et  al.[65] proposed  a  game-theoretic  model  that
integrates  lane  change  interactions  with  traffic  flow  trends.  The
model  combines  nonlinear  autoregressive  neural  networks  with
Gaussian  Mixture  Models  and  Hidden  Markov  Models  to  predict
both longitudinal and lateral driving intentions, while also account-
ing for interactions with surrounding vehicles and future traffic flow
trends. Yao et al.[66] developed a lane change decision system based
on  an  improved  Stackelberg  game  and  traffic  flow  information.  As
shown in Fig.  8,  the  system consists  of  three  modules:  lane  chang-
ing demand assessment, lane changing condition evaluation, and a
multi-lane  game  model.  The  demand  function  considers  urgency
and potential, while condition evaluation ensures safety using mini-
mum  lane  changing  distance.  The  multi-lane  game  model  dyna-
mically  selects  participants  to  handle  complex  interactions.  Experi-
mental  results  verified  the  system's  foresight  and  the  rationality  of
its  decision-making. Table  6 summarizes  game  theory-based  lane
change  decision  methods.  In  contrast  to  methodologies  reliant
on  predefined  rules  or  empirical  data  patterns,  game-theoretic
approaches  exhibit  superior  generalization  capabilities  across
heterogeneous  traffic  scenarios.  By  simulating  vehicle  interactions
and  conflict  characteristics,  while  also  accounting  for  driving  traits
and  driver  preferences,  they  can  effectively  meet  the  decision-
making requirements of AVs in complex and dynamic environments.
Moreover,  compared  with  reinforcement  learning,  game  theory–

 

Table 4.    Lane change decision method based on deep learning.

Input variables Algorithm Issues Advantages Year Ref.

NGSIM database DBN-LSTM Lacks dynamic modeling of driving
styles

Simulate the entire lane changing process
and its impact on traffic flow

2019 [46]

NGSIM database LSTM-GNN Ignores key behavioral features;
simplified interaction modeling

Fully models multi-vehicle interactions,
significantly improving decision accuracy

2023 [47]

Dynamic motion images CNN-based dynamic motion
image representation

Limited generalization to real-world
scenarios and high computational cost

Captures surrounding vehicles' positions
and motion comprehensively

2023 [48]

Comma2k19 and Udacity
datasets

Spatiotemporal attention-
based deep learning

Complex model, long training time Spatiotemporal attention highlights
important frames and key regions

2022 [49]

Vehicle state space and
action space

DSCNN- Transformer Not suitable for complex urban roads Maintains temporal modeling capability
while reducing computational load

2023 [50]

 

Table 5.    Lane change decision method based on reinforcement learning.

Input variables Algorithm Issues Advantages Year Ref.

Relative positions and speeds of
vehicles

Rainbow DQN Unable to jointly optimize longitudinal
speed and lane changing timing

Introduces a safety feedback reward
mechanism

2020 [52]

Longitudinal/lateral distances, yaw
angle, relative distances

DRL + Risk
assessment function

Ignores driving styles; model
applicability is limited to specific

Achieves optimal driving strategy with
minimum expected risk

2022 [26]

US-101 NGSIM database D3QN+DDPG Fails to consider trajectory continuity
and heterogeneous traffic flow

Safely and efficiently handles lane
changing and car-following behaviors

2022 [53]

High D dataset DRL Limited application scenarios; reward
function lacks consideration of comfort

Incorporates a collision-avoidance
strategy to ensure longitudinal safety

2023 [55]

Relative distance, relative speed,
and lane-relative position

DQN + IRL High computational complexity and
depends on expert data from driving
simulators

Integrates behavior, planning, and control
modules for joint training and execution

2025 [56]

Ego vehicle's longitudinal
acceleration, yaw rate, surrounding
vehicles' speeds and distances

OARL Limited by discrete actions; cannot
handle continuous steering control

Maintains high performance and safety
under observation disturbances

2023 [57]

Vehicle position, speed,
acceleration, and traffic light
information

AH-TD3 Lacks timeliness and poor continuity in
modeling interactive behavior

Mixed action representation integrates
discrete and continuous actions

2024 [58]
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based decision-making offers greater interpretability and scalability.
Nevertheless,  contemporary  research  confronts  significant  impe-
diments,  including  high  computational  complexity  in  high-
dimensional games, computational latency, and potential instability
in the convergence of long-term strategic equilibria.

 Research challenges and future prospects

The rapid advancement of artificial intelligence and autonomous
driving  technologies  has  catalyzed  the  emergence  of  mixed
human–vehicle  traffic  environments.  This  paradigm  shift  imposes
increasingly  stringent  requirements  regarding  the  safety  and
reliability  of  lane  change  decisions.  Consequently,  critical  scholarly
attention  must  be  directed  toward  the  impact  of  human–vehicle
interactions  and  heterogeneity  in  driving  styles.  While  human

drivers  rely  on  subjective  experience,  AVs  depend  on  structured
data, creating fundamental differences in decision logic. Against this
background, this paper systematically reviews lane changing beha-
vior,  risk  assessment  methods,  and  decision-making  models  in
mixed traffic.

Regarding the analysis of lane changing behavior and risk assess-
ment,  this  study  delineates  the  distinction  between  discretionary
and mandatory lane changes, while introducing multi-stage process
models  to  establish  a  coherent  framework  for  analyzing  dynamic
interactions. To address safety concerns within heterogeneous traf-
fic  flow,  a  spectrum  of  risk  assessment  methodologies  is  critically
reviewed,  significantly  augmenting  the  capacity  for  the  quantita-
tive  analysis  of  lane  change  safety.  At  the  level  of  lane  change
decision-making  models,  this  paper  comprehensively  scrutinizes
rule-based,  reinforcement  learning,  deep  learning,  and

 

Fig. 8    Lane change decision system.

 

Table 6.    Decision-making method for lane change based on game theory.

Input variables Algorithm Issues Advantages Year Ref.

Traffic conflict indicators Two-player non-zero-sum
non-cooperative game

Oversimplified assumptions
underestimate real-road complexity

Demonstrates feasibility of applying game
theory to traffic interaction modeling

1999 [59]

Vehicle state information Stackelberg Game with
Incomplete Information

Relies on sensor data, subject to
perception errors

Capable of handling uncertainty and
enabling dynamic decision updates

2016 [60]

Vehicle state and
environmental information

Non-cooperative mixed-
strategy game

Insufficient consideration of driving
style diversity

Incorporates a dynamic risk model into the
lane changing game

2022 [61]

Vehicle state information and
driving style parameters

Coalition game model High computational complexity;
relies on stable V2X communication

Introduces perceived risk field theory to
quantify uncertainties in mixed traffic

2023 [62]

High D dataset Incomplete information
game

Overemphasis on human driving
uncertainty while ignoring vehicle
dynamics constraints

Uses Risk–Response (R-R) diagram to
interpretively quantify social driving
preferences

2024 [63]

NGSIM dataset Hierarchical game theory
model

Assumes fully rational vehicles,
while real-world mixed traffic is not
fully rational

Dynamically selects game model based on
RDS

2024 [64]

Vehicle status information and
traffic trend prediction data

Prediction-enhanced game
theory model

Oversimplified scenarios, only two-
vehicle games are considered while
real lane changes involve multi-
vehicle interaction

Utilizes macroscopic traffic flow
information for proactive decision-making

2024 [65]

US-101 NGSIM database Improved Stackelberg game
theory

Ignores multi-lane continuous lane
changing demand; insufficient
safety mechanisms

Strong adaptability in multi-lane scenarios
with online real-time classification of
driving styles

2025 [66]
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game-theoretic approaches, providing a detailed comparative anal-
ysis  of  their  respective merits  and limitations.  Through this  system-
atic  review,  the  study  identifies  current  challenges  and  outlines
future research directions.

 Limited consideration of human–machine interaction
in lane change decisions

In  mixed  human–machine  driving  environments,  existing  lane
change  decision-making  models  often  fail  to  account  for  the  influ-
ence of human–machine interaction, which may result in inaccurate
decisions or even safety risks.  The limitations of current models are
particularly evident in three aspects. First, human drivers frequently
exhibit  non-rational  behaviors  influenced  by  experience,  emotion,
and  other  subjective  factors,  which  traditional  models  struggle  to
capture.  Second,  autonomous  driving  systems  face  challenges  in
quantifying latent  states,  such as  a  driver's  psychological  condition
or  reaction  latency,  in  real  time.  Furthermore,  during  the  informa-
tion transmission process between vehicles,  there is  a  difference in
the  coexistence  of  structured  communication  and  unstructured
perception. This makes it difficult for AVs to accurately infer human
drivers' true intentions, leading to misjudgments or overly conserva-
tive decisions during critical lane change moments.

Future research may adopt multimodal perception fusion by inte-
grating  V2X  communication,  eye-tracking  data,  and  multi-source
environmental sensing. This approach can enhance the detection of
non-rational driver behavior and support the development of inten-
tion-recognition  models  for  human–machine  cooperative  lane
changing.  GNNs  can  be  used  to  model  traffic  scenes  as  heteroge-
neous  graphs,  where  nodes  represent  vehicles,  drivers,  and  road
elements, and edges capture their interactions. This approach helps
capture  close  inter-vehicle  interactions.  Combining  GNNs  with
attention  mechanisms  can  further  highlight  the  key  interacting
vehicles  that  influence lane changing and improve the  accuracy  of
behavior  and  intention  prediction.  In  addition,  Inverse  Reinforce-
ment  Learning  (IRL)  can  be  used  to  learn  the  underlying  reward
functions  from  cooperative  human  driving  behavior.  Deep  Rein-
forcement  Learning  (DRL)  can  then  train  AVs  to  generate  optimal
interaction  strategies,  enabling  them  to  communicate  intentions
effectively  through  behavioral  interaction  in  simulation  environ-
ments and complete lane changes successfully.

 Challenges in multi-vehicle coordination and dynamic
environment modeling

Current  research  largely  focuses  on  single-vehicle  decision-
making and often overlooks multi-vehicle cooperation and system-
level optimization. In mixed traffic, AVs and HVs engage in complex
dynamic  game  interactions.  Existing  models  simplify  these  interac-
tions  excessively,  which  may  lead  to  locally  optimal  decisions  and
reduced  global  efficiency.  In  addition,  these  models  have  limited
ability to capture abrupt traffic  flow changes or dynamic obstacles,
negatively affecting both safety and efficiency.

Future  work  should  strengthen  multi-vehicle  cooperation  and
account  for  dynamic  traffic  flow variations  to  improve lane change
prediction accuracy. By integrating V2X communication with event-
triggered  learning,  real-time  information  sharing,  and  rapid  policy
updates  can be achieved.  Through the Internet  of  Vehicles,  vehicle
state  information  can  be  shared  in  real  time,  while  an  event-
triggered  MARL  mechanism  activates  learning  and  communication
only  when  critical  state  changes  or  potential  conflicts  arise.  This
reduces  communication  redundancy  and  improves  decision
response  speed.  In  addition,  coalition  games  and  hierarchical
control  mechanisms  can  be  introduced.  At  the  upper  level,  traffic
flow  is  optimized  as  a  whole  by  establishing  cooperative  relation-
ships  among  vehicles  through  coalition  game  models,  enabling

dynamic  platoon  formation  and  task  allocation.  At  the  lower  level,
distributed  control  algorithms  coordinate  local  safety  distances,
acceleration and deceleration behaviors, and lane change timing to
ensure  individual  safety.  This  two-level  framework  helps  maintain
overall  stability  and traffic  efficiency in complex traffic  flows.  Build-
ing  a  multi-agent  reinforcement  learning  (MARL)  framework  can
further  support  coordinated  strategies.  By  training  fleets  of  AVs  on
large-scale  simulation  platforms  and  designing  appropriate  reward
functions, vehicles can learn not only individual lane change maneu-
vers  but  also  behaviors  that  enhance  overall  traffic  stability  and
efficiency.

 Data dependency and constraints on generalization
Data-driven  lane  change  decision  models  generally  rely  on

mining  lane  change  patterns  from  large-scale  driving  behavior
datasets.  However,  existing  datasets  often  suffer  from  annotation
bias  and  insufficient  scene  coverage,  resulting  in  poor  adaptability
to  complex  traffic  environments  and  difficulty  in  handling  diverse
traffic  patterns  or  unexpected  events.  To  address  these  issues  of
data  dependency  and  poor  generalization,  physics-informed
augmentation  and  virtual  data  synthesis  can  be  employed  to
expand  the  training  sample  distribution.  Virtual  samples  that
comply with vehicle dynamics constraints can be generated on top
of real data. By combining physics-consistent generation with simu-
lation–real  data  fusion,  multi-scenario,  multi-weather,  and  multi-
style driving datasets can be produced, enhancing model coverage
and  robustness.  In  addition,  semi-supervised,  self-supervised,  and
transfer  learning  strategies  can  reduce  reliance  on  large-scale
labeled  data.  For  example,  self-supervised  pretraining  can  extract
general spatiotemporal features, which can then be fine-tuned on a
small  set  of  labeled  samples,  lowering  manual  annotation  costs.
Domain-adaptive  transfer  techniques  further  ensure  consistent
model  performance  across  urban  roads,  highways,  and  congested
environments.  Integrating  prior  knowledge,  such  as  traffic  rules
and  vehicle  dynamics,  into  the  model  can  prevent  it  from  relying
solely  on  superficial  correlations  in  the  data,  thereby  improving
interpretability.

By  reviewing  existing  research  progress,  this  paper  identifies
the  core  challenges  related  to  human–machine  interaction,  multi-
vehicle  coordination,  and  data  generalization  in  mixed  traffic.  It
further  proposes  feasible  improvement  strategies.  The  goal  is  to
provide theoretical  support  and technical  pathways for  developing
lane  change  decision  systems  that  are  safer,  more  efficient,  and
more interpretable, thereby promoting the continuous evolution of
vehicle decision-making capabilities in mixed traffic environments.
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