
 

Open Access https://doi.org/10.48130/EMST-2022-0011

Emergency Management Science and Technology 2022, 2:11

Power spectral models of stationary earthquake-induced ground
motion process considering site characteristics
Bo Chen, Guangjun Sun, and Hongjing Li*

Engineering Mechanics Institute, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China
* Corresponding author, E-mail: hjing@njtech.edu.cn

Abstract
In this article, several spectral models describing the stationary stochastic process of earthquake ground motion are explored and compared. The

Hu-Zhou spectrum, which is regarded as an improved model of the Kanai-Tajimi spectrum, is concerned. It is proven that the earthquake-induced

ground acceleration process described by the Hu-Zhou spectrum is a twice filtered white noise process in essence, and two filters for modifying

low-frequency components  and moderate-  and high-frequency components  respectively  are  investigated.  A  total  of  1946 strong earthquake

records  at  different  sites  were  employed  to  determine  the  parameters  of  spectral  models,  including  the  Kanai-Tajimi  spectrum,  the  Clough-

Penzien spectrum and the Hu-Zhou spectrum. The results showed that the Hu-Zhou spectrum fits well with the actual observed ground motions

over the whole frequency range, and that it is not only distinct in physical meaning and concise in mathematical expression, but also reasonable

in practice.
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 INTRODUCTION

Due  to  the  influence  of  fault  mechanisms,  focal  characte-
ristics,  propagation  medium,  propagation  path  and  site
characteristics,  strong  ground  motion  is  considered  as  a
random  process  in  time  and  space,  resulting  in  the  seismic
response  of  the  structure  as  a  random  process[1,2].  Complex
influencing  factors  make  it  difficult  to  simulate  and  accurately
predict the strong ground motion with deterministic models. It
is necessary to establish a reasonable random model of ground
motion  to  study  the  statistical  characteristics[3,4].  The  power
spectral  density  function  (PSD)  is  used  to  describe  the
frequency domain distribution law of  energy in the process  of
strong  ground  motion[5].  It  can  also  provide  statistical
characteristic  standards  for  synthetic  random  ground  motion
samples.  It  is  an  important  tool  to  describe  the  random
characteristics of strong ground motion.

Housner[1] first  proposed  to  use  the  stationary  stochastic
process  model  to  describe  the  ground  motion.  The  model
assumes  that  the  seismic  ground  acceleration  is  a  stationary
white  noise.  Subsequently,  Kainai[6] and  Tajimi[7] proposed  a
Gaussian  filtered  white  noise  model  (K-T  model).  The  model
assumes the ground motion to be a stationary random process
and  ground  as  SDOF  system.  To  date,  seismologists  and  engi-
neers  have  been  committed  to  the  modeling  of  engineering
ground  motion,  and  put  forward  a  variety  of  ground  motion
models.  The  existing  models  for  the  stochastic  simulation  of
earthquake  ground  motions  are  classified  into  two  main  cate-
gories.  The  first  category,  usually  referred  to  as  ‘source-based’
models,  comprise  physical  models  that  are  heavily  dependent
on  seismological  principles  and  describe  the  fault  rupture
mechanism  and  resulting  propagation  of  seismic  waves[8−12].
The second category consists of models developed to generate

simulated  waveforms  either  similar  to  a  target  seismic  record,
forming the ‘site-based’ model category[13,14],  or compatible to
a  designated  response  spectrum,  constituting  the  ‘spectrum
compatible’ model category[15,16]. These models can be genera-
lized  as  stationary  stochastic  models  and  non-stationary
stochastic models.

Most  stationary  stochastic  models  are  obtained by  concate-
nating  different  forms  of  linear  filters  on  the  basis  of  the  K-T
model[17−24].  Recently, Muscolino et al.[25] analyzed the spectral
content  of  a  large  set  of  accelerograms  recorded  on  rigid  soil
deposits.  Then,  ground motion acceleration was modeled as a
zero-mean stationary Gaussian random process. With the accu-
mulation  of  earthquake  damage,  engineers  generally  realize
that earthquake ground motion is  non-stationary in both time
and frequency domains. Temporal non-stationarity refers to the
variation in the intensity of the ground motion in time, whereas
the spectral  non-stationarity refers to the time variation of the
frequency  content[26,27].  The  existing  non-stationary  ground
motion  models  mainly  include:  the  filtered  white  noise
model[26],  the  filtered  Poisson  pulse  model[28],  the  autoregre-
ssive  moving  average  model  (ARMA)[29−31],  and  the  spectral
representation  method[32−35].  However,  a  one  dimensional
horizontal component stationary model is the basis of complex
ground  motion  models  such  as  multidimensional  model[36−40],
spatial model[41−44], and non-stationary model[45−47]. The evolu-
tionary  PSD  function  introduced  by  Priestley[32,48] is  most
widely  used  in  non-stationary  stochastic  processes.  The  func-
tion  is  also  based  on  the  stationary  random  process,  and  the
time-varying  intensity  envelope  function  is  added[49].  Liu's
research[50] shows  that  the  frequency  content  of  earthquakes
may  be  different  in  the  initial  and  intermediate  stages.  How-
ever,  in the strong earthquake stage, the frequency content of
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the  earthquake  is  roughly  unchanged[51].  When  analyzing  the
seismic  response  of  linear  structures,  the  stationary  stochastic
model  can  generally  achieve  satisfactory  accuracy.  Although
this  approach  is  approximate,  it  has  been  proven  by  practice
that  the  stationary  stochastic  model  can  indeed  solve  some
major  problems  in  the  seismic  analysis  and  design  of  some
engineering structures.

In this paper, the physical meaning of the Hu-Zhou model is
interpreted,  and  the  frequency  parameter  to  restrain  the  low
frequency content of earthquake ground motions is discussed.
The autocorrelation function of the Hu-Zhou model is deduced
by the state space method. These results will provide a basis for
random  response  analysis  of  the  seismic  structures  in  time
domain.  Furthermore,  taking  the  Hu-Zhou  model  as  an  exam-
ple,  the  process  of  solving  the  parameters  of  power  spectrum
model  by  least  square  method  is  introduced  in  detail.  Finally,
1946  seismic  records  from  different  sites  and  different  fault
distances  were  selected.  The  parameters  of  the  Kanai-Tajimi
spectral model, the Clough-Penzien spectral model and the Hu-
Zhou  spectral  model  were  fitted  using  the  least-squares  me-
thod.  The  obtained  power  spectrum  parameters  can  adapt  to
the  seismic  design  codes  worldwide,  and  are  of  great  signi-
ficance to  improve the seismic  performance and toughness  of
urban and rural building structures.

 MODELING OF EARTHQUAKE-INDUCED GROUND
MOTION

 Kanai-Tajimi model
The  power  spectral  density  function  of  stationary  Gaussian

process  with  the  power  spectrum  of  Kanai-Tajimi  is  expressed
as:

SK−T (ω) =
ω4

g+
(
2×βg×ωg×ω

)2(
ω2

g−ω2
)2
+

(
2×βg×ωg×ω

)2 ×S 0 (1)

Where, S0 is the constant spectral intensity of the rock motions; ɷg

and βg represent the frequency and damping ratio characteristic
of the site respectively.

Housner  &  Jennings[52] suggested ɷg =  15.6  rad/s  and βg =
0.64  for  hard  site  conditions.  Based  on  the  Fourier  spectrum
analysis  of  247  actual  seismic  records,  Moayyad  &  Mohraz[51]

obtained  three  types  of  power  spectrum  curves:  soft  ground,
mediate  ground and hard ground.  Based on this  data,  Sues  et

al.[53] obtained  the  specific  parameter  values  of  K-T  spectrum
under  three  different  site  types. Figure  1a shows  the  parame-
ters of K-T spectrum under three site types. It is not difficult to
see  that  from  soft  ground  to  firm  ground,  the  dominant
frequency  of  the  site  gradually  increases,  while  the  damping
ratio of the site gradually decreases. The power spectrum curve
of firm ground contains more frequency components.

The K-T  model  assumes that  the  movement  process  of  rock
caused by earthquake is an ideal white noise process with zero
mean  value,  and  the  overburden  layer  is  simplified  as  a  linear
single  degree  of  freedom  system  (a  second-order  linear  low-
pass  filter).  The  filter  equations  are  Eqs  (2)  and  (3).  It  is  also
called the filtered white noise model.  The physical  mechanism
of the K-T model are shown in Fig. 1b.

ü+2βgωgu̇+ω2
gu = −Ü (t) (2)

üg (t) = ü (t)+ Ü (t) = −2βgωgu̇−ω2
gu (3)

The  model  has  clear  physical  significance.  That  is,  it  fully
considers  the  filtering  effect  of  site  soil  layer  on  rock  motion,
and the spectral characteristics are more in line with the actual
site.  Therefore,  the  K-T  model  has  become  one  of  the  most
widely  used  stochastic  stationary  models  of  strong  ground
motion.  However,  the  model  also  has  some  obvious  defects.
Specifically:

(1)  The  K-T  model  overestimates  the  low-frequency  compo-
nents of  ground motion,  which may give unreasonable results
when  used  in  the  random  seismic  response  analysis  of  low-
frequency structures.

(2)  The K-T model has singular points at zero frequency and
does  not  satisfy  the  continuous  quadratic  integrability  condi-
tion. The variance of ground velocity and ground displacement
derived from it is infinite.

(3)  The  K-T  model  assumes  that  the  ground  acceleration  of
rock is the Gaussian white noise. It can't adequately reflect the
spectral characteristics of rock motion.

 Clough-Penzien model
Clough & Penzien[18] proposed a method to modify the low-

frequency energy of the K-T spectral model, hereinafter collec-
tively referred to as the C-P model. The model is as follows:

SC−P (ω) = SK−T (ω)× ω4(
ω2

f −ω2
)2
+

(
2×β f ×ω f ×ω

)2 (4)

Where, ɷf is the frequency of the second filter layer, which should
be smaller than ɷg, and the recommended value is ɷf = 0.1 − 0.2
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Fig.  1    Introduction  of  K-T  spectrum.  (a)  K-T  spectrum  parameters  given  by  Housner  et  al.[52] and  Sues  et  al.[53] according  to  site  type.  (b)
Physical mechanism interpretation.
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ɷg; βf is the damping ratio of the second filter layer, which can be
the same as βg.

The  model  has  a  strong  inhibitory  effect  on  low  frequency
and can be used to simulate the bimodal frequency of ground
motion. Figure  2a shows  that  the  value  of βf affects  the
appearance of  two peaks in  the C-P model.  When βf is  greater
than  0.6,  there  is  only  a  single  peak  in  the  power  spectrum.
Figure  2b explains  the  physical  mechanism  of  the  C-P  model,
which is considered to be the result of re-filtering the K-T model
with a second-order high-pass filter.

The  C-P  spectral  model  also  has  some  flaws.  It  has  many
parameters,  and  there  are  four  poles  in  the  integration  of
autocorrelation function.  It  is  complex to solve this  process by
using  the  residue  theorem[54].  Although  in  theory,  the  residue
can always be obtained and then the autocorrelation function
can  be  obtained,  the  result  is  very  complex.  In  fact,  for  engi-
neering  applications,  as  long  as  a  mathematical  function  can
reasonably describe the frequency domain energy distribution
of strong earthquake ground motion,  and the structural  dyna-
mic response under the action of the corresponding stochastic
process conforms to the general law, this function can be used
as  the  power  spectrum  model  of  strong  earthquake  ground
motion. Obviously, with the same fitting ability, such a function
should be as simple as possible. Otherwise, these constants not
only make the analysis of a complex structure complicated but
are  also  difficult  to  determine  from  the  statistics  of  past
earthquake records[55].

 Hu-Zhou model
Hu  &  Zhou[17] proposed  a  method  to  modify  the  low-fre-

quency  energy  of  the  K-T  spectral  model,  hereinafter  collec-
tively referred to as the Hu model. The model is as follows:

S (ω) = S K−T (ω)× ω6

ω6+ω6
c

(5)

where, S0, ɷg and βg have the same meaning as in the K-T model.
ɷc is  the  factor  of  low  frequency  control,  which  is  used  to
eliminate  the  unreasonable  phenomenon  that  the  K-T  spectrum
contains zero frequency component. Hu suggested that the value
of ɷc is 2.0 rad/s.

Compared with the K-T model, the Hu model is considered to
use  the  third-order  high-pass  filter  to  further  filter  the  K-T
model. The specific physical significance is that the first filtering
of  the  model  weakens  the  high-frequency  content  of  white
noise, enlarges the frequency content near ɷg, and the second
filtering  weakens  the  low-frequency  content  of  white  noise.

The  Hu  model  modifies  only  over  the  low  frequency  range  of
the K-T model and is in good accordance over the range of high
frequency.  Obviously,  the  velocity  and  displacement  variance
of  the  ground  motion  are  convergent  due  to  the  Hu  model.
Therefore, the Hu model can not only retain the advantages of
the  K-T  model  but  also  eliminate  the  drawbacks  of  the  K-T
model.

The rock motion is  assumed as the white noise process due
to  the  K-T  model,  obviously  this  is  not  in  accordance  with  the
realities  in  physics.  In  fact,  the acceleration of  the rock motion
induced by an earthquake must be the color noise process with
certain  characteristics.  Assuming  it  can  be  expressed  by  the
following equation:

S Ü(t) (ω) =
ω6

ω6+ω6
c
×S 0 (6)

It can be proved that the PSD of the ground acceleration üg(t)
obtained  from  the  filtered  rock  motion Ü(t)  by  Eqs  (2)  and  (3)
has the same form with the expression of the Hu model. The Hu
model  may  be  considered  an  improvement  of  the  K-T  spec-
trum,  and  can  be  interpreted  physically  that  the  rock  accele-
ration  process  with  the  PSD  function  defined  by  Eq.  (6)  is
filtered by a linear single-degree-of-freedom system with natu-
ral frequency ɷg and damping ratio βg, as a result, it will be lead
to a stochastic process with the Hu spectrum.

Figure 3a shows that the factor of low frequency control only
weakens  the  spectral  amplitude  in  the  low-frequency  range
and  does  not  inhibit  the  medium  and  high  frequencies.  The
larger the factor of low frequency control, the more obvious the
weakening of  spectral  amplitude.  In  order  to  prevent  the low-
frequency  content  amplitude  from  being  underestimated,
which  will  affect  the  seismic  response  analysis  results  of  long-
period  structures,  the  factor  of  low  frequency  control ɷc is
taken  as  1.0  rad/s  in  this  paper. Figure  3b shows  the  physical
process of the Hu model. The PSD of rock acceleration process
Ü(t)  is  described by Eq.  (6),  and the spectral  density  of  ground
acceleration  process üg(t)  is  the  form  of  the  Hu  model  repre-
sented in Eq. (5).

 Comparison and discussion of three power spectrum
models

Figure  4 shows  the  comparison  of  the  K-T  model,  the  C-P
model and the Hu model. The spectral curve of the K-T model is
obviously  singular  in  the  point  of  zero  frequency,  which  does
not meet the continuous twice integrable condition. In terms of
low-frequency  suppression,  the  C-P  model  and  the  Hu  model
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Fig. 2    Introduction of the C-P model. (a) The shape of PSD under different model parameters. (b) Interpretation of the physical mechanism.

Power spectral models of ground motion
 

Chen et al. Emergency Management Science and Technology 2022, 2:11   Page 3 of 12



handle this well. The spectral curves of the three models almost
coincide in the medium and high frequency region. It is proved
again that the Hu model only changes the energy distribution
of white spectrum in the low frequency range, and the energy
distribution  of  medium  and  high  frequency  is  completely
consistent  with  the  K-T  model.  Further  careful  observation  of
the  low-frequency  region  shows  that  both  the  C-P  model  and
the Hu model improve the defect problem of the K-T model at
zero  frequency,  but  the  C-P  model  has  an  excessively  strong
inhibitory effect at low frequencies. The Hu model protects the
frequency  range  of  most  engineering  structures,  prevents
underestimation  of  the  power  spectrum  amplitude  in  the  low
frequency range, and only suppresses the spectral amplitude in
the extremely high frequency range, which is more reasonable
in physical mechanism.

 INTERPRETATION OF THE HU SPECTRAL MODEL

Since  the  Hu  spectrum  is  the  result  of  filtered  color  noise
process, what are the properties of rock acceleration Ü(t)? There
are two spectral parameters, ɷc and S0 in Eq. (6). Figure 5 shows
the relationship between the two spectral  parameters and the
amplitude of the power spectrum.

Observing Fig.  5,  the  PSD  of  the  rock  acceleration  only  has
differences with white noise in the lower range of frequencies,

and they are compatible with each other over the medium and
high  frequency  range.  So  the  model  of  the  stochastic  rock
motion  with  the  spectrum  given  by  Eq.  (6)  is  the  modification
to  white  noise  model  by  reducing  only  the  lower  frequency
contents  of  the  motion.  The  modified  limits  are  controlled  by
the factor ɷc, and the frequency content of the white noise are
modified during the approximate range from zero to 2ɷc.

Considering the following filter equations[56]:

Ü (t) =
...
y (t) (7)

...
y (t)+ω3

cy = p (t) (8)

In which P(t) is the white noise process with spectral intensity
S0.

Let P(t)  =  eiωt and y = Hyp(iω)eiωt.  Substituting P(t)  and y(t)
into  Eq.  (8)  and  considering  the  condition  eiωt ≠ 0  gives  the
transfer function:

Hyp (iω) =
1

−iω3+ω3
c

(9)

Then the spectral density function of y(t) is given by:

S y (ω) =
∣∣∣Hyp (iω)

∣∣∣2S p (ω) =
1

ω6+ω6
c
·S 0 (10)

Considering the relationship:

S ...y (ω) = ω6S y (ω) =
ω6

ω6+ω6
c
·S 0 (11)

The PSD function of Ü(t) is deduced as:
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Fig.  3    Introduction  of  the  Hu  model.  (a)  The  shape  of  PSD  under  different  factors  of  low  frequency  control.  (b)  Physical  mechanism
interpretation.
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S Ü (ω) = S ...y (ω) =
ω6

ω6+ω6
c
·S 0 (12)

It  is  clear  that  Eq.  (12)  is  the  same  as  Eq.  (6).  Therefore  the
rock  motion  process  is  a  filtered  white  noise  process  and  the
stochastic  process  with  the  Hu  spectrum  is  the  result  that  the
filtered white noise process is filtered again, and it is the twice
filtered white noise process.

In Eq. (6), S0 represents the intensity of the rock acceleration,
which depends on the energy released during the earthquake
and can be determined by the mean value of the peak ground
accelerations.  The parameter ɷc limits  the range of  low frequ-
ency  reduction,  and  the  more  this  frequency  parameter,  the
less  the  low  frequency  content  of  earthquake  ground  motion,
so it  may be related to the fault  mechanisms.  In generally,  the
high  frequency  contents  of  the  rock  motion  are  abundant
when  the  earthquake  occurs,  and  they  are  usually  reduced  by
soil  filters  and  some  contents  with  long  periods  will  be  amp-
lified in the process of propagation. With this in mind, it  is not
only  concise  in  the  mathematic  expression  that  the  rock
acceleration model given by Eq. (6) only modifies the frequency
contents  during  the  lower  range  and  holds  basically  the  fre-
quency characteristics  of  the white  noise  spectrum during the
medium  and  high  frequency  range,  but  also  physically  rea-
sonable, because the influences of the high frequency contents
of  the  rock  motion  have  not  been  very  strong  when  the
motions are propagated at the site.

 CHARACTERISTICS OF ROCK MOTIONS IN TIME
DOMAIN

The  statistic  characteristics  of  the  random  ground  motion
process  with  the  Hu spectrum are  described by  the  PSD func-
tion given in Eq.  (5)  in  the frequency domain,  and the statistic
characteristics  in  time  domain  can  be  described  by  the
correlation function[56]. Because the Hu model is a twice filtered
Gaussian  white  noise  process,  the  time  properties  of  the  rock
acceleration can be obtained by using the filter Eq. (7) and (8).
Introducing the state space vectors, Eq. (8) is rewritten as:

[A] {ż}+ [B] {z} = {Fr} p (t) (13)
In which:

{z} =
{ z1

z2
z3

}
=

 y
ẏ
ÿ

 , [A] =

 0 0 1
0 1 0
1 0 0

 ,
[B] =

 ω3
c 0 0

0 0 −1
0 −1 0

 , {Fr} =
 1

0
0

 (14)

Because  [A]  and  [B]  are  symmetric,  the  characteristic
equation of the Eq. (13) is:(

[A]λ j+ [B]
) {
φ j

}
= {0} ( j = 1,2,3) (15)

The complex eigenvalues may be solved from Eq. (15) as:

λ1 = −ωc, λ2 =
1+
√

3i
2
ωc, λ3 =

1−
√

3i
2
ωc (16)

Substituting  Eq.  (16)  into  Eq.  (15)  leads  to  the  complex
modes of the system:

{φ1} =


1
λ1

λ2
1

 , {φ2} =


1
λ2

λ2
2

 , {φ3} =


1
λ3

λ2
3

 (17)

It  can  be  proved  that  the  complex  modes  are  weighted
orthogonal  with  respect  to  the  matrix  [A]  and  [B].  The

orthogonality may be expressed as:{
φ j

}T
[A] {φk} =

{
φ j

}T
[B] {φk} = 0 ( j , k){

φ j

}T
[B]

{
φ j

}
= −λ j

{
φ j

}T
[A]

{
φ j

} (18)

The  response  {z}  of  the  system  can  be  expressed  as  the
superposition of the modal contributions:

{z} =
3∑

j=1

{
φ j

}
h j (19)

Substituting  Eq.  (19)  in  Eq.  (13)  and  pre  multiplying  each
term  in  this  equation  by  {φj}T.  Because  of  the  orthogonality
conditions of the complex modes, the uncoupled equation for
each mode can be obtained:

ḣ j−λ jh j = η j p j = 1,2,3 (20)

Where:

η j =

{
φ j

}T {Fr}{
φ j

}T
[A]

{
φ j

} = 1
3λ2

j

(21)

The solution to the Eq. (20) may be solved as:

h j (t) =
w ∞

0
η jeλ jτp (t−τ)dτ (22)

The correlation function of the complex modal contributions
hj and hk (j,k = 1,2,3) is defined as:

Rh jhk (τ) = E
[
h j (t)h∗k (t+τ)

]
(23)

where  the  asterisk  *  denotes  the  complex  conjugate  of  vector.
Substituting  Eq.  (22)  in  Eq.  (23)  and  changing  the  orders  of  ex-
pected value and integral calculations gives:

Rh jhk (τ) = η jη
∗
k

r ∞
0

r ∞
0 eλ ju+λ∗kvRp (τ+u− v)dvdu ( j,k = 1,2,3)

(24)
Where RP(τ)  =  2πS0δ(τ),  which  is  the  correlation  function  of

the white noise process.
According  to  the  Eq.  (19)  and  Eq.  (20),  the  responses  of  the

system are given by:

ÿ (t) = z3 (t) =
3∑

j=1

λ2
jh j (t) (25)

The correlation function of the response is:

Rÿ (τ) =
3∑

j=1

3∑
k=1

λ2
j

(
λ∗k

)2
Rh jhk (τ) (26)

Substituting Eq. (24) in Eq. (26) gives:

Rÿ (τ) =
1
9

3∑
j=1

3∑
k=1

w ∞
0

w ∞
0

eλ ju+λ∗kvRp (τ+u− v)dvdu (27)

Considering the following relationship:

R...y (τ) = − d2

dτ2 Rÿ (τ) (28)

The correlation function of the filtered white noise process in
rock is solved as:

RÜ =R...y

=
πωcS 0

3

−e−ωc |τ|+ e
ωc
2 |τ|

cos

√
3

2
ωcτ−

√
3sin

√
3

2
ωc |τ|

 (29)

 CORRELATION FUNCTION OF THE HU SPECTRAL
MODEL

The correlation function of the Hu spectrum can be obtained
by  random  vibration  analysis  to  the  single-degree-of-freedom
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system subject to the seismic excitation with the PSD function

of Eq. (6) or correlation function of Eq. (29).

The filter equations can be rewritten as:

[M] {u̇}+ [K] {u} = −
{
Fg

}
Ü (t) (30)

where Ü(t) is the filtered white noise process with the correlation

function given by Eq. (29);  {u}  = {x, ẋ}T a state vector;  [M],  [K]  and

{Fg} the mass matrix, stiffness matrix and direction vector, respec-
tively.

[M] =
[

2βgωg 1
1 0

]
, [K] =

[
ω2

g 0
0 −1

]
,
{
Fg

}
=

{
1
0

}
(31)

The  modal  expansion  of  displacement  vector  {u}  can  be

expressed as:

{u} =
2∑

j=1

{
γ j

}
q j (32)

Where  {γj}  and qj(t)  are  the jth  complex  mode  and  modal

coordinate, respectively.

The correlation function of ground acceleration is expressed

as:

Ra (τ) = ω4
gRx (τ)+4β2

gω
2
gRẋ (τ)

−b±
√

b2−4ac
2a

(33)

In which:

Rx (τ) =
2∑

j=1

2∑
k=1

Rq jqk (τ) (34)

Rẋ (τ) =
2∑

j=1

2∑
k=1

r jr∗kRq jqk (τ) (35)

r1,2 = −βgωg± iωD,

ωD = ωg

√
1−β2

g

Where γj is  the jth  complex  frequency, 

.

The correlation function of complex modal response is:

Rq jqk (τ) =
(−1) j+k

4ω2
D

w ∞
0

w ∞
0

er ju+r∗k vRÜ (τ+u− v)dvdu

( j,k = 1,2 τ ⩾ 0)
(36)

Substituting Eq. (29) in Eq. (36), and carrying out the integral

calculation leads to:

Rq jqk (τ) =
πS 0ωc(−1) j+k

24ω2
D

· 1
r j+ r∗k

·(
α jke−ωcτ+β jkeµτ+ κ jkeµ

∗τ+ρ jkep∗kτ
)

( j,k = 1,2 τ ⩾ 0)

(37)

The coefficients in Eq. (37) are:

α jk =
−2

(
r∗k + r j

)(
r∗k +ωc

) (
r j−ωc

) , β jk = s ·
(

1
r∗k −µ

+
1

r j+µ

)
,

κ jk =s∗ ·
(

1
r∗k −µ∗

+
1

r j+µ∗

)
,

ρ jk =s ·
(

1
r∗k +µ

+
1

r∗k −µ

)
+ s∗ ·

(
1

r∗k +µ
∗ +

1
r∗k −µ∗

)
+
−4ωc(

r∗k
)2
+ω2

c

,

s =1+
√

3i,µ =
1

2
+

√
3

2
i
ωc

(38)

Substituting  Eq.  (37)  in  Eq.  (34)  and  Eq.  (35),  using  Euler

transform gives:

Rx (τ) =
πωcS 0

12ω2
D

[
b1e−ωc |τ|+ e

ωc
2 |τ|

b2 cos

√
3

2
ωcτ−b3 sin

√
3

2
ωc |τ|

+
e−βgωg |τ|

(
b4 cosωDgτ−b5 sinωDg |τ|

) ]
(39)

Rẋ (τ) =
πωcS 0

12ω2
D

[
c1e−ωc |τ|+ e

ωc
2 |τ|

c2 cos

√
3

2
ωcτ− c3 sin

√
3

2
ωc |τ|


+ e−βgωg |τ|

(
c4 cosωDgτ− c5 sinωDg |τ|

) ]
(40)

In which the coefficients are respectively given as:

b1 =
−4

(
1−β2

g

)
ω2

g(
ω2

g+ω
2
c

)2−4β2
gω

2
gω

2
c

(41)

b2 =
4ω2

g

(
1−β2

g

) [
ω4

g−2ω2
gω

2
c

(
2β2

g−1
)
−2ω4

c

](
ω8

g−ω4
gω

4
c +ω

8
c

)
+2ω2

gω
2
c

(
2β2

g−1
) [
ω4

g+2ω2
gω

2
c

(
2β2

g−1
)
+ω4

c

]
(42)

b3 =
4
√

3ω4
g

(
1−β2

g

) [
ω2

g+2ω2
c

(
2β2

g−1
)](

ω8
g−ω4

gω
4
c +ω

8
c

)
+2ω2

gω
2
c

(
2β2

g−1
) [
ω4

g+2ω2
gω

2
c

(
2β2

g−1
)
+ω4

c

]
(43)

b4 =
−2ωc

(
1−β2

g

)
βgωg ω
6
g

(
4β2

g−1
)
+ω4

gω
2
c

(
32β4

g−24β2
g+3

)
+ω2

gω
4
c

(
8β2

g−3
)
+2ω6

c(
ω8

g−ω4
gω

4
c +ω

8
c

)
+2ω2

gω
2
c

(
2β2

g−1
) [
ω4

g+2ω2
gω

2
c

(
2β2

g−1
)
+ω4

c

]
−

ω2
g

(
4β2

g−1
)
+ω2

c

ω4
g+2ω2

gω
2
c

(
2β2

g−1
)
+ω4

c


(44)

b5 =
−2ωc

√(
1−β2

g

)
ωg ω

6
g

(
4β2

g−3
)
+ω4

gω
2
c

(
32β4

g−40β2
g+11

)
+ω2

gω
4
c

(
8β2

g−5
)
+2ω6

c(
ω8

g−ω4
gω

4
c +ω

8
c

)
+2ω2

gω
2
c

(
2β2

g−1
) [
ω4

g+2ω2
gω

2
c

(
2β2

g−1
)
+ω4

c

]
−

ω2
g

(
4β2

g−3
)
+ω2

c

ω4
g+2ω2

gω
2
c

(
2β2

g−1
)
+ω4

c


(45)

c1 =b1ω
2
c , c2 =

b2+
√

3b3

2
ω2

c , c3 =
b3−
√

3b2

2
ω2

c

c4 =
(
1−2β2

g

)
ω2

gb4−2βgω
2
g

√
1−β2

gb5,

c5 =
(
1−2β2

g

)
ω2

gb5+2βgω
2
g

√
1−β2

gb4

(46)

Substituting Eq.  (39)  and Eq.  (40)  in  Eq.  (33)  and simplifying

the expressions as:

Ra (τ) =
πωcS 0

12
(
1−β2

g

) [A1e−ωc |τ|+ e
ωc
2 |τ|

A2 cos

√
3

2
ωcτ+A3 sin

√
3

2
ωc |τ|


+ e−βgωg |τ| (A4 cosωDτ+A5 sinωD |τ|)

]
(47)

In which:
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A1 =
(
ω2

g+4β2
gω

2
c

)
b1, A2 =

(
ω2

g+2β2
gω

2
c

)
b2+2

√
3β2

gω
2
cb3,

A3 =2
√

3β2
gω

2
cb2−

(
ω2

g+2β2
gω

2
c

)
b3

A4 =ω
2
g

(
1+4β2

g−8β4
g

)
−8β3

gω
2
g

√
1−β2

gb5,

A5 =−8β3
gω

2
g

√
1−β2

gb4−ω2
g

(
1+4β2

g−8β4
g

)
(48)

Equation (47) is the expression of the correlation function of
the Hu model, which is the inverse Fourier’s transform of Eq. (5).

 DETERMINATION OF MODEL PARAMETERS

 Least square method
Taking the Hu model  as an example to introduce the deter-

mination method of power spectral model parameters. Figure 6
shows the determination process of  solving the parameters  of
the power spectrum model by the least square method. It  can
be seen from Eq. (5) that the Hu model is a nonlinear function
of its parameters ωg, βg, ωc and S0.  Therefore, it  is necessary to
linearize  the  nonlinear  function  first,  and  then  determine  its
parameters by the least square method.

The  square  sum  of  the  difference  between  the  Hu  power
spectrum  and  the  power  spectral  recorded  by  seismic  accele-
ration at each frequency point can be expressed as:

E =
n∑

k=1

[
S k − f (ωk,B)

]2 (49)

Where, n is  the  number  of  discrete  points  of  the  power
spectrum; Sk and f(ωk, B)  are  the  spectral  amplitudes  at ωk of
the power spectral recorded by seismic acceleration and the Hu
power  spectrum,  respectively; B is  the  four  parameters  of  the
Hu  power  spectrum  (one  spectral  intensity  factor  and  three
spectral parameters), which can be expressed as:

B = [b1,b2,b3,b4] =
[
ωg,βg,ωc,S 0

]
(50)

The parameters of the Hu power spectrum can be expressed
as:

bi = b(0)
i +δi (i = 1,2,3,4) (51)

Where, bi
(0) is  the  initial  approximate  value  of  spectral

parameters; δi is  the  correction  of  spectral  parameters.  In  this
way,  the  problem  of  determining  the  spectral  parameters  is
transformed into the problem of determining its correction. By
expanding the Hu power spectrum into the Taylor series at the
initial  approximation  of  its  parameters  and  omitting  the
second-order and higher-order terms, we can get:

f (ωk,B) = fk0+

4∑
i=1

∂ fk0

∂bi
δi (52)

fk0 = f
(
ωk,b0

1,b
0
2,b

0
3,b

0
4

)
(53)

∂ fk0

∂bi
=
∂

∂bi
f (ω,b1,b2,b3,b4)

∣∣∣∣∣ ω = ωk

bi = b(0)
i

(54)

Substituting Eq. (52) into Eq. (49) can obtain:

E =
n∑

k=1

[
S k −

(
fk0+

∂ fk0

∂b1
δ1+
∂ fk0

∂b2
δ2+
∂ fk0

∂b3
δ3+
∂ fk0

∂b4
δ4

)]2

(55)

Calculate the partial derivative of the correction δi in Eq. (55),
and you can get:

∂E
∂δi
=2

δ1 n∑
k=1

∂ fk0

∂b1

∂ fk0

∂bi
+δ2

n∑
k=1

∂ fk0

∂b2

∂ fk0

∂bi
+δ3

n∑
k=1

∂ fk0

∂b3

∂ fk0

∂bi

+
2

δ4 n∑
k=1

∂ fk0

∂b4

∂ fk0

∂bi
−

n∑
k=1

(S k − fk0)
∂ fk0

∂bi


(i = 1,2,3,4)

(56)

If Eq. (55) is equal to zero, the simultaneous equations of four
corrections  (δi,  i  =  1,2,3,4)  can  be  obtained.  This  system  of
equations can be expressed as:

[A] {∆} = {C} (57)

 
Fig. 6    The determination process of the power spectrum model parameters by the least square method.
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In  Eq.  (57),  the  elements  in  matrix  [A]  and  vector  {C}  can  be
expressed as:

ai j =

n∑
k=1

∂ fk0

∂bi

∂ fk0

∂b j
(i, j = 1,2,3,4) (58)

ci =

n∑
k=1

(S k − fk0)
∂ fk0

∂bi
(i, j = 1,2,3,4) (59)

When the data point (ωk, Sk)  of the power spectral  recorded
by seismic acceleration and the initial approximate value bi

(0) of
the  parameters  of  the  Hu  power  spectrum  are  given,  the  left
end coefficient ɑij and the right end coefficient ci of the Eq. (57)
can  be  calculated  according  to  Eq.  (58)  and  (59).  Then,  the
correction  amount δi of  the  spectral  parameter  can  be  calcu-
lated  from  Eq.  (57),  and  then  the  spectral  parameter  value bi

can  be  calculated.  If  the  absolute  value  of  the  correction
amount δi is  large,  the  spectral  parameter  value bi just
calculated is  used to replace the initial  approximate value bi

(0).
Then,  calculate  the  left  end  coefficient ɑij and  the  right  end
coefficient ci again, and calculate the equations to obtain a new
correction δi,  and  then  obtain  a  new  spectral  parameter  value
bi.  Repeat  the  above  process  until  the  absolute  value  of  the
correction amount δi is too small to be counted.

 Actual seismic records of different sites and different
fault distances

The  most  direct  method  to  study  the  characteristics  of
ground motion is to make statistical analysis of ground motion
parameters,  and  the  premise  of  statistical  analysis  of  ground
motion  parameters  is  to  establish  a  reasonable  seismic  record
database.  At  present,  the  seismic  design  codes  of  different
countries  in  the  world  consider  the  influence  of  different  site
types  on  the  design  ground  motion.  Based  on  the  site  classi-
fication  methods  in  NEHRP[57] and  Eurocode8[58],  this  paper
divides  the  site  into  four  categories:  rock,  dense  soil,  hard  soil
and soft soil, as shown in Table 1.

Historical  earthquake  damage  shows  that  structures  are
vulnerable  to  severe  damage  under  near-fault  strong
earthquakes[59].  Therefore,  in  addition  to  the  site  category,
there are also great differences between near-field and far-field
ground  motions.  In  this  paper,  according  to  the  size  of  fault
distance,  the  ground  motion  is  divided  into  near-field  motion
(NF, fault distance is 0−20 km), mid far-field motion (MFF, fault

distance is 20−100 km) and far-field motion (FF, fault distance is
more than 100 km).

The  ground  motion  records  are  selected  from  the  NGA-
West2  database[60] released  by  the  Pacific  Earthquake  Engi-
neering  Research  Center  (PEER)  (https://ngawest2.berkeley.
edu/site), all seismic records have a magnitude greater than 4.5.
According  to  the  site  classification  method  in Table  1,  1946
seismic records were selected with different fault distances. The
number of seismic records of various sites are shown in Table 2.
Fourier  spectral  analysis  is  performed  on  these  acceleration
recordings  to  obtain  PSD  curves.  We  then  calculated  the
average value of the PSD curves of different sites. The average
curve  is  smoothed  using  the  moving  average  algorithm.  The
final results of various sites are shown in Figs 7−10 and Table 3.

Table 1.    The site classification methods used in this paper.

Site category Description VS30 (m/s)

I Rock VS30 > 800
II Dense sand, gravel and very

dense soil
800 ≥ VS30 > 360

III Medium dense sand, gravel
and dense soil

360 ≥ VS30 > 180

IV Soft soil VS30 ≤ 180

VS30  represents  the  equivalent  shear  wave  velocity  within  30  m
underground.

Table 2.    Number of seismic records at different sites and fault distances.

Seismic records I II III IV

NF 40 196 200 22
MFF 188 172 200 142
FF 186 200 200 200

Table 3.    Peak statistics of smoothed PSD curve at different sites and fault
distances.

Seismic
records I II III IV

NF (14.44, 161.53) (10.36, 211.47) (9.42, 256.91) (6.28, 457.13)
MFF (10.05, 18.06) (7.85, 31.34) (6.28, 59.40) (5.65, 117.00)
FF (5.34, 4.49) (4.71 ,28.82) (3.77, 45.74) (3.77, 74.62)

The unit of ɷ is rad/s; and the unit of PSD is cm2/s3.

a b c

 
Fig. 7    PSD curves and average value of seismic records of I site, (a) NF; (b) MFF; (c) FF.

a b c

 
Fig. 8    PSD curves and average value of seismic records of II site, (a) NF; (b) MFF; (c) FF.
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According to Figs 7−10 and Table 3, two conclusions can be
seen intuitively: (1) Under the same site type, the frequency and
amplitude  of  PSD  decrease  gradually  with  the  fault  distances
from near to far, and the attenuation rate of amplitude is faster
than that of the frequency. (2) At the same fault distance, with
the  site  type  from  hard  soil  to  soft  soil,  the  frequency  of  the
power  spectrum  gradually  decreases,  but  the  amplitude
gradually  increases,  which  is  the  result  of  the  amplification
effect of the soft soil site.

 Fitting results of spectral parameters
According  to  the  power  spectrum  of  actual  seismic  accele-

ration records, K-T spectrum, C-P spectrum and Hu spectrum of

different  site  categories  and  different  fault  distances  are
determined by using the above nonlinear least square method
(Fig. 6), results as shown in Tables 4−7 and Figs 11−14.

Figures 11−14 shows the comparison of fitting results of the
K-T  model,  the  C-P  model  and  the  Hu  model  under  different
sites  and  fault  distances.  The  following  conclusions  can  be
drawn:

(1)  In  the  middle  and  high  frequency  range,  the  K-T  model
has a high degree of fit with the PSD of actual seismic records,
but the fitting effect is poor in the low frequency range. Defects
at zero frequency are always present.

(2)  The Hu model is  in good agreement with the PSD of the

a b c

 
Fig. 9    PSD curves and average value of seismic records of III site, (a) NF; (b) MFF; (c) FF.

a b c

 
Fig. 10    PSD curves and average value of seismic records of IV site, (a) NF; (b) MFF; (c) FF.

Table 4.    Parameter values of three power spectrum models for I site.

I
K-T model C-P model Hu model

ɷg βg S0 ɷg βg S0 ɷf βf ɷg βg S0 ɷc

NF 20.65 0.94 84.49 16.87 1.11 101.30 0.18 6.72 18.92 1.02 91.84 2.14
MFF 13.44 0.58 8.76 11.52 0.72 11.90 0.22 6.34 12.64 0.67 10.09 2.43
FF 7.72 0.62 2.51 7.06 0.70 2.91 0.03 11.52 7.32 0.68 2.76 0.88

Table 5.    Parameter values of three power spectrum models for II site.

II
K-T model C-P model Hu model

ɷg βg S0 ɷg βg S0 ɷf βf ɷg βg S0 ɷc

NF 15.73 1.04 133.30 11.30 1.36 162.70 0.03 22.14 13.42 1.19 148.3 1.56
MFF 9.88 0.87 18.94 8.85 0.96 21.23 0.02 27.16 9.19 0.94 20.44 0.99
FF 10.17 0.72 16.94 8.43 0.86 21.20 0.06 10.97 9.22 0.81 19.15 1.41

Table 6.    Parameter values of three power spectrum models for III site.

III
K-T model C-P model Hu model

ɷg βg S0 ɷg βg S0 ɷf βf ɷg βg S0 ɷc

NF 14.66 0.81 165.70 13.10 0.91 185.90 0.40 1.41 13.78 0.87 177.10 1.02
MFF 10.90 0.73 30.64 4.87 1.25 69.50 2.48 0.95 8.44 0.93 40.46 2.54
FF 7.61 0.71 28.01 6.50 0.84 33.85 0.06 6.30 6.91 0.80 31.59 0.97

Table 7.    Parameter values of three power spectrum models for IV site.

IV
K-T model C-P model Hu model

ɷg βg S0 ɷg βg S0 ɷf βf ɷg βg S0 ɷc

NF 8.30 0.59 225.6 6.84 0.73 321.20 0.67 1.56 7.60 0.68 268.30 1.71
MFF 7.55 0.58 62.17 6.94 0.68 73.74 0.50 1.10 7.22 0.65 68.79 0.90
FF 5.80 0.46 26.99 3.90 0.56 102 0.07 35.69 4.70 0.67 44.26 2.34
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seismic records in the whole frequency range, which is consis-
tent with the actual physical model of ground motion.

(3)  As  the  soil  layer  of  the  site  becomes  softer,  the  predo-
minant frequency of the power spectrum of the actual seismic
records gradually decreases. Under the same soil layer, with the
increase  of  fault  distance,  the  predominant  frequency  and
amplitude of the power spectrum gradually decreases, and the
amplitude decays faster than the frequency.

(4) The C-P model has many parameters,  and the parameter
fitting results  of  the second filter  layer  are  quite  different,  and
the regularity is not obvious enough.

The above results  show that  the Hu power spectrum model
can  analyze  the  random  seismic  response  of  structures  in
different  frequency ranges under  different  site  conditions.  It  is
an  ideal  model  to  describe  the  random  characteristics  of
earthquake ground motion process.

 CONCLUSIONS

In  this  study,  we  discuss  and  analyze  the  power  spectral
model  of  the  stationary  stochastic  process  of  earthquake
ground motion. The main conclusions are as follows:

(1)  The  Hu model  is  an  improved scheme to  the  K-T  model,
and essentially the filtered color noise process, thus it is definite
in physical  conception.  The singular  point  in  zero frequency is
eliminated  due  to  the  Hu  model  so  that  the  variances  of  the
ground velocity and displacement are finite. The low frequency
contents of the earthquake ground motion are modified by the
low  frequency  control  factor ɷc in  the  Hu  model.  The  low
frequency  contents  decrease  with  the  increase  of ɷc,  and  the
Hu  model  can  be  used  for  the  stochastic  seismic  response
analysis of the structures with low frequency as well as medium
and high frequency.

(2) The correlation function is the important characteristic of
the  stationary  stochastic  process  in  time  domain,  by  which
other  statistical  properties  can  be  obtained  conveniently.  The
Hu model  is  a  twice  filtered white  noise  process,  so  the corre-
lation function can be deduced through the filter equations in
time  domain.  These  results  provide  a  basis  for  random  res-
ponse analysis of the seismic structures in time domain.

(3)  1946  actual  seismic  records  of  different  sites  and  fault
distances  were  selected,  the  power  spectrums  and  average
values were calculated. The power spectrum parameters of the
K-T  model,  the  C-P  model  and  the  Hu  model  are  fitted  by  the
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Fig. 11    Fitting results of three PSD models for I sites, (a) NF; (b) MFF; (c) FF.
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Fig. 12    Fitting results of three PSD models for II sites, (a) NF; (b) MFF; (c) FF.
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Fig. 13    Fitting results of three PSD models for III sites, (a) NF; (b) MFF; (c) FF.
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Fig. 14    Fitting results of three PSD models for IV sites, (a) NF; (b) MFF; (c) FF.
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least  square method,  which make up for  the rough division of
site  categories  and  fault  distances  by  the  existing  power
spectrum models.

(4)  The  Hu  model  is  in  good  agreement  with  the  power
spectrums of the actual seismic records in the whole frequency
range,  which  is  consistent  with  the  actual  physical  model  of
ground  motion.  Compared  with  the  C-P  model,  the  Hu  model
has  fewer  parameters,  the  model  parameters  under  different
sites  are  more  accurate,  and  it  is  suitable  to  describe  the  sta-
tistical  characteristics  of  earthquake  induced  ground  motion.
The  obtained  power  spectrum  parameters  can  adapt  to  the
seismic  design  codes  worldwide,  and  are  of  great  significance
in improving the seismic performance and toughness of urban
and rural building structures.
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