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Abstract

With the development of autonomous driving technology, the human-machine mixed driving environment has become the predominant form of future
road traffic. This paper presents a systematic review of lane change decision-making in mixed driving scenarios. First, the behavioral characteristics of
discretionary and mandatory lane changes are analyzed, and the lane change process is divided into decision-making and execution stages. From the
perspective of driving safety, the importance of behavior prediction and risk assessment in ensuring the safety of decision-making is emphasized. It
comprehensively reviews existing lane change risk evaluation methods, including probabilistic models and traffic conflict indicators, aiming to reduce traffic
accidents caused by hazardous lane change behaviors through accurate risk evaluation. Then, through the analysis of existing lane change decision models,
they are categorized into three major types: rule-based, data-driven, and game theory-based models. From the perspectives of input features and applied
algorithms, the advantages, limitations, and applicable scenarios of models are compared and analyzed. Finally, current shortcomings and challenges are
discussed. Key issues include insufficient consideration of human-machine interactions, low efficiency in multi-vehicle coordination, and high dependency
on data. Future research directions are proposed to address these challenges. This study provides theoretical support for constructing safe and efficient lane

change decision models in mixed traffic environments.
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Introduction

With the rapid advancements in communication technologies,
artificial intelligence, and autonomous driving, autonomous vehi-
cles (AVs) are gradually penetrating the roads, forming a situation
where traditional human-driven vehicles (HVs) and AVs coexist in
mixed traffic. Moreover, this will become the main form of road traf-
fic for a long time in the futurell. Although AVs are equipped with
advanced control capabilities and agile, reliable motion control
systems, the inherent differences between automated driving
systems and human driving behaviors generate complex vehicle-
vehicle interactions in mixed traffic. Such interactions pose signifi-
cant challenges to both traffic safety and operational efficiency!?l.

Within the domain of traffic flow theory, car-following and lane
changing are recognized as two fundamental driving maneuvers,
constituting essential components of microscopic traffic flow
modelsBl. Compared to car-following, lane changing presents inher-
ently elevated risks and exerts a more direct impact on traffic safety
and operational efficiency. The lane change necessitates the intri-
cate coupling of longitudinal speed control and lateral trajectory
planning, while simultaneously managing interactions with multi-
ple surrounding vehicles, a complexity that is further amplified in
mixed traffic flows. With the advancement of high-precision percep-
tion and data acquisition technologies, recent studies have exam-
ined lane change mechanisms at the microscopic driving behavior
level in mixed traffic. Research shows that among accidents
attributed to lane changing, unsafe maneuvers by human drivers
account for 75% of incidents!¥, highlighting the critical role of
drivers' risk perception and behavioral response in lane change
safety. According to statistics from the National Highway Traffic
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Safety Administration (NHTSA), approximately 240,000 to 610,000
traffic accidents in the United States each year are related to lane
change decision-making maneuvers, resulting in at least 60,000
injuries®l. These findings underscore the critical importance of lane
change decision-making for traffic safety. Accurate lane change
decisions can minimize adverse perturbations to surrounding traffic
and enhance road safety, whereas erroneous decisions may precipi-
tate traffic congestion or severe collisions. Therefore, research
focused on lane change decision-making is essential for improving
road safety, enhancing traffic efficiency, and mitigating congestion.
In mixed traffic environments, heterogeneous vehicle types
exhibit significant differences in perception capabilities, decision-
making logic, and execution mechanisms. AVs rely on sensors to
collect comprehensive real-time data, executing decisions through
algorithm-driven systems. Conversely, human drivers depend on
sensory perception, driving experience, emotional state, and subjec-
tive judgment®. Moreover, AVs communicate using structured,
machine-readable signals through technologies such as V2X,
whereas human drivers depend on unstructured sensory signals,
including turn signals, gestures, and horn use. These differences in
decision-making mechanisms create fundamental distinctions in
information timeliness, behavioral determinacy, and interaction
patterns between AVs and HVs. Consequently, mixed traffic consti-
tutes a human-machine-environment multi-layered interaction
system, where operational characteristics are jointly influenced by
the variability of individual driving behaviors, communication laten-
cies, and dynamic environmental evolution. In this context, while AV
behavior is generally predictable, its presence introduces uncer-
tainty into human drivers' decision-making processes”.. Human
driving behavior is affected by subjective emotions, driving style,
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trust and acceptance of autonomous technologies, and perception
of traffic flow states, resulting in uncertainty and stochasticity®!.
Consequently, the stability of mixed traffic flow is significantly
reduced, and complex vehicle interactions can readily precipitate
local congestion, traffic oscillations, and safety risks(°l.

Existing lane change decision-making models exhibit certain limi-
tations in mixed traffic environments. The irrational behaviors,
limited control capabilities, and unpredictable intentions of HVs
often cause the collective movement of mixed traffic streams to
evolve into disordered states!'%. In addition, the absence of explicit
information exchange mechanisms between HVs and AVs impedes
the ability of automated systems to accurately perceive the kine-
matic states of surrounding traffic in real time. To address these
challenges, this study initially employs the VOSviewer tool to
conduct a bibliometric analysis and visualization of relevant litera-
ture. From the perspective of driving safety, the importance of driver
behavior prediction and risk assessment is highlighted. Further-
more, existing lane change decision-making studies are classified
into three categories: rule-based models, data-driven models, and
game theory models. A comprehensive review of related literature is
provided. Finally, the current research outcomes are summarized,
and prospective research directions are delineated. This work
provides researchers with a systematic understanding of the emerg-
ing paradigms and technologies in lane change studies, offers multi-
dimensional perspectives for developing models within mixed traf-
fic environments, and contributes to the further optimization of lane
change decision-making systems.

Literature collection and analysis

Annual distribution of publications

To reveal the evolutionary trends in research on vehicle lane
change, this study used the Web of Science (WoS) Core Collection
database as the source of literature data. The literature retrieval
covered the period from 2000 to 2025, using the following topic
search strategy: TS = (lane changing' OR 'lane change' OR 'vehicle
lane change' OR 'lane changing behavior' OR 'lane change
decisions’) AND TS = ('risk assessment' OR 'deep learning' OR 'rein-
forcement learning' OR 'game theory'). To ensure relevance and
comparability, only journal articles were included, while conference
papers, reviews, and book chapters were excluded. In addition, a
manual screening of titles, abstracts, and keywords was conducted
to remove entries unrelated to vehicle lane change. After rigorous
screening and deduplication, a total of 1,936 English-language
articles were selected for subsequent analysis. The publication
year distribution reflects, to some extent, the research status, level,
and development pace of this field, and visual analysis can help
identify periods of intensified research activity''l. As illustrated in
Fig. 1, the annual publication volume remained relatively stable
between 2000 and 2010. However, a continuous upward trend is
observable post-2011. This surge is largely attributed to the wide-
spread application of artificial intelligence in transportation, along-
side advancements in data acquisition and processing technologies,
which have significantly bolstered research into lane change.

Keyword co-occurrence analysis

VOSviewer serves as a prominent visualization instrument within
the domain of bibliometric analysis. Utilizing advanced network
layouts and efficient clustering algorithms, it graphically elucidates
complex relational structures among publications, including co-
authorship, co-citation, bibliographic coupling, and keyword co-
occurrence. In this study, 1,936 sample papers were imported into
VOSviewer for bibliometric analysis, focusing on keyword co-occur-
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Fig. 1 Annual trend in publication volume.

rence. From the 1,936 articles, a total of 5221 keywords were
extracted for visualization. To enhance representativeness and
focus, a minimum occurrence threshold of ten was applied. Further-
more, synonymous terms were consolidated, and generic or irrele-
vant descriptors were excluded. Ultimately, 86 core keywords satis-
fying these criteria were identified. The resulting co-occurrence
network is illustrated in Fig. 2. Each node in the network represents
a keyword, with the node size proportional to its occurrence
frequency. The node color indicates the average publication year of
the related literature, ranging from early studies (blue) to recent
ones (yellow), thus illustrating the temporal evolution of research
hotspots. As shown in Fig. 2, early studies mainly focused on lane
change, vehicle dynamics, and optimal control. Subsequently,
research gradually expanded to topics such as driving behavior and
safety. In recent years, with the rapid development of artificial intelli-
gence, research on lane change has increasingly shifted toward AVs,
leading to the emergence of numerous data-driven lane change
prediction and vehicle trajectory planning models. In the future, as
vehicle-infrastructure cooperation continues to advance, develop-
ing more accurate lane change models and exploring driver behav-
ior characteristics to improve safety, comfort, and efficiency during
lane changes have become key directions in this field.

Analysis and risk assessment of vehicle lane
change behavior in human-machine mixed
driving environments

Lane change behavior classification and process

Lane change behavior is a complex process requiring a vehicle to
make decisions and adjustments based on its own driving character-
istics and external factors such as surrounding vehicle speed and
distance, road occupancy, and traffic conditions. The current classifi-
cation of lane changing behavior typically divides it into two
types—discretionary lane change and mandatory lane change—
based on different behavioral motivations!'2.

Discretionary lane change

Discretionary lane change refers to a voluntary maneuver initi-
ated to enhance travel efficiency and ride comfort, contingent upon
favorable traffic conditions. The primary impetus for a discretionary
lane change is typically the pursuit of a higher travel velocity or the
alleviation of speed impedance. As illustrated in Fig. 3, when the
subject vehicle (red vehicle) operates below its desired speed due
to slower preceding traffic, the driver evaluates the kinematic states
of surrounding vehicles in the target lane to execute a maneuver.
In mixed traffic, AVs generally determine the optimal lane change
timing through algorithmic calculations. In contrast, HVs make
decisions based on individual judgment and driving preferences!'3],
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thereby introducing elements of randomness and flexibility. The
inability of AVs to accurately perceive human drivers' intentions
further increases the complexity of discretionary lane change.

Mandatory lane change

Mandatory lane change refers to a vehicle's required maneuver to
change lanes within a specific road section due to constraints
imposed by traffic or road conditions!'4. Typical scenarios necessi-
tating mandatory lane change include highway merging/diverging
maneuvers or navigating lane closures due to construction zones or
obstacles. As illustrated in Fig. 4, when the subject vehicle (red vehi-
cle) encounters an obstacle, it must complete the lane change
maneuver within a designated area. In mixed traffic, a mandatory
lane change carries higher risks because it is unavoidable and
follows a strongly constrained path. Compared to a discretionary
lane change, it has a clear objective and must be completed within a
specific spatial and temporal range, with the latest possible lane
change position.

In a mixed human-machine driving environment, lane changing
behavior is influenced by the dynamic evolution of surrounding
traffic and the heterogeneous driving styles of human drivers.
To systematically analyze the lane change mechanism in such
environments, the process can be divided into a decision-making

Fig.3 Discretionary lane change.
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stage and an execution stage, as shown in Fig. 5. The decision-
making stage refers to the stage from the moment the vehicle
generates the intention to change lanes until the decision to begin
the lane change is made. The execution stage begins at the lane
change starting point and ends at the lane change endpoint. After
the decision is made, the vehicle executes a steering maneuver to
achieve a significant lateral displacement, moving continuously
from the center line of the original lane towards the center line of
the target lane. This phase requires handling complex dynamic
interaction issues. Constructing a safe and robust lane change deci-
sion model in a mixed driving environment mandates the com-
prehensive consideration of proactive longitudinal maneuvers of
preceding and following vehicles. Additionally, the model must
accurately predict the behavioral intentions of surrounding human
drivers and closely monitor the dynamic interactions between
surrounding vehicles.

Driver behavior prediction

In mixed traffic environments characterized by complex vehicular
interactions, accurately predicting the behavior of HVs is pivotal for
optimizing lane change decision-making models. The prediction of
lane change maneuvers necessitates the integration of multifaceted
influencing factors, including traffic environmental data, vehicle

Fig.4 Mandatory lane change.
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dynamics, and driver behavioral metrics!'sl. Mitrovicl'®! collected
parameters such as the speed and acceleration of target vehicles
passing through intersections and utilized Hidden Markov Models
(HMM) to identify specific driving behaviors. Liu et al.l'”l collected
driver visual information, head orientation, and vehicle dynamics.
They employed a long short-term memory network (LSTM) to
predict potential future driving behaviors. Guo et al.l'8! analyzed
driver's eye movement, head rotation, vehicle movement, and the
driver's maneuver parameters, and developed a lane change inten-
tion model using an attention-based bidirectional long short-term
memory network (AT-BiLSTM), which improved the accuracy of
behavior prediction.

The aforementioned studies have predominantly analyzed vehi-
cle states and driver information in isolation, often overlooking the
dynamic coupling between these factors and failing to account for
individual behavioral heterogeneity. Therefore, integrating multi-
source information while considering personalized differences has
become a key direction for improving prediction accuracy. Du et
al.l'integrated the vehicle driving states, surrounding traffic condi-
tions, and driving styles to predict lane changing behavior using an
HMM. Wang et al.l?9 considered the relationship between the driv-
ing environment and drivers to predict lane changes. They
employed a fuzzy inference system (FIS) to simulate drivers' percep-
tion of the driving environment and input both environmental infor-
mation and vehicle trajectories into an LSTM network, achieving
accurate lane change prediction. Liao et al.2"! constructed a driver
digital twin (DDT) model and used historical driving data to perform
personalized modeling of driver behavior. They further utilized edge
servers to enable real-time prediction of lane-changing behavior.
Current research has achieved notable progress in predicting driver
lane-changing behavior in mixed traffic environments, primarily
through multi-source information fusion and personalized driver
modeling. However, limitations remain. Dynamic interactions
among vehicle-driver-environment are not fully captured, and the
generalizability of personalized models is limited. Future research
should focus on modeling these dynamic interactions and validat-
ing prediction models in more complex mixed traffic scenarios. This
approach will enhance the robustness of behavior prediction
models and improve the reliability and safety of AV decision-making
in real-world traffic.

Execution stage

Lane change risk assessment

During a lane change, various potential driving risks exist. Accu-
rately assessing these risks is a crucial prerequisite for ensuring
safety and optimizing traffic efficiency. A comprehensive risk assess-
ment requires considering multiple factors, including traffic flow,
vehicle speed, road conditions, and driver behavior
characteristics?2. In mixed traffic environments, lane change risks
stem not only from the intrinsic dynamic properties of the ego vehi-
cle but also from interaction complexity and information uncer-
tainty. The heterogeneity regarding perception, communication,
and behavioral responses between AVs and HVs induces strongly
coupled risk evolution patterns. Current risk assessment approaches
primarily include trajectory-based analytical methods, probabilistic
models, and traffic conflict indicator methods, as summarized in
Table 1. Trajectory-based approaches leverage high-fidelity data
and intention prediction to characterize risk features. Huang et al.[23]
proposed a probabilistic driving risk assessment framework based
on intention recognition and surrounding vehicle risk evaluation,
considering the ego-vehicle's and adjacent vehicles' spatial posi-
tions and driving states. The framework employs an LSTM-based
Intention Identification Model (IIM) and a Risk Assessment Model
(RAM) to recognize intentions and output potential risks. Wang et
al.l2%introduced a probabilistic driving risk field based on two-stage
multimodal trajectory prediction. This architecture integrates intent
and trajectory prediction modules, thereby circumventing depen-
dence on explicit dynamic system models or predefined distribu-
tions. Risk is assessed via lane change pattern probability, collision
likelihood, and expected severity, improving both accuracy and real-
time performance. Hu et al.2%! analyzed the dynamic mechanism of
risk variation under spatiotemporal influences using trajectory data
and applied fuzzy logic to integrate conflict frequency and severity
into a comprehensive risk indicator. A spatial Markov model and
panel regression were further employed for real-time assessment of
dynamic risk evolution. Considering the uncertainty of driver behav-
ior in mixed traffic environments, Li et al.[28] proposed a probabilis-
tic risk assessment method. This approach evaluates driving risk
using position uncertainty and distance-based safety indicators and
applies deep reinforcement learning to find strategies with the
minimum expected risk.

Table 1. Lane change risk assessment methods.
Method used Advantages Year  Ref.
Long short-term memory Analyzes the factors affecting driving safety and the scope of potential risks 2020 [23]
Multimodal trajectory Explains human driving behavior by adjusting subjective risk parameters; suitable for mixed traffic scenarios. 2022 [24]
prediction
Fuzzy logic theory Reveals the spatiotemporal dynamics of risk states and quantifies the influencing factors of risk. 2023 [25]
Probabilistic model Fully considers position uncertainty and distance-based safety indicators. 2022 [26]
Traffic conflict index Breaks through traditional single-threshold methods and enables dynamic risk grading. 2020 [28]
Traffic conflict index Dynamically expands the TTC model based on high-precision microscopic trajectory data. 2022 [29]
Huang et al. Digital Transportation and Safety 2025, 4(4): 298-311 Page 301 of 311
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Traffic conflict indicators serve as pivotal instruments for the
safety evaluation of lane change maneuvers. By quantifying critical
collision risk parameters, these indicators render risk assessment
more intuitive and operationally viable. Common indicators include
time to collision (TTC), time to brake (TTB), and post-encroachment
time (PET). These metrics are frequently adapted or extended to
accommodate diverse driving scenarios, thereby facilitating a more
targeted evaluation of lane change risks. Park et al.27l investigated
the continuous distribution of the stopping distance index (SDI)
during lane change maneuvers to probe the interactions between
the ego vehicle and neighboring traffic. They proposed a lane
change risk index (LCRI) and applied fault tree analysis (FTA) to the
evaluation framework. Zhou?8 used TTC as a risk metric to analyze
two types of interaction conflicts. By dynamically calculating TTC,
they assessed risk levels under different interaction patterns and
revealed their spatiotemporal characteristics and formation mecha-
nisms. Liu et al.?! improved the traditional TTC model by apply-
ing mutual information theory. Their method considered lane
change position, direction, and the dynamics of adjacent vehicles,
which enabled real-time identification of dynamic risks in complex
scenarios.

Current risk assessment methodologies exhibit significant diver-
sity, encompassing trajectory-based analysis, probabilistic model-
ing, and traffic conflict indicators. Notwithstanding substantial
advancements, lane change risk assessment continues to confront
systemic impediments. Specifically, constraints such as fragmented
data sharing, inadequate fusion of multi-source heterogeneous
data, and limited adaptability to complex scenarios may exacerbate
evaluation errors. Future research should strengthen multi-source
data fusion and cross-scenario data sharing. By integrating vehicle
sensor data, V2X communication, road monitoring information, and
driver state data, a unified risk data framework can be established. In
addition, intelligent risk assessment systems should be developed
by combining reinforcement learning with real-time decision-
making mechanisms to achieve dynamic risk evaluation and adap-
tive control. Through multidimensional analysis and risk modeling
of lane changing behavior in mixed traffic, these advancements can
provide more accurate safety decision support for autonomous driv-
ing systems and promote the safe, efficient, and intelligent develop-
ment of human-machine co-driving traffic systems.

Evaluation indicators and validation methods for
mixed traffic flow

In mixed traffic environments characterized by the coexistence of
AVs and HVs, traditional univariate evaluation approaches are insuf-
ficient to adequately capture the safety and coordination dynamics
of lane-changing maneuvers. Contemporary research predomi-
nantly utilizes surrogate safety measures, such as TTC and PET, to
assess risks across varying AV penetration rates and roadway condi-
tions via simulation. However, these metrics typically quantify safety
solely from a temporal or unidimensional perspective. They fail to
account for the distinct disparities in communication, perception,
and decision-making mechanisms between AVs and HVs, thereby
compromising their ability to reflect the holistic safety risk. There-
fore, it is necessary to establish a multi-dimensional evaluation
framework, supported by multi-layered validation—from simula-
tion to field testing and from offline to online assessment—to more
accurately and comprehensively evaluate safety in mixed traffic
flow.

Evaluation indicator system
To conduct a comprehensive and objective evaluation of safety
and coordination within mixed traffic flows, a multi-dimensional
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indicator system is established. To capture the risk of rear-end colli-
sions and speed fluctuations, time-based surrogate measures such
as Modified Time-to-Collision (MTTC) and Lane Change Time-to-
Collision (LCTTC) are adopted. Furthermore, deceleration-based
indicators, including the Deceleration Rate to Avoid a Crash (DRAC)
and the Collision Potential Index (CPI), are utilized to assess braking
requirements. In addition, Time Headway (TH), Speed Standard
Deviation (SD), Velocity Coefficient of Variation (VCS), and Emer-
gency Lane Change Risk Frequency (ELCRF) are employed to evalu-
ate the overall safety performance of the traffic stream. Detailed
definitions and explanations of each indicator are provided below.

Modified time-to-collision (MTTC)

MTTC is an improved metric for evaluating longitudinal conflict
risk in car-following scenarios. Unlike the traditional TTC, MTTC
incorporates the accelerations of both the leading and following
vehicles. This enhancement enables a more realistic assessment of
potential collision risks for HVs and AVs in mixed traffic. MTTC is

calculated using:
~AV+ JAV?+2a;AD

ar
where, AV denotes the speed difference between the leading and
following vehicles (m/s), AV, represents the speed of the following
vehicle (m/s); ar represents the acceleration of the following vehicle
(m/s?); and AD is the distance between the two vehicles (m).

MTTC =

Lane change time-to-collision (LCTTC)

LCTTC is used to assess lateral conflict risk during lane change
maneuvers. It represents the remaining time before a potential
lateral collision occurs between a lane-change vehicle and a vehicle
in the target lane. This indicator captures the dynamic interaction
between vehicles and is essential for evaluating safety in lane

change scenarios. LCTTC is calculated as:
LCTTC = _@ — _(Pb_Pu)TX(Pb_Pa)
Vap — (Py=P)" X (Vp =)
where, d,;, is the distance between the lane changing vehicle and the
vehicle in the target lane (m); V,;, is the relative speed of the two
vehicles (m/s); P, = (x,, yp) and P, = (x,, ¥,) denote the position vectors
of the target-lane vehicle and the lane changing vehicle, respectively;
represent the velocity vector of the target-lane vehicle; V, represent
the velocity vector of the lane change vehicle.

Deceleration rate to avoid a crash (DRAC)

DRAC is an indicator used to evaluate longitudinal conflict risk. It
refers to the minimum required deceleration that a vehicle must
apply to avoid a collision, assuming that the conflicting target vehi-
cle maintains its current speed and trajectory. In mixed traffic flow,
DRAC reflects the emergency braking capability of AVs when inter-
acting with HVs exhibiting diverse behaviors. DRAC is calculated as:

DRAC(?) = i) —vie1 (D)2
2[xi-1 () = xi(0) = ;1]
where, v(t) is the speed of the following vehicle at time t (m/s); v;_;(t)
denotes the speed of the leading vehicle at time t (m/s); x;_;(t) denote
the position of the leading vehicle at time t (m); x(t) denote the
position of the following vehicle at time t (m); and /_; is the length of
the leading vehicle (m).

Collision potential index (CPI)

The Collision Potential Index (CPI) provides a macroscopic
measure of longitudinal conflict risk for the entire traffic stream or
vehicle platoon. By integrating DRAC values over time and averag-
ing across space, CPl aggregates instantaneous microscopic
conflicts into an indicator that reflects the overall safety level of a
roadway segment.

Huang et al. Digital Transportation and Safety 2025, 4(4): 298-311
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Y, St DRAC, (1) At

(T—10)(N-1)
where, At denotes the time interval between the leading and
following vehicles (s); T is the total evaluation time (t); N is the number
of vehicles; and DRAC,(t) denotes the minimum deceleration rate
required for the following vehicle n to avoid a collision with the leading
vehicle at time t.

Time headway (TH)

TH is defined as the time interval between two successive vehi-
cles passing a fixed point in the same lane. It reflects differences in
car-following behavior between AVs and HVs and is an important
indicator for assessing following safety. TH is calculated as:

TH=t,—ti
where, t; is the moment when the ith vehicle passes the fixed point;
and t._; is the moment when the (i—1)th vehicle passes the fixed point.
Speed standard deviation (SD)

SD is a statistical metric used to describe the dispersion of vehicle
speed distribution. It reflects fluctuations and asymmetry in mixed
traffic flow, where AVs tend to maintain stable speeds while HVs
exhibit significant speed fluctuations. SD is computed as:

N —\2
X (vi-V)
N-1
where, N represents the total number of vehicles (veh); V; denotes the
speed of the i (m/s); V is the average speed of all vehicles (m/s).

CPI =

Velocity coefficient of variation (VCS)

VCS is used to measure the relative dispersion of a speed distri-
bution. By eliminating the influence of scale and mean speed,
VCS allows better comparison of speed variability across different
traffic states or roadway segments. This metric can more effectively
evaluate the stability and safety of a traffic stream. VCS is defined
as the ratio of the speed standard deviation to the mean speed.
VCS is computed as:

ves =2
\%4
where, o denotes the standard deviation of speed; V is the average

speed of all vehicles (m/s).

Emergency lane change risk frequency (ELCRF)

ELCRF is a behavioral indicator that indirectly captures lateral
conflict risk through the frequency of urgent lane changes. It is
defined as the ratio of emergency lane changes to total lane
changes, reflecting the intensity of vehicle interactions and poten-
tial conflicts. Emergency lane changes refer to maneuvers that must
be executed urgently, typically due to imminent conflict, conges-
tion avoidance, or safety enhancement needs. These lane change
requests are characterized by a higher priority and greater imme-
diacy compared to regular lane changes. ELCRF is calculated as:

ELCRF(r) = !
(1)
where, n(t) is the number of emergency lane changes, and nt)
denotes the total number of lane changes.

Validation methods

Given the complexity of mixed traffic environments, validating
lane-changing decision models necessitates a combination of
complementary methods. A multi-level validation framework—from
simulation to real-vehicle testing, and from offline evaluation to
online verification—is established

(1) Simulation-based validation is currently the most efficient and
widely adopted approach. Microscopic traffic simulation tools such
as SUMO and VISSIM are utilized to assess the model's impact on
overall traffic efficiency and stability. Concurrently, high-fidelity
simulation platforms, including CARLA and LGSVL Simulator,

Huang et al. Digital Transportation and Safety 2025, 4(4): 298-311
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provide realistic perception interfaces and control environments for
evaluating safety and comfort. Furthermore, Human-in-the-loop
simulation captures the complexity of mixed human-machine driv-
ing by involving real drivers interacting with virtual scenarios. This
enables an effective assessment of an AV's capability and robust-
ness when facing human irrationality and diverse driving styles.

(2) Real-vehicle testing is essential for verifying the engineering
feasibility of decision models, but faces challenges such as high
cost, safety risks, difficulty of data collection, and limited scenario
reproducibility. Closed-track testing facilitates the evaluation of
safety limits and decision stability under controlled conditions.
Conversely, open-road testing examines interaction adaptability
and risk management within naturalistic, mixed-traffic environ-
ments. To ensure the representativeness and generalizability of
experimental outcomes, the testing protocol must incorporate a
diverse array of roadway scenarios and varying intensities of
human-machine interaction.

(3) Adversarial and robustness testing is gaining increasing
attention due to the inherent uncertainty in mixed traffic flow. By
introducing perturbations, extreme scenarios, or irrational human
behaviors in simulation or real-vehicle platforms, weaknesses of
the model under abnormal or unexpected conditions can be iden-
tified. This process yields critical insights for subsequent model
optimization.

In summary, within mixed traffic environments characterized by
the coexistence of AVs and HVs, fundamental disparities in percep-
tion, decision-making, control, and communication significantly
increase interaction variability and uncertainty. Consequently, safety
evaluation must comprehensively encompass longitudinal and
lateral conflicts, microscopic behavioral heterogeneity, and macro-
scopic flow stability. Meanwhile, the multi-level validation frame-
work integrating simulation, real-vehicle testing, and adversarial
testing ensures both the reliability of evaluation results and the
engineering feasibility of the models.

Research progress on lane change decision-
making models

Lane change decision models are designed to determine the
feasibility, timing, and execution location of lane-changing maneu-
vers. Existing research can be broadly categorized into three primary
paradigms: rule-based models, data-driven models, and game
theory models. To elucidate the developmental trajectories and
temporal evolution of these approaches, Fig. 6 presents a chrono-
logical organization of representative studies, highlighting the
progression from rule-based methods to data-driven approaches
and multi-agent game-theoretic frameworks. Rule-based models
predicate decisions on predefined logical rules or kinematic prin-
ciples. They are suitable for simple scenarios but lack flexibility in
decision-making. Data-driven models learn lane change patterns
by mining large volumes of driving behavior data. While they
demonstrate strong adaptability, their performance relies heavily on
extensive labeled datasets and often lacks interpretability. Game-
theoretic models treat lane changing as a strategic interaction
among vehicles and can better capture driver behavior, but face
challenges with irrationality modeling, information requirements,
and computational complexity. This chapter reviews these three
decision-making models, analyzing their respective advantages and
limitations.

Rule-based lane change decision making
Rule-based lane change decision-making methods establish a rule
set for lane-changing behavior based on traffic regulations, expert
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Fig.6 Classification diagram of lane change decision model.

demonstrations, and surrounding environmental data. The AVs then
match real-time information with the predefined conditions in this
rule base to make a lane change decision. The theoretical founda-
tion of this approach can be traced back to the Gipps model
proposed by Gipps in 1986[20L. It divides the lane change decision
process into three aspects: lane change intention, lane change
conditions, and lane change safety, laying the groundwork for rule-
driven methods. Yang et al.Bl improved the Gipps model to
propose the MITSIM model. This model accounts for the uncertainty
of lane change decisions by introducing a driver's lane change pro-
bability. It refines the decision-making process into a four-stage
continuous sequence: decision to change lanes, target lane selec-
tion, acceptable gap calculation, and execution. The MOBIL
modelB2 innovatively introduced a dual-indicator system for target
lane desirability and safety. It also considers the impact of the ego
vehicle's maneuver on the following vehicle's braking. This
propelled rule-based models to evolve from static to dynamic inter-
active scenarios.

Finite State Machine (FSM) models are widely used in lane change
decision-making due to their ability to intuitively and logically repre-
sent discrete state relationships through directed graphs. Ji et al.l33!
proposed a lane change decision method that integrates a virtual
danger potential field with an FSM to meet the behavioral decision
needs of intelligent vehicles. Xiong et al.?4 designed a lane-chang-
ing behavior decision framework based on a Hierarchical State
Machine (HSM). They incorporated the environment perception,
decision planning, and execution control modules into a distributed
system architecture based on a Real-Time Control System (RCS).
Wang et al.139 proposed a decision-making algorithm that combines
finite state machines with fuzzy reasoning for unidirectional two-
lane scenarios, enhancing scene traversal depth and adaptive
adjustment to improve decision accuracy. In human-machine mixed
traffic, Liu et al.B® constructed a cellular automaton model for
heterogeneous traffic flow. They analyzed three driving styles of HVs
using actual data sets and introduced the Gipps rule to establish
safe conditions for following and lane change rules. To further
improve the accuracy of lane change decision-making, Jia et al.B7!
innovatively combined rule abstraction with machine learning.
They employed a support vector machine (SVM) to build a lane
change decision model, where lane change rules are converted into
new features and safety constraints and then integrated into the
model's training process. By introducing new rule-related features,
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this method significantly improved the accuracy of predicting
lane-changing behaviors.

Rule-based lane change decision methods offer strong
interpretability and reliability. In simple traffic scenarios, they can
generate lane change decisions with low complexity and compu-
tational cost. However, their applicability is notably constrained
within complex, mixed-traffic environments. Specifically, it's chal-
lenging for them to fully account for dynamic factors like driver
characteristics and actual road conditions, leading to insufficient
adaptability to real-time traffic changes. Furthermore, traditional
rule-based methods rely on static rules for decision-making and
cannot effectively capture the variable behaviors and intentions
of human drivers, which increases the uncertainty of lane-change
decisions. Table 2 provides a summary of rule-based lane change
decision methods.

Data-driven lane change decision making

With the continuous advancement of computer science and
data mining techniques, data-driven lane change decision-making
methods have attracted increasing attention from researchers. The
core of this approach lies in the iterative interaction between the
agent and its environment, whereby driving strategies are continu-
ously learned and optimized through environmental feedback, ulti-
mately enabling autonomous decision-making of vehicles. Owing to
its adaptability to various lane change demands across different
driving scenarios, this method has become a mainstream research
direction in autonomous lane change decision studies. However,
challenges remain, particularly regarding limited interpretability
and strong dependence on dataset quality. Consequently,
researchers focus on improving data reliability and model robust-
ness. Depending on the learning mechanism, these methods are
generally categorized into three distinct classes: traditional machine
learning, deep learning, and reinforcement learning.

Traditional machine learning methods

Methods based on traditional machine learning rely heavily on
manual feature engineering. By mining statistical patterns in the
data through models, they are particularly suitable for lane change
decisions in small-sample datasets or specific scenarios, and they
offer relatively strong interpretability. To address the problem of
incomplete feature selection in vehicle lane change decision
models, Gu et al.38 extracted decision variables from physical
states, interactional perception information, and roadway structural
characteristics, and developed an SVM decision model optimized
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using a Bayesian algorithm. Li et al.3¥ proposed an innovative SVM
algorithm optimized by the artificial bee colony (ABC) method, in
which the penalty factor and kernel function parameters of the SVM
were optimized to construct a lane change recognition model. In
mixed traffic environments, the uncertainty of vehicle lane-chang-
ing behavior increases, making decision detection more challeng-
ing. Zhao et al.l*% constructed a vehicle lane change decision model
based on Bayesian networks using vehicle speed, acceleration, and
relative time headway of surrounding vehicles as feature parame-
ters. Wang et al.*"l proposed an adaptive lane change prediction
model based on Bayesian inference. The model combined LSTM
networks with adaptive decision thresholds, where Bayesian infer-
ence was applied to dynamically update the thresholds, enabling
adaptation to different road and traffic conditions and improving
prediction accuracy. To address the weak capabilities in identifying
and predicting risks associated with continuous lane changing,
Hu et al.*2 employed a Bayesian global optimization (BO) gated
recurrent unit (GRU) neural network (BO-GRU) model. By optimizing
GRU network parameters, the model improved the precision of risk
identification and prediction, and further allowed for personalized
adjustment according to individual driving styles. Xu et al.*3! consi-
dered the differences in driver styles in mandatory lane change
decisions and proposed a mixed architecture that integrates Evolu-
tionary Game Theory (EGT) with machine learning (ML). By intro-
ducing physical information through EGT, the model can capture
the progressive cooperative interactions among drivers and predict
the decisions of drivers with various driving styles.

In the complex environment of human-machine mixed driving,
accurately predicting human driver behavior is crucial for ensuring
safe vehicle lane changes. Chen et al.*4 developed an improved
input-output hidden Markov model (IOHMM) that captures histori-
cal memory and models continuous outputs, establishing a predic-
tion model that accounts for both driver lane change intentions and

Table 2. Rule-based lane change decision method.
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behaviors. Zhang et al.**l proposed a framework that combines
primitive-based interaction pattern recognition and risk analysis.
The lane changing scenarios were first decomposed into primitives
using a Hidden Markov Model with the Gaussian Mixture Model
(GMM-HMM) approach. Then, K-means clustering with Dynamic
Time Warping (DTW) was applied to group the primitives into 13
lane change interaction patterns. Two types of vehicle interactions
were considered to calculate the TTC, which was further used to
identify high-risk lane change interaction patterns. Table 3 provides
a summary of traditional machine learning methods in data-driven
lane change decision-making approaches.

Deep learning-based methods

Deep learning can handle nonlinear problems in complex, high-
dimensional time series, extracting lane change decision informa-
tion from human driving data and capturing uncertainties in
dynamic traffic. Xie et al.l*6! combined a deep belief network (DBN)
with an LSTM network to predict vehicle lane changes, identifying
the relative position of the preceding vehicle as the key factor.
However, the model did not incorporate personalized modeling of
driver heterogeneity. Considering that multi-vehicle interactions
affect the safety of lane change decisions, Qie et al.*”! proposed a
decision-making approach that integrates LSTM with Graph Neural
Networks (GNN) to model multi-vehicle interactions, as illustrated in
Fig. 7. The method takes vehicles' historical trajectories as input,
where the LSTM layer captures temporal dependencies in the trajec-
tories and encodes the potential driving behavior of each vehicle.
Meanwhile, the GNN layer models interactions among multiple vehi-
cles, including not only those between the AVs and surrounding
vehicles (SVs), but also interactions among SVs themselves. Finally,
the output of the GNN layer is fed into a SoftMax layer to make lane
change decisions. Experimental results demonstrate that, compared
with the conventional LSTM-based method, this approach improves
lane change decision accuracy by 19.8%.

Input variables Algorithm Issues Advantages Year  Ref.
Vehicle state and driver behavior Rule-based two-stage Driver behavior is not classified  Quantitatively considered the response of 1986  [30]
features decision model following vehicles in the target lane
Traffic flow data and vehicle dynamic  MITSIM Does not consider nearby Incorporated probabilistic logic, reflecting 1996  [31]
information vehicles during lane changes driver risk preferences
Position, speed, and acceleration of ~ MOBIL Ignored vehicle dynamics during Applied benefit-safety dual-condition 2007  [32]
the vehicle and surrounding vehicles lane changes mechanism, closer to human driving
Road information, vehicle HSM + RCS Insufficient model generalization Used real-road data and RCS to quantify 2018  [34]
information, and other obstacle data and simplified safety evaluation lane change risk
Dynamic traffic data of vehicles Fuzzy inference + Limited applicability of the Effectively handled uncertain information 2023  [35]
FSM algorithm, strong rule
dependence
NGSIM database Cellular automata Overly simplified model Quantifying the differences in human 2023  [36]
model driving styles
US-101 NGSIM database Rule-based + Motion prediction model Balanced interpretability with adaptability 2022 [37]
machine learning remained relatively simple to complex scenarios
Table 3. Lane change decision-making method based on traditional learning.
Input variables Algorithm Issues Advantages Year  Ref.
US-101 and I-80 NGSIM database SVM Relies on manual feature extraction, Incorporates physical, interaction,androad 2020  [38]
limited dynamic scene adaptability structure features
US-101 NGSIM database ABC-SVM Relies on ego-vehicle data, neglects Avoids grid search inefficiency and local 2021 [39]
surrounding traffic environment optima
US-101 NGSIM database Bayesian Network  Lacks a real-time updating mechanism; Transforms driver decision uncertainty into 2020  [40]

limited adaptability
High D dataset LSTM + Bayesian
Network
Vehicle state, driver operations,  Improved IOHMM

and environmental data

Neglects personalized factors such as
driver style and vehicle type

Lacks validation under real-world
driving environments

quantifiable probabilistic outputs

Dynamically updates decision thresholds, 2021 [41]
adapts to diverse traffic environments

Addresses IOHMM limitations in sequential 2021 [44]
memory and continuous outputs

High D GMM-HMM Does not consider applicability in Identifies spatiotemporal interactions and 2023  [45]
mixed traffic flows high-risk patterns in lane changes
Huang et al. Digital Transportation and Safety 2025, 4(4): 298-311 Page 3050f311
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To improve decision performance, researchers have developed
various innovative approaches. Cheng et al.l*8] proposed a CNN-
based lane change decision method using dynamic motion image
representation, which enhances decision accuracy by integrating
multi-vehicle interaction information and safety constraints. How-
ever, it ignores the temporal relationships between frames, limiting
prediction accuracy. Han et al.*9 designed an end-to-end deep
learning framework based on a temporal and spatial attention
mechanism. By combining Squeeze-and-Excitation Network, ConvL-
STM, and CNN structures, temporal attention is used to capture
short- and long-term memory in visual information, while spatial
attention identifies key objects and their locations in images,
improving both prediction accuracy and model interpretability. To
address the issue of high computational cost, Li et al.l>% developed a
lightweight end-to-end lane change decision model based on
Transformer. By incorporating depth-wise separable convolutions
and Transformer modules, the lightweight network extracts image
semantics from the temporal sequence of trajectory data, thereby
reducing computational overhead. Table 4 summarizes deep learn-
ing-based approaches in data-driven lane change decision-making.

Reinforcement learning-based methods

Reinforcement learning (RL) enables an agent to continuously
interact with its environment and learn an optimal policy based on
cumulative reward feedback. Its core idea is similar to human trial-
and-error learning, requiring no manual labeling of data, and it can
effectively overcome the limitations of deep learning imposed by
training sample constraints>'), Although RL can adapt to complex
traffic environments and make real-time driving decisions, its perfor-
mance heavily depends on the quality and quantity of the training
dataset, necessitating model optimization for practical applications.

Considering the uncertainty and complexity of the driving envi-
ronment during lane changes, Yavas et al.52 proposed a lane
change decision model based on Rainbow Deep Q-Network(DQN).
The model is trained using a reward function provided by a safety
layer, and simulation results show good applicability in dynamic,
uncertain, and noisy highway lane change scenarios. Li et al.l20l
combined deep reinforcement learning with a risk assessment func-
tion, evaluating driving risk using position uncertainty and distance-
based safety metrics to find a strategy with minimum expected risk,
thereby generating robust and safe lane change decisions. However,
lane change decision-making must balance safety with other objec-
tives. Peng et al.53! proposed a double-layer decision model based
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on deep reinforcement learning, simultaneously considering driv-
ing efficiency, safety, and comfort, and capable of handling large-
scale mixed state spaces while ensuring composite actions for
vehicle following and lane change. Ran et al5* addressed the
safety challenges of lane change in dense highway traffic and
proposed a dense reinforcement learning approach based on DQN
and prioritized experience replay (PER). However, the approach did
not take into account mixed traffic flow conditions.

To address the insufficient interaction and cooperation capabili-
ties among vehicles in complex traffic environments, Wang et al.[>%]
proposed a lane change model based on DRL, training AVs to
perform lane changes while interacting with diverse human driving
behaviors. Liang et al.5¢! proposed a framework integrating beha-
vior decision-making, path planning, and motion control. The
framework leverages a bootstrapped DQN to enhance exploration
in reinforcement learning and applies inverse reinforcement learn-
ing (IRL) to derive reward functions from human driving data for
human-like path generation. To ensure safe under perception
uncertainty, He et al.l’”! proposed a robust lane change decision-
making model based on observation adversarial reinforcement
learning (OARL). Lane changing behavior is modeled using a
constrained observation-robust Markov decision process, and a
Bayesian-optimized black-box attack technique is employed to
approximate optimal adversarial observation perturbations. Further-
more, a constrained observation-robust actor-critic algorithm is
introduced to optimize lane change strategies and enhance robust-
ness. Li et al.l*® incorporated a multi-head self-attention mecha-
nism within the twin delayed deep deterministic policy gradient
(TD3) framework to extract traffic flow features. A mixed action
representation mechanism is used to coordinate longitudinal acce-
leration control and lateral lane change decisions, and attention
outputs are integrated to stabilize strategy shifts. Table 5 summa-
rizes reinforcement learning-based approaches in data-driven lane
change decision-making.

Game theory-based lane change decision-making
Game theory-based decision-making methods address beha-
vioral decision-making in complex traffic scenarios by modeling the
ego vehicle and surrounding vehicles as strategic agents. The funda-
mental objective of this approach is to mathematically formulate
the interaction between the ego vehicle's maneuvering intentions
and the yielding or adversarial responses of surrounding vehicles.
These models aim to achieve either individual utility maximization
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Table4. Lane change decision method based on deep learning.
Input variables Algorithm Issues Advantages Year Ref.
NGSIM database DBN-LSTM Lacks dynamic modeling of driving Simulate the entire lane changing process 2019  [46]
styles and its impact on traffic flow
NGSIM database LSTM-GNN Ignores key behavioral features; Fully models multi-vehicle interactions, 2023 [47]
simplified interaction modeling significantly improving decision accuracy
Dynamic motion images  CNN-based dynamic motion Limited generalization to real-world Captures surrounding vehicles' positions 2023 [48]
image representation scenarios and high computational cost  and motion comprehensively
Comma2k19 and Udacity Spatiotemporal attention- ~ Complex model, long training time Spatiotemporal attention highlights 2022 [49]
datasets based deep learning important frames and key regions
Vehicle state space and DSCNN- Transformer Not suitable for complex urban roads Maintains temporal modeling capability 2023 [50]
action space while reducing computational load
Table 5. Lane change decision method based on reinforcement learning.
Input variables Algorithm Issues Advantages Year Ref.
Relative positions and speeds of Rainbow DQN Unable to jointly optimize longitudinal Introduces a safety feedback reward 2020 [52]
vehicles speed and lane changing timing mechanism
Longitudinal/lateral distances, yaw DRL + Risk Ignores driving styles; model Achieves optimal driving strategy with 2022 [26]
angle, relative distances assessment function applicability is limited to specific minimum expected risk
US-101 NGSIM database D3QN+DDPG Fails to consider trajectory continuity ~ Safely and efficiently handles lane 2022 [53]
and heterogeneous traffic flow changing and car-following behaviors
High D dataset DRL Limited application scenarios; reward  Incorporates a collision-avoidance 2023 [55]
function lacks consideration of comfort strategy to ensure longitudinal safety
Relative distance, relative speed, DON + IRL High computational complexity and Integrates behavior, planning, and control 2025  [56]
and lane-relative position depends on expert data from driving  modules for joint training and execution
simulators
Ego vehicle's longitudinal OARL Limited by discrete actions; cannot Maintains high performance and safety 2023 [57]
acceleration, yaw rate, surrounding handle continuous steering control under observation disturbances
vehicles' speeds and distances
Vehicle position, speed, AH-TD3 Lacks timeliness and poor continuity in Mixed action representation integrates 2024 [58]

acceleration, and traffic light
information

modeling interactive behavior

discrete and continuous actions

within non-cooperative contexts or collective system optimization
in cooperative scenarios. Game theory enables a rational analysis of
influencing factors and the intrinsic nature of cooperation and
competition among multiple vehicles. Moreover, game-theoretic
approaches offer robustness in handling strategy selection under
uncertainty and incomplete information. Consequently, game-theo-
retic frameworks have been extensively integrated into lane change
decision protocols to augment the intelligence and safety of auto-
mated driving systems.

Game theory can capture the interactions between vehicles and
execute corresponding control actions. Kital®¥! proposed a game-
theoretic model to analyze the interactions between merging and
straight-going vehicles. The interaction was formulated as a two-
player non-zero-sum non-cooperative game, where the vehicle
predicts the opponent's behavior to select its optimal strategy.
Meng et al.l’% developed a dynamic lane change decision model by
incorporating predictability into game theory. In this model, game
participants rely not only on real-time environmental perception but
also on feasible prediction of future environmental information.
Based on multi-player dynamic game theory, Yu et al."! proposed a
lane change decision model for AV in mixed traffic environments,
introducing an overtaking expectation parameter to estimate the
utility of following vehicles. In human-machine mixed traffic, vehi-
cle interactions inevitably affect efficiency and safety. Fu et al.l62l
integrated the theory of perceived risk fields to quantify the driving
risks induced by the uncertainty of HVs. The multi-vehicle conflict
problem was decomposed into multiple two-vehicle lane-changing
games, which improved both efficiency and safety. Deng et al.l63]
proposed an incomplete-information game model based on the
concept of driver aggressiveness. A risk-response map was deve-
loped to quantify social driving preferences, and naturalistic driving
data from the high D dataset were used to train a GMM for risk
estimation. This approach enabled adaptive and human-like
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decision-making in real-world interactive driving scenarios. How-
ever, some existing studies neglect differences in driving styles
among interacting vehicles. To overcome this limitation, Huang et
al.l*4l developed a variable-structure game model that incorporates
diverse driving styles. Based on relative driving style (RDS), the
model dynamically adjusts its structure and achieves an average
decision accuracy of 98%, outperforming conventional game-
theoretic algorithms.

To enhance the flexibility of lane change decisions in traffic flow
environments, Lu et al.*l proposed a game-theoretic model that
integrates lane change interactions with traffic flow trends. The
model combines nonlinear autoregressive neural networks with
Gaussian Mixture Models and Hidden Markov Models to predict
both longitudinal and lateral driving intentions, while also account-
ing for interactions with surrounding vehicles and future traffic flow
trends. Yao et al.[¢! developed a lane change decision system based
on an improved Stackelberg game and traffic flow information. As
shown in Fig. 8, the system consists of three modules: lane chang-
ing demand assessment, lane changing condition evaluation, and a
multi-lane game model. The demand function considers urgency
and potential, while condition evaluation ensures safety using mini-
mum lane changing distance. The multi-lane game model dyna-
mically selects participants to handle complex interactions. Experi-
mental results verified the system's foresight and the rationality of
its decision-making. Table 6 summarizes game theory-based lane
change decision methods. In contrast to methodologies reliant
on predefined rules or empirical data patterns, game-theoretic
approaches exhibit superior generalization capabilities across
heterogeneous traffic scenarios. By simulating vehicle interactions
and conflict characteristics, while also accounting for driving traits
and driver preferences, they can effectively meet the decision-
making requirements of AVs in complex and dynamic environments.
Moreover, compared with reinforcement learning, game theory-
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based decision-making offers greater interpretability and scalability.
Nevertheless, contemporary research confronts significant impe-
diments, including high computational complexity in high-
dimensional games, computational latency, and potential instability
in the convergence of long-term strategic equilibria.

Research challenges and future prospects

The rapid advancement of artificial intelligence and autonomous
driving technologies has catalyzed the emergence of mixed
human-vehicle traffic environments. This paradigm shift imposes
increasingly stringent requirements regarding the safety and
reliability of lane change decisions. Consequently, critical scholarly
attention must be directed toward the impact of human-vehicle
interactions and heterogeneity in driving styles. While human

Review of lane change decisions in mixed traffic

drivers rely on subjective experience, AVs depend on structured
data, creating fundamental differences in decision logic. Against this
background, this paper systematically reviews lane changing beha-
vior, risk assessment methods, and decision-making models in
mixed traffic.

Regarding the analysis of lane changing behavior and risk assess-
ment, this study delineates the distinction between discretionary
and mandatory lane changes, while introducing multi-stage process
models to establish a coherent framework for analyzing dynamic
interactions. To address safety concerns within heterogeneous traf-
fic flow, a spectrum of risk assessment methodologies is critically
reviewed, significantly augmenting the capacity for the quantita-
tive analysis of lane change safety. At the level of lane change
decision-making models, this paper comprehensively scrutinizes
rule-based, reinforcement learning, deep learning, and
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Table 6. Decision-making method for lane change based on game theory.
Input variables Algorithm Issues Advantages Year Ref.
Traffic conflict indicators Two-player non-zero-sum Oversimplified assumptions Demonstrates feasibility of applying game 1999  [59]
non-cooperative game underestimate real-road complexity theory to traffic interaction modeling
Vehicle state information Stackelberg Game with Relies on sensor data, subject to Capable of handling uncertainty and 2016 [60]
Incomplete Information perception errors enabling dynamic decision updates
Vehicle state and Non-cooperative mixed- Insufficient consideration of driving  Incorporates a dynamic risk model into the 2022 [61]
environmental information strategy game style diversity lane changing game
Vehicle state information and  Coalition game model High computational complexity; Introduces perceived risk field theory to 2023 [62]
driving style parameters relies on stable V2X communication quantify uncertainties in mixed traffic
High D dataset Incomplete information Overemphasis on human driving Uses Risk—-Response (R-R) diagram to 2024 [63]
game uncertainty while ignoring vehicle  interpretively quantify social driving
dynamics constraints preferences
NGSIM dataset Hierarchical game theory Assumes fully rational vehicles, Dynamically selects game model based on 2024  [64]
model while real-world mixed trafficis not RDS
fully rational
Vehicle status information and Prediction-enhanced game  Oversimplified scenarios, only two-  Utilizes macroscopic traffic flow 2024 [65]
traffic trend prediction data theory model vehicle games are considered while information for proactive decision-making
real lane changes involve multi-
vehicle interaction
US-101 NGSIM database Improved Stackelberg game Ignores multi-lane continuous lane  Strong adaptability in multi-lane scenarios 2025 [66]

theory

changing demand; insufficient
safety mechanisms

with online real-time classification of
driving styles
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game-theoretic approaches, providing a detailed comparative anal-
ysis of their respective merits and limitations. Through this system-
atic review, the study identifies current challenges and outlines
future research directions.

Limited consideration of human-machine interaction
in lane change decisions

In mixed human-machine driving environments, existing lane
change decision-making models often fail to account for the influ-
ence of human-machine interaction, which may result in inaccurate
decisions or even safety risks. The limitations of current models are
particularly evident in three aspects. First, human drivers frequently
exhibit non-rational behaviors influenced by experience, emotion,
and other subjective factors, which traditional models struggle to
capture. Second, autonomous driving systems face challenges in
quantifying latent states, such as a driver's psychological condition
or reaction latency, in real time. Furthermore, during the informa-
tion transmission process between vehicles, there is a difference in
the coexistence of structured communication and unstructured
perception. This makes it difficult for AVs to accurately infer human
drivers' true intentions, leading to misjudgments or overly conserva-
tive decisions during critical lane change moments.

Future research may adopt multimodal perception fusion by inte-
grating V2X communication, eye-tracking data, and multi-source
environmental sensing. This approach can enhance the detection of
non-rational driver behavior and support the development of inten-
tion-recognition models for human-machine cooperative lane
changing. GNNs can be used to model traffic scenes as heteroge-
neous graphs, where nodes represent vehicles, drivers, and road
elements, and edges capture their interactions. This approach helps
capture close inter-vehicle interactions. Combining GNNs with
attention mechanisms can further highlight the key interacting
vehicles that influence lane changing and improve the accuracy of
behavior and intention prediction. In addition, Inverse Reinforce-
ment Learning (IRL) can be used to learn the underlying reward
functions from cooperative human driving behavior. Deep Rein-
forcement Learning (DRL) can then train AVs to generate optimal
interaction strategies, enabling them to communicate intentions
effectively through behavioral interaction in simulation environ-
ments and complete lane changes successfully.

Challenges in multi-vehicle coordination and dynamic
environment modeling

Current research largely focuses on single-vehicle decision-
making and often overlooks multi-vehicle cooperation and system-
level optimization. In mixed traffic, AVs and HVs engage in complex
dynamic game interactions. Existing models simplify these interac-
tions excessively, which may lead to locally optimal decisions and
reduced global efficiency. In addition, these models have limited
ability to capture abrupt traffic flow changes or dynamic obstacles,
negatively affecting both safety and efficiency.

Future work should strengthen multi-vehicle cooperation and
account for dynamic traffic flow variations to improve lane change
prediction accuracy. By integrating V2X communication with event-
triggered learning, real-time information sharing, and rapid policy
updates can be achieved. Through the Internet of Vehicles, vehicle
state information can be shared in real time, while an event-
triggered MARL mechanism activates learning and communication
only when critical state changes or potential conflicts arise. This
reduces communication redundancy and improves decision
response speed. In addition, coalition games and hierarchical
control mechanisms can be introduced. At the upper level, traffic
flow is optimized as a whole by establishing cooperative relation-
ships among vehicles through coalition game models, enabling
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dynamic platoon formation and task allocation. At the lower level,
distributed control algorithms coordinate local safety distances,
acceleration and deceleration behaviors, and lane change timing to
ensure individual safety. This two-level framework helps maintain
overall stability and traffic efficiency in complex traffic flows. Build-
ing a multi-agent reinforcement learning (MARL) framework can
further support coordinated strategies. By training fleets of AVs on
large-scale simulation platforms and designing appropriate reward
functions, vehicles can learn not only individual lane change maneu-
vers but also behaviors that enhance overall traffic stability and
efficiency.

Data dependency and constraints on generalization

Data-driven lane change decision models generally rely on
mining lane change patterns from large-scale driving behavior
datasets. However, existing datasets often suffer from annotation
bias and insufficient scene coverage, resulting in poor adaptability
to complex traffic environments and difficulty in handling diverse
traffic patterns or unexpected events. To address these issues of
data dependency and poor generalization, physics-informed
augmentation and virtual data synthesis can be employed to
expand the training sample distribution. Virtual samples that
comply with vehicle dynamics constraints can be generated on top
of real data. By combining physics-consistent generation with simu-
lation-real data fusion, multi-scenario, multi-weather, and multi-
style driving datasets can be produced, enhancing model coverage
and robustness. In addition, semi-supervised, self-supervised, and
transfer learning strategies can reduce reliance on large-scale
labeled data. For example, self-supervised pretraining can extract
general spatiotemporal features, which can then be fine-tuned on a
small set of labeled samples, lowering manual annotation costs.
Domain-adaptive transfer techniques further ensure consistent
model performance across urban roads, highways, and congested
environments. Integrating prior knowledge, such as traffic rules
and vehicle dynamics, into the model can prevent it from relying
solely on superficial correlations in the data, thereby improving
interpretability.

By reviewing existing research progress, this paper identifies
the core challenges related to human-machine interaction, multi-
vehicle coordination, and data generalization in mixed traffic. It
further proposes feasible improvement strategies. The goal is to
provide theoretical support and technical pathways for developing
lane change decision systems that are safer, more efficient, and
more interpretable, thereby promoting the continuous evolution of
vehicle decision-making capabilities in mixed traffic environments.
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