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Abstract
Seismic landslides are characterized by wide distribution and strong destructiveness. On July 22, 2013, the Min-Zhang earthquake occurred and a

large number of casualties and building burying were caused by the geological disasters induced by seismic motion. The present research aims to

generate  seismic  landslides  susceptibility  prediction  maps  of  Min-Zhang  earthquake  using  different  machine  learning  algorithms,  providing

reference for disaster prevention and reduction in earthquake-affected areas. Five machine learning algorithms including K Nearest Neighbors

(KNN),  Naive  Bayes  (NB),  Random  Forest  (RF),  Logistic  Regression  (LR),  and  Support  Vector  Machine  (SVM)  are  implemented  and  the  sample

dataset  was  prepared  based  on  the  landslide  inventory  map  from  open  data  repository.  A  total  number  of  4660  samples  containing  seismic

landslides  and  non-landslide  were  collected.  The  influencing  factors  of  seismic  landslide  include  peak  ground  acceleration  (PGA),  epicenter

distance,  elevation,  slope,  aspect,  plan  curvature,  profile  curvature,  fault  distance,  river  distance,  and  normalized  difference  vegetation  index

(NDVI). The performance of five target machine learning algorithms is evaluated and compared using determination coefficient R2 and AUC value

of ROC curve. The results indicate that the RF and SVM model have more accurate prediction ability with higher AUC value reaching 0.999 and

0.998,  respectively,  and  the  NR  model  has  relatively  poor  performance  resulting  from  the  potential  correlation  of  various  influencing  factors.

Finally,  the  seismic  landslide  susceptibility  of  the  Min-Zhang earthquake was  mapped using the  five  trained models  and it  could  offer  useful

information for seismic hazard management in the future.
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 Introduction

Landslide,  as  one  of  the  most  common  geological  disasters
in nature, poses a serious threat to the safety of human life and
property,  and  earthquake  is  one  of  the  main  factors  inducing
landslide disasters. With the rapid development in recent years
of  Geographic  Information  System  (GIS),  the  processing  of
regional information about landslide susceptibility has become
faster  and  more  convenient[1].  On  this  basis,  the  analysis
method  of  regional  landslide  disasters  has  also  been  continu-
ously  improved  and  developed.  However,  the  occurrence  of
landslide  disasters  in  a  wide  area  is  controlled  by  many  influ-
encing factors, and the high-dimensional nonlinear characteris-
tics  between  these  influencing  factors  and  landslide  suscepti-
bility  determine  that  the  regional  landslide  disaster  is  a
complex  process  that  changes  with  the  dynamic  space  of  the
external environment, which is worthy of further study[2].

The  evaluation  of  landslide  susceptibility  is  to  analyze  and
evaluate  the  relative  possibility  of  slope  instability  under  the
conditions of influencing factors in the study area on the basis
of  existing  landslide  inventory  data[3−5].  Generally,  the  evalua-
tion methods of regional landslide susceptibility can be divided
into two categories: deterministic method and non-determinis-
tic method. The deterministic analysis method is mainly based
on  the  mechanism  analysis  of  landslide  occurrence,  and  uses
different  mechanical  or  physical  models  to  evaluate  the  slope
stability.  Common  deterministic  methods  include  limit

equilibrium  analysis  and  Newmark  permanent  displacement
method.  Non-deterministic  methods  mainly  use  statistical
methods  to  establish  a  quantitative  evaluation  model  of  vari-
ous influencing factors and known landslides, and then use the
model  to  evaluate  the  landslide  susceptibility  of  the  study
area[6−8].

The deterministic method has clear physical and mechanical
significance.  Saade  et  al.[9] used  the  limit  equilibrium  analysis
method  to  analyze  the  relationship  between  soil  strength
parameters,  slope  angle  and  critical  acceleration  of  instability
when  the  safety  factor  is  equal  to  1,  and  obtained  the  fitting
curve,  which  was  used  to  calculate  and  evaluate  the  landslide
susceptibility  of  the  Beiling  earthquake  in  1994.  Jibson  et
al.[10,11] obtained  a  simple  Newmark  model  based  on  Arias
strength  by  analyzing  11  ground  motion  records  in  1993,  and
then collected 30 earthquakes worldwide in  2007,  with a  total
of  2,270  ground  motion  records.  Using  these  records,  four
simplified  permanent  displacement  models  based  on  Arias
strength,  critical  acceleration  and  critical  acceleration  ratio
were  established.  The  simplified  model  based  on  the  critical
acceleration  ratio  has  become  one  of  the  most  widely  used
regional  landslide assessment models.  Romeo[12] modified Jib-
son's displacement model by using 190 ground motion records
recorded  by  98  stations  of  17  earthquakes  in  Italy,  and  pro-
posed a simplified model applicable to Italy.

The  high-dimensional  nonlinear  characteristics  of  the  non-
deterministic are consistent with the complexity of the regional
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influencing  factors,  and  it  has  a  wider  application  than  the
deterministic method. The commonly used statistical  methods
of  uncertain  methods  include:  analytic  hierarchy  process,  ran-
dom  forest,  Bayesian,  artificial  neural  network,  support  vector
machine, logical regression, deep learning, etc. Table 1 lists the
selection  of  landslide  influencing  factors  and  methodology  of
some relevant researches. The common influencing factors are
mainly about terrain, geology and seismology. Gigovic et al.[13]

used  the  Best–Worst  methodology  to  carry  out  the  landslide
susceptibility  assessment  in  the  region  of  the  Republic  of
Serbia  based  on  1082  landslide  data.  Xu  et  al.[14] selected  ten
landslide  influencing  factors  to  analyze  the  landslide  suscepti-
bility  of  Deyang  City,  Sichuan  Province  under  the  Wenchuan
earthquake using the evidence weight method. Traditional sta-
tistical methods have obvious shortcomings in expressing non-
linear  characteristics  due  to  the  fact  that  it  could  be  hard  for
using simple coefficient or index to describe the complex rela-
tion  within  multiple  factors,  so  scholars  tried  to  apply  the
machine  learning  method  to  the  susceptibility  assessment  of
geological disasters[15−18]. Xu et al.[19] used SVM to carry out sus-
ceptibility  analysis  on  landslides  caused  by  the  Wenchuan
earthquake  in  2012,  applied  three  different  ratio  of  sample
groups  and  four  different  kernel  functions  for  analysis,  and
found that the accuracy obtained by using radial basis function
is  the  best.  Yao  et  al.[20] used  one-classification,  two-classifica-
tion support  vector  machines  and logistic  regression methods
respectively  to  evaluate  the  landslide  susceptibility  in  Hong
Kong,  and  found  that  the  two-classification  vector  machines
had  the  best  calculation  results.  Ma  &  Xu[21] combined  the
permanent  displacement  model  with  support  vector  machine
and  applied  logistic  regression  and  SVM  respectively  to  ana-
lyze  the  landslide  susceptibility.  The  results  showed  that  the
combination  of  permanent  displacement  and  SVM  was  supe-
rior to the results of a single permanent displacement model.

With  an  increasing  preference  towards  machine  learning
methods,  various  algorithms  have  been  applied  for  landslide
susceptibility  mapping.  However,  in  most  studies,  only  one  to
three  types  of  machine  learning  methods  are  used  and  com-
pared,  lacking  comparative  analysis  of  performance  between
multiple algorithms[22]. In the present research, we aim to gen-
erate landslide susceptibility zonation maps in the affected area
of  the 2013 Min-Zhang earthquake and compare the accuracy
and  performance  of  different  commonly  used  machine  learn-
ing  algorithms  comprehensively.  The  accuracy  assessment  of
the produced landslides zonation maps is  evaluated using the
determination coefficient and receiver  operating characteristic
curve (ROC).

 Data description

 Overview of the 2013 Ms6.6 Min-Zhang earthquake
The  position  of  study  area  is  in  the  2013  Ms6.6  Min-Zhang

earthquake  affected  region  of  Lanzhou  Province,  northwest
China. The Min-Zhang earthquake occurred at 07:45 on July 22,
2013,  and  the  epicenter  was  located  at  34.50°  N,  104.20°  E,
situating  in  the  junction  of  Min  County  and  Zhang  County,  as
shown  in Fig.  1.  The  Ms6.6  Min-Zhang  earthquake  had  a
shallow  focus  of  20  km  and  it  was  caused  by  the  tectonic  acti
vity  of  Lintan-Dangchang  fault.  The  affected  areas  of  Min-
Zhang  earthquake  mainly  contained  Min  County,  Zhang
County,  Wushan  County,  Zhuoni  County,  and  Dangchang
County.  The  seismic  intensity  map  is  illustrated  in Fig.  1.  The
maximum  intensity  of  Min-Zhang  earthquake  reached  VIII
degree,  covering  an  area  of  706  km2.  The  Min-Zhang  earth-
quake caused a total of 95 deaths, five missing and more than
800 injuries.  The study area was selected based on the square
area of earthquake affected region, covering an area of 15,300
km2 (Fig.  1).  A  large  number  of  geological  disasters  were
induced by the severe seismic motion and the deposit of land-
slide buried the neighboring villages and roads, posing a signif-
icant threat to the safety of public and traffic.

The  flow  chart  in Fig.  2 shows  the  entire  model  frame  work
for  seismic  landslide  susceptibility  mapping  using  machine
learning methods. A study process including the phases as here
influencing factor collection, sample collection, model training,
model  testing,  and  susceptibility  mapping  is  followed.  The
influencing  factors  considered  in  the  presented  research

 
Fig. 1    Location of the 2013 Ms6.6 Min-Zhang earthquake.

Table 1.    Overview of selection of influencing factors and methodology.

Reference Year Influencing factors Methodology

Gigovic et al.[13] 2019 Elevation, slope, aspect, distance to road network, distance to river, distance to fault,
lithology, NDVI, terrain wetness index (TWI), stream power index (SPI), sediment
transport index (STI), annual rainfall, distance to urban area, and land use rate

Multi-criteria decision
analysis best–worst
methodology

Xu et al.[14] 2012 Slope, aspect, slope curvature, elevation, surface catchment, drainage distance, road
distance, lithology, fault distance, and NDVI

Weight of evidence
modeling

Xu et al.[19] 2012 Elevation, slope angle, slope direction, fault distance, river distance, and lithology Support vector machine
Yao et al.[20] 2008 Lithology, slope angle, slope aspect, elevation and vegetation Support vector machine
Ma & Xu[21] 2019 Permanent displacement, critical acceleration, terrain, peak ground acceleration, river

distance, and road distance
Newmark model, support
vector machine, logic
regression
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contains  peak  ground  acceleration  (PGA),  epicenter  distance,
elevation,  slope,  aspect,  plan curvature,  profile  curvature,  fault
distance,  river  distance,  and  normalized  difference  vegetation
index (NDVI). The seismic landslide inventory of the Min-Zhang
earthquake is adopted as the samples of seismic landslide. Five
commonly  used  machine  learning  methods  including  K  Near-
est  Neighbors  (KNN),  Naive  Bayes  (NB),  Random  Forest  (RF),
Logistic Regression (LR), and Support Vector Machine (SVM) are
used  to  construct  the  evaluation  model  of  seismic  landslide
susceptibility.  And  the  performance  of  five  target  models  is
compared with the receiver operator characteristic (ROC) curve.
Finally,  the  susceptibility  of  seismic  landslide  is  mapped  using
geographical  information  system  (GIS)  to  illustrate  the  spatial
distribution of landslide occurrence probability.

 Seismic landslide inventory map
Landslide  inventory  is  key  to  study  the  distribution  of  seis-

mic landslides and to map seismic landslide susceptibility.  The
seismic  landslide inventory  map of  the Min-Zhang earthquake

is shown in Fig. 3, which is obtained from an open data reposi-
tory  of  earthquake-triggered  ground-failure  inventories[23,24].
The region of landslide inventory has spanned the entire earth-
quake-affected  area.  The  landslide  inventory  was  interpreted
using  both  pre-  and  post-earthquake  aerial  photographs.  The
boundary  of  seismic  landslide  was  mapped  as  polygons  using
semiautomated classification method based on spectral charac-
teristics  of  aerial  photographs.  And  the  centroid  of  polygons
was identified as the location of landslides induced by the Min-
Zhang earthquake.

The study area is  located in  the Loess  Plateau in  the east  of
the  Qinghai-Tibet  Plateau.  The  average  elevation  is  high,  and
the topography is characterized by steep mountains, deep val-
leys,  and  shallow  cuttings.  Slopes  are  covered  by  sedimentary
and  residual  Quaternary  loess.  The  underlying  rock  layer  is
mainly mudstone. The inventory map contains a total quantity
of 2,330 landslides induced by the Min-Zhang earthquake. The
minimum  area  of  seismic  landslide  under  Min-Zhang  earth-
quake  was  5  m2.  The  maximum  area  of  seismic  landslide  was

Landslides
inventory

Machine learning

Influencing factor

Samples collection

Model training

Model testing

Susceptibility mapping

Model verification
(ROC curve)

Hyper parameter
searching

 
Fig. 2    Model framework for seismic landslide prediction.

 
Fig. 3    Seismic landslide inventory map.
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49,810  m2,  located  in  the  Yongguang  Village,  Min  County,
approximately 5 km away from the epicenter. From the spatial
distribution  of  seismic  landslides,  it  can  be  noticed  that  land-
slides under the Min-Zhang earthquake were concentrated in a
relatively small region northwest of the epicenter.

In  addition  to  seismic  landslide,  non-landslide  samples
should  also  be  collected  to  obtain  the  characteristics  of  non-
landslide. A buffer zone of landslide polygons with a distance of
100  m  was  generated,  and  2330  non-landslide  sample  points
were  generated  randomly  in  the  range  beyond  the  landslide
buffer  zone.  The  sample  database  of  the  susceptibility  evalua-
tion  model  consisted  of  both  landslide  points  and  non-land-
slide points, and the ratio of landslide samples to non-landslide
samples is 1:1. The total number of samples is 4,660. Moreover,
70% of samples were chosen at random as a training set, while
remaining samples were used as a testing set for model perfor-
mance  assessment.  Despite  the  fact  that  the  landslide  was
within a relatively small range, the scope for collecting the non-
landslide  samples  is  a  wider  region,  as  shown  in Fig.  3.  The
wider  scope  of  non-landslide  samples  could  make  the  sample
dataset  contain  richer  features  of  negative  samples.  When the
number  of  samples  remains  unchanged,  sampling  around
wider regions provides better predictions than sampling at just
one or a small location[25].

 Influencing factors of seismic landslide
The  appropriate  influencing  factors  of  seismic  landslide  are

important  for  the  assessment  of  landslide  susceptibility.  As
there  is  no  standard  guideline  or  universal  criterion  regarding
feature factors for seismic landslide susceptibility evaluation, it
is commonly accepted that the factors concerning topography,
geology,  and  seismology  are  significant  for  seismic  landslide
susceptibility  assessment[26].  The  influencing  factors  of  the
present  research  are  selected  referring  to  the  relevant  studies
for  a  comprehensive  evaluation[27,28].  The  considered  influenc-
ing  factors  of  seismic  landslides  in  the  present  research
includes PGA, epicenter distance, elevation, slope, aspect, plan
curvature,  profile  curvature,  fault  distance,  river  distance,  and
NDVI.

The details of all  influencing factors adopted in the research
are listed in Table 2. The PGA factor was derived from Institute
of  Engineering  Mechanics,  China  Earthquake  Administration
and  it  was  interpolated  by  the  Kriging  method  using  GIS.  The
position  of  the  epicenter  was  obtained  from  the  Internet  and
the epicenter distance factor was mapped using buffer analysis
of  GIS.  The  elevation  and  NDVI  factor  were  originated  from
Computer  Network  Information  Center,  Chinese  Academy  of
Sciences,  whose  resolution  was  30  ×  30  m.  The  slope,  aspect,

plan curvature,  and profile  curvature factor  were derived from
the DEM of the study area using GIS. The fault and river within
the study area  were  from the  China  Earthquake Network  Cen-
ter.

(a) Peak ground acceleration (PGA)
PGA represents  the peak value of  acceleration record wave-

form, which can be considered as the maximum instantaneous
force exerted by motion. PGA is a commonly used parameter to
describe the ground motion intensity of an earthquake[29].  The
distribution  map  of  PGA  under  the  Min-Zhang  earthquake  is
given inFig. 4a. The PGA map is obtained through spatial inter-
polation  of  seismic  data  recorded  by  motion  observation  sta-
tion.  The  maximum  value  of  PGA  under  the  Min-Zhang  earth-
quake reached 176.88 gal.

(b) Epicenter distance
The  epicenter  distance  is  used  to  measure  the  relative  dis-

tance between the study area and the epicenter. The impact of
earthquake disaster gradually reduced with the increase of epi-
center distance. The epicenter distance is shown in Fig. 4b and
was  mapped  using  the  ArcMap  software  buffers.  The  maxi-
mum  epicentral  distance  in  the  study  area  was  approximately
100 km.

(c) Elevation
Elevation  is  considered  as  an  important  factor  for  landslide

susceptibility analysis[30]. The elevation map is a typical parame-
ter  to  characterize  the  topography  and  geomorphology  of
study  area.  The  elevation  map  of  the  Min-Zhang  earthquake
study  area  is  shown  in Fig.  4c.  The  range  of  elevation  in  the
study area is between 884 and 4866 m, having a large span.

(d) Slope
Slope measures the steepness of the terrain. The greater the

slope,  the  higher  the  possibility  of  landslide  occurrence[30].
Therefore,  slope  angle  is  a  geomorphic  parameter  that  has  an
important  impact  on  seismic  geological  disasters.  The  slope
map  is  illustrated  in Fig.  4d.  The  maximum  value  of  slope
reached 88°, and the minimum value was close to 0.

(e) Aspect
The aspect of slope is defined as the direction of the projec-

tion of  slope normal on the horizontal  plane,  representing the
direction of the terrain slope[31].  The aspect is  measured coun-
terclockwise in degrees, and the angle range is between 0 and
360°.  And  flat  slope  has  no  direction,  and  the  aspect  value  of
flat slope is specified as −1. The aspect map is shown in Fig. 4e.

(f) Plan curvature
Plan curvature is the horizontal component of ground curva-

ture, and describes the bending and change of ground surface
along  the  horizontal  direction[31].  The  plan  curvature  of  study

Table 2.    Data details of influencing factors.

Influencing factor Type Resolution Data source Year updated

PGA Raster 30 m × 30 m Institute of Engineering Mechanics, China Earthquake Administration 2013
Epicenter distance Raster 30 m × 30 m Internet 2013
Elevation Raster 30 m × 30 m Geospatial Data Cloud site, Computer Network Information Center,

Chinese Academy of Sciences
2009

Slope Raster 30 m × 30 m Extracted from DEM 2009
Aspect Raster 30 m × 30 m Extracted from DEM 2009
Plan curvature Raster 30 m × 30 m Extracted from DEM 2009
Profile curvature Raster 30 m × 30 m Extracted from DEM 2009
Fault distance Raster 1:100000 China Earthquake Network Center 2011
River distance Raster 1:100000 China Earthquake Network Center 2011
NDVI Raster 90 m × 90 m Geospatial Data Cloud site, Computer Network Information Center,

Chinese Academy of Sciences
2012
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(d) Slope

(c) Elevation

(b) Epicenter distance

(a) PGA

 
Fig. 4    Influencing factors used in landslide susceptibility mapping. (to be continued)
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(h) Fault distance

(g) Profile curvature

(f) Plan curvature

(e) Aspect

 
Fig. 4    (continued).
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area is shown in Fig. 4f. For the area with concave contour, the
plan curvature is  positive;  For  areas  with convex contours,  the
plan curvature is negative. Plan curvature can be used to distin-
guish ridges and valleys.

(g) Profile curvature
Profile curvature is the vertical component of ground curva-

ture, and it affects the flow velocity of the drainage surface and
affects  erosion  and  sedimentation[31].  The  profile  curvature
map of the study area is shown in Fig. 4g. At locations with neg-
ative  profile  curvature,  erosion will  prevail,  and deposit  settles
at the position of positive profile curvature.

(h) Fault distance
Fault  distance  is  another  significant  factor  influencing  seis-

mic  landslide.  The  rock  and  soil  mass  near  the  fault  zone  is
more  broken,  being  more  susceptible  to  weathering  and  slid-
ing[31]. The fault distance map of the study area is illustrated in
Fig. 4h. The maximum fault distance within the study area was
40 km.

(i) River distance
River  distance  can  also  influence  the  susceptibility  of  slope

failures.  Erosion of  rivers  can weaken the  support  of  slope toe
and expand the empty face of slope[32]. The river distance map
of the study area is shown in Fig. 4i. The buffer zones were cre-
ated around the rivers to study the relationship between land-
slides and river distance.  The maximum value of  river distance
in the study area was 40 km.

(j) Normalized difference vegetation index (NDVI)
NDVI plays an important role in the seismic landslide suscep-

tibility  mapping.  NDVI  measures  the  vegetation  by  the  differ-
ence  between  near-infrared  (strong  vegetation  reflection)  and

red light (vegetation absorption).  The closer the NDVI is  to +1,
the better the vegetation coverage in the study region, and the
lower  the  degree  of  urbanization[33].  The  NDVI  map  was  from
the  Landsat  7  ETM+  satellite  images  shot  in  2012  from  the
Geospatial  Data  Cloud  site,  Computer  Network  Information
Center, Chinese Academy of Sciences (Fig. 4j).

 Methodology

Five  commonly  used  supervised  learning  algorithm  includ-
ing K Nearest Neighbors (KNN), Naive Bayes (NB), Random For-
est  (RF),  Logistic  Regression  (LR),  and  Support  Vector  Machine
(SVM) are utilized for seismic landslide susceptibility evaluation
model  building  in  the  present  study.  Among  the  mentioned
commonly used algorithms,  the KNN is  the simplest  algorithm
for  a  nonparametric,  supervised,  and pattern classifier.  The NB
is  robust  to  noise  and  easy  to  apply.  The  RF  and  SVM  model
usually  have  a  more  predictive  capability  to  identify  landslide
susceptibility  zones  than  other  models  in  previous
researches[34].  And the LR can be considered as the most com-
monly used classifier of machine learning in landslide suscepti-
bility  assessment.  Herein,  the  Scikit-learn  machine  learning
repository  based  on  Python  was  adopted  for  model  construc-
tion.  The  hyperparameters  of  machine  learning  algorithms
were optimized using the grid search method based on k-fold
Cross Validation, and the value of fold k was 10.

 K Nearest Neighbors (KNN)
The KNN algorithm is one of the most basic and simple algo-

rithms in machine learning. It can be applied for both data clas-
sification and regression problems. KNN is also referred to as a

(j) NDVI

(i) River distance

 
Fig. 4    (continued).
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lazy algorithm because it has no general learning process. Each
sample corresponds to a point in the feature space. The predic-
tion object  has  the same label  value as  most  of  the k  samples
with  the  nearest  Euclidean  distance  in  the  feature  space.  The
hyperparameter  of  the  KNN  algorithm  is  the  value  of  k.  The
smaller  the  k  value,  the  more  complex  the  whole  model
becomes  and  the  easier  it  is  to  over-fit.  When  the  amount  of
data  is  small  but  the  data  is  representative,  the  classification
effect of the KNN algorithm is better.

 Naive Bayes (NB)
The NB method is a probability classification algorithm based

on Bayes theorem and independence assumption feature con-
ditions. NB algorithm is based on the assumption that variables
are independent of  each other  and do not  interfere with each
other.  Therefore,  the  conditional  probability  can be  calculated
by:

P
(
f | c
)
=

n∏
i=1

P ( fi|c) (1)

where c is the classification label value, f is the feature vector. And
the Bayes theorem is represented by:

P
(
c | F
)
=

P (c) ·P (F | c
)

P (F)
(2)

P (c)

P
(
c | F
)where F is  the  feature  and c is  the  class.  is  the  prior

probability, which is the judgement of the probability of an event
before  the  event  occurs.  is  the  posterior  probability,
which is the re-evaluation of the probability of an event after the
event occurrence.

The NB algorithm is still effective when there is less data, and
can  handle  multi-category  classification  problems.  However,  it
is  sensitive to the input  data (training samples).  If  the features
of  training  data  are  related,  the  classification  effect  may  be
poor. On the contrary, if the correlation between the features is
not strong, the classification effect can be good.

 Random Forest (RF)
RF  is  a  supervised  algorithm  that  integrates  multiple  trees

through the idea of ensemble learning. The basic unit of the RF
algorithm is the decision tree, and it belongs to a major branch
of  machine  learning  –  Ensemble  learning  method.  From  an
intuitive point of  view,  each decision tree is  a  simple classifier,
then  for  an  input  sample,  N  trees  will  have  N  classification
results. The RF algorithm integrates all the classification voting
results,  and  specifies  the  category  with  the  most  voting  times
as  the  final  output.  And  the  selection  of  the  optimal  partition
feature in the decision tree algorithm is  obtain by training the
parameter at nodes based on the information gain of entropy.
The  RF  algorithm  solves  the  problem  of  the  weak  generaliza-
tion ability  of  a  decision tree.  The model  training of  RF can be
highly parallelized, resulting in its advantages in training speed
for high-dimensional and large numbers of samples. The disad-
vantage of the RF algorithm is that in some noisy sample sets,
the model easily falls into over-fitting.

 Logistic Regression (LR)
LR  is  a  supervised  machine  learning  method  for  solving

binary  classification  problems.  Although  there  is  regression  in
the  name,  LR  is  a  classification  algorithm.  LR  can  be  seen  as  a
model combining multiple linear regression and nonlinear acti-
vation function. The activation function commonly used in LR is
the sigmoid function, whose expression is:

g (z) =
1

1+ e−z (3)

g (z)where z is  the  result  of  multiple  linear  regression,  is  the
output  data  of  classification  label  value.  The  result  of  sigmoid
function  is  a  number  between  0  and  1,  and  with  0.5  as  the
threshold, the result can be divided into two different categories.

The  training  parameter  of  the  LR  algorithm  is  the  feature
coefficient of multiple linear regression, solved by the gradient
descent  method  of  loss  function.  The  loss  function  of  the  LR
algorithm  is  constructed  using  log-likelihood  loss  function  to
measure  the  gap  between  predicted  value  and  actual  value.
Moreover,  L2  regularization  is  added  into  the  loss  function  to
reduce  the  value  of  training  parameters,  helping  the  model
avoid  over-fitting.  The  LR  algorithm  is  very  fast  in  calculation,
strong  in  anti-noise  ability,  and  very  good  in  fitting  the  linear
relationship.

 Support Vector Machine (SVM)
SVM  is  a  generalized  linear  classifier  that  classifies  data  in  a

binary  way  according  to  supervised  learning,  which  can  be
applied not only in classification prediction, but also in regres-
sion  analysis.  Its  decision  boundary  is  the  maximum  margin
hyperplane for learning samples. The SVM algorithm maps the
sample  feature  space  into  a  high-dimensional  feature  space
through a  nonlinear  mapping,  so that  the nonlinear  separable
problem  in  the  original  sample  feature  space  can  be  trans-
formed  into  a  linear  separable  problem.  The  SVM  algorithm
realizes  linear  partition  in  high-dimensional  feature  space
through  linear  hyperplane,  and  maximizes  the  minimum  dis-
tance from any sample on both sides to the hyperplane.

In addition to the hyperplane, another fundamental element
of  the  SVM  algorithm  is  the  selection  of  kernel  function.  The
kernel function is utilized to transform the sample features into
high dimensional space, so that different types of samples can
be separated linearly. The four kernel functions commonly used
in  the  SVM  algorithm  are  linear,  polynomial,  radial  basis,  and
sigmoid. Radial basis function is selected as the kernel function
in the present research.

SVM  algorithm  can  solve  the  classification  and  regression
problems in the case of small samples. And it is sensitive to the
missing data and the selection of kernel functions

 Discussion

The  sample  database  contained  the  spatial  position  of  seis-
mic  landslide  and  non-landslide  with  a  total  number  of  4660.
The Arcmap of GIS was adopted to extract the feature value of
each  sample  from  the  influencing  factor  layers.  The  value  of
influencing  factor  of  samples  referred  to  the  feature  value  of
samples. The label value of seismic landslide sample was 1 and
the  label  value  of  non-landslide  sample  was  0.  Five  target
machine learning models  were  trained based on the landslide
and non-landslide samples using Python Script  Language.  The
performance  of  five  landslide  susceptibility  evaluation  models
were compared in the presented sections.

 ROC curve for model testing
To quantitively  evaluate the accuracy of  five  machine learn-

ing  algorithms  on  seismic  landslide  susceptibility  assessment,
the  coefficient  of  determination R2 is  adopted  for  judging  the
fitting degree of classification models. The coefficient of deter-
mination R2 is calculated as:
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R2 = 1−

∑
(yi− ŷi)2∑
(yi− ȳ)2

(4)

ŷ ȳwhere y is the actual label value,  is the prediction value,  is the
average of actual values. The range of determination coefficient is
between 0 and 1. The closer the prediction value is to the actual
label  value,  the  smaller  the  error  is,  and  the  closer  the
determination coefficient  is  to  1.  The R2 of  assessment  results  of
testing  set  for  five  machine  learning  algorithms  are  listed  in
Table 3.

It can be seen that the R2 values of five target models were all
greater  than  0.8,  suggesting  the  validity  of  seismic  landslide
susceptibility  evaluation  models  using  the  machine  learning
method. The minimum value of R2 was 0.811, for the results of
the  NB  algorithm.  The R2 values  of  the  RF  and  SVM  algorithm
were  relatively  higher,  corresponding  to  0.995  and  0.990,
respectively.  It  indicated  that  compared  to  other  machine
learning  algorithms,  the  RF  and  SVM  algorithms  had  more
accurate results of testing set.

The  receiver  operating  characteristic  (ROC)  curve  was
adopted  to  further  evaluate  and  compare  the  performance  of
five algorithms. The abscissa of the ROC curve is a false positive
rate (FPR), and the ordinate is true positive rate (TPR). When the
prediction result is random, the ROC curve is connected by (0,0)
and  (1,1).  Therefore,  the  ROC  curve  of  the  model  prediction
result  should  be  above  the  line  connected  by  (0,0)  and  (1,1).
The closer the ROC curve is to the fixed point at the upper left
corner,  the  better  the  effect  of  the  classifier.  The  performance
of  the  established  models  using  the  testing  dataset  has  been
illustrated in Fig.  5.  It  can be seen that all  five algorithms have
good performance of prediction ability in the testing dataset.

In  order  to  quantitatively  evaluate  the  accuracy  of  target
classifiers,  the  Area  Under  Curve  (AUC)  is  adopted.  The  AUC
value  represents  the  area  under  the  ROC  curve.  Generally,  the
AUC  value  is  between  0.5  and  1.0.  The  higher  the  AUC  value,
the  better  the  classification  effect  of  the  model.  The  AUC  val-
ues of testing set for five machine learning algorithms are listed

in Table 3. Similar to the result of R2, the AUC values of the pre-
diction results of RF and SVM models were greater, correspond-
ing to 0.999 and 0.998, respectively. The minimum value of AUC
is  0.986 of  the KNN model.  The values  of  AUC results  revealed
that  the RF and SVM models  fit  the input  data  better  and had
better predictive performance than KNN, NB, and LR models in
seismic landslide susceptibility evaluation.

 Landslide susceptibility mapping
In addition to verifying the prediction ability of the models to

the  testing  set,  it  is  also  necessary  to  verify  the  generalization
ability  of  models.  Therefore,  all  the  points  in  the  study  area
were selected as the input data of the five trained models, and
the  seismic  susceptibility  zonation  under  Min-Zhang  earth-
quake  was  mapped  based  on  the  output  data  of  five  trained
models, to verify the generalization ability of models using data
other than training and testing dataset.

The  seismic  landslide  susceptibility  map  under  Min-Zhang
earthquake using machine learning methods is  given in Fig.  6.
The  susceptibility  results  were  divided  into  five  categories
including  very  low,  low,  moderate,  high,  and  very  high,  using
the  natural  breaks  classification  method.  Classes  are  based  on
natural groupings inherent in the data, and categories are cre-
ated in a way that best groups similar values together and max-
imizes the differences between categories. The area labeled as
very  low  can  be  considered  as  almost  free  from  seismic  land-
slide, which was not show in Fig. 6. It can be observed from the
seismic  landslide  susceptibility  map  of  the  Min-Zhang  earth-
quake that the results of five machine learning models showed
the relative position of the area susceptible to seismic landslide,
which was located in the northwest of the epicenter. However,
there  are  differences  between  the  area  size  of  the  region
labeled  as  very  high  evaluated  by  the  various  models  and  the
actual  landslide  area.  The  evaluation  results  of  RF  and  SVM
models were closest to the actual seismic landslide distribution,
showing  consistence  with  the  result  of R2 and  AUC  of  ROC
curve. It indicated that the RF and SVM model have more accu-
rate prediction ability in comparison to other machine learning
methods.  In  addition,  the  difference  between  the  result  of  NB
model  and  the  actual  seismic  landslide  distribution  was  the
largest. The possible reason for this phenomenon was that the
NB algorithm is based on the assumption that each influencing
factor  is  independent  of  each  other.  But  obviously,  there  was
correlation  between  some  influencing  factors,  such  as  eleva-
tion  and  slope,  PGA  and  epicenter  distance,  etc.  When  using
the  NB  algorithm  to  map  seismic  landslide  susceptibility,  it  is
necessary  to  consider  the  impact  of  the  correlation  between
influencing factors on the evaluation results.

 Conclusions

The  present  study  aimed  to  map  the  spatial  distribution  of
seismic  landslide  susceptibility  in  the  affected  area  by  Min-
Zhang earthquake using different machine learning algorithms.

Ten  influencing  factors  of  seismic  landslide  including  peak
ground acceleration (PGA), epicenter distance, elevation, slope,
aspect,  plan  curvature,  profile  curvature,  fault  distance,  river
distance,  and  normalized  difference  vegetation  index  (NDVI)
were  considered.  Based  on  the  landslide  inventory  map  inter-
preted  using  pre-  and  post-earthquake  aerial  photographs,  a
sample database containing 2,330 seismic landslide points and
2,330  non-landslide  points  were  collected.  And  the  sample

Table 3.    Prediction performance for KNN, NB, RF, LR, and SVM.

Model R2 AUC

KNN 0.988 0.986
NB 0.811 0.988
RF 0.995 0.999
LR 0.989 0.997

SVM 0.990 0.998

 
Fig. 5    ROC curve for model testing.
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database was split into training set (70%) and testing set (30%)
to construct and test different machine learning methods. Five
machine  learning  algorithms  were  adopted,  including  K  Near-
est  Neighbors  (KNN),  Naive  Bayes  (NB),  Random  Forest  (RF),
Logistic  Regression  (LR),  and  Support  Vector  Machine  (SVM).
Out  of  five  machine  learning  models,  the  RF  and  SVM  were
found to be more competent, with higher determination coeffi-
cient and AUC value of ROC curve. The R2 and AUC value of the
RF  model  results  was  0.995  and  0.999,  and  the R2 and  AUC
value  of  the  SVM  model  result  was  0.990  and  0.998,  respec-
tively. Comparatively, the results of the NB algorithm had poor
accuracy,  resulting  from  the  potential  correlation  of  various
influencing  factors.  The  results  revealed  that  in  the  present
study,  the  RF  and  SVM  model  have  more  accurate  prediction
ability to map seismic landslide susceptibility in comparison to
other machine learning methods.
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