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Abstract
Respiratory  infectious  diseases  can  cause  public  health  emergencies,  threatening  human  well-being,  social  operation,  and  economic

development.  Clarifying  the  transmission  mechanism  of  respiratory  infectious  diseases  is  essential  for  control  measures.  We  review  the  main

research findings on the transmission mechanism of respiratory infectious diseases in recent decades. The source characteristics of respiratory

infectious diseases, the airborne transmission mechanism, the exposure of susceptible persons, and the infection risk assessment methods are

discussed.  Given  that  the  dynamic  scenario  of  respiratory  infectious  disease  transmission  has  attracted  wide  attention  in  recent  years,  we

summarize  the  effects  of  human  movement  on  indoor  airflow,  pathogen  diffusion,  and  human  exposure.  Considering  the  everyday  use  of

facemasks, the effects of facemasks on source characteristics and infection risk are also discussed. Finally, future research prospects are proposed.

The transmission mechanism of infectious diseases can be comprehensively explored by delving into patients' pathological characteristics and

personnel  protection measures.  This  exploration can be facilitated by establishing a  multi-pose manikin database,  enabling personalized and

refined evaluations. Interdisciplinary cooperation will play a pivotal role in fostering a holistic understanding. Furthermore, it is crucial to account

for the impact of individuals' activity patterns on disease transmission dynamics. This review is expected to reference public health emergency

management.
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 Introduction

Public safety is a basic need for human beings. Emergencies
that  threaten  public  safety  are  mainly  divided  into  four  cate-
gories:  natural  disaster emergency,  industry emergency,  urban
emergency,  and  public  health  emergency[1].  Among  them,
public  health  emergencies  are  closely  related  to  people's
health, which causes casualties and social panic. During urban-
ization,  densely  populated  places  increase,  providing  conve-
nience  for  public  health  emergencies,  especially  respiratory
infectious  disease  outbreaks[2].  After  natural  disasters  (e.g.,
earthquakes,  floods)  or  accidents  (e.g.,  fires,  explosions),
people's  living  conditions  deteriorate,  and  the  epidemic  risk
also  increases.  Respiratory  infectious  diseases  are  airbourne.
Their  high  infectivity,  widespread  nature,  and  difficulty  in
control  pose  an  increased  threat  to  human  safety.  In  the  20th

century,  influenza,  spreading  worldwide,  claimed  millions  of
lives, resulted in significant losses, and impeded social progress
and  development[3].  In  the  21st century,  respiratory  infectious
diseases  have  become  increasingly  prevalent,  resulting  in
substantial economic, societal,  and physical and mental health
costs.  In  2003,  SARS  was  prevalent  in  more  than  20  countries
and regions, causing more than 8,000 infections and more than
800  deaths,  with  a  high  fatality  rate.  In  2009,  the  influenza  A
H1N1 virus epidemic broke out in America and spread globally,
causing  more  than  200,000  deaths.  In  2012,  an  outbreak  of

MERS  spread  to  27  countries,  resulting  in  the  closure  of  thou-
sands  of  primary  and  secondary  schools  in  South  Korea.  The
COVID-19  outbreak  at  the  end  of  2019  still  circulates  world-
wide  and  affects  people's  lives  today.  According  to  the  World
Health  Organization  (WHO),  more  than  700  million  people
worldwide  have  been  infected  with  COVID-19,  and  more  than
6.8 million have died[4].

The  transmission  mechanism  of  infectious  diseases  is  the
basis  for  risk  assessment  and  the  design  of  epidemic  control
measures.  The  pandemic  of  infectious  diseases  requires  three
elements: source of infection, transmission route, and suscepti-
ble population[5]. For respiratory infectious diseases, the source
of infection mainly refers to the infected patients and the infec-
tious  substances  produced  by  them.  The  transmission  route
refers to the route and medium through which infectious sub-
stances leave the source of infection and reach the susceptible
person,  mainly  including  three  types  of  transmission:  contact,
droplet, and airborne transmission. The susceptible population
refers  to  those  who  lack  specific  immunity  to  the  infectious
pathogens.  People  spend  more  than  80%  of  their  time
indoors[6]. Compared with the outdoors, indoor has a high inci-
dence of public health events, and it is common for respiratory
infectious  diseases  to  spread  between  people  indoors[7,8].  For
the  control  of  the  epidemic  of  respiratory  infectious  diseases,
attention should be paid to indoor environments.
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In  the  COVID-19  pandemic,  scholars  studied  the  transmis-
sion  law  of  respiratory  infectious  diseases[9−11],  and  evidence
showed  that  airborne  transmission  is  likely  to  be  the  main
transmission route of respiratory infectious diseases. Compared
with  contact  and  droplet  transmission,  the  airborne  transmis-
sion mechanism is complex, and the requirements for epidemic
control  are  also  higher.[12] As  shown  in Fig.  1,  relevant  studies
mainly  focus  on  the  characteristics  of  infection  sources,  air-
borne  transmission  routes,  exposure  of  susceptible  personnel,
and risk assessment methods.

The  airborne  transmission  process  of  respiratory  infectious
substances  is  usually  dominated  by  indoor  airflow.  Human
behavior could significantly affect the airflow field and change
the  diffusion  law  of  exhaled  infectious  substances,  which
affects  the regional  risk[13].  During the SARS epidemic,  a  trans-
mission  case  across  seven  rows  of  seats  occurred  on  a  flight,
which  was  presumed  to  be  related  to  the  crew  members'
movement[14].  Among  the  reported  cases  of  COVID-19  infec-
tion,  some  infections  have  also  been  caused  by  close  interac-
tive  movement  with  patients.  A  risk  assessment  of  respiratory
infectious  diseases  in  aircraft  cabins  showed  that  the  risk
assessment  model  considering  personnel  movement  could
better  explain  the  transmission  pattern  of  respiratory  infec-
tious  diseases  than  the  traditional  static  scenario  model[15].
Hence, it is needed to explore the airflow characteristics of the
human  movement  scene  and  its  influence  on  the  infectious
substance  diffusion.  Respiratory  protective  gear  can  mitigate
transmission  of  respiratory  infectious  disease,  amongst  them
facemasks are commonly used against the COVID-19 pandemic,
due to sound regulations, portability, and low costs. The effec-
tiveness  and mechanism of  facemasks  also gained great  inter-
est  in  research,  which  could  help  guide  protective  measures,
and promote public safety.

Herein,  we  review  studies  on  the  respiratory  infectious
disease  transmission  mechanism  in  the  past  few  decades.  The
following issues will be highlighted:

(1) Source characteristics of respiratory infectious diseases.
(2)  Airborne  transmission  route  of  respiratory  infectious

diseases.

(3)  Exposure  and  infection  risk  assessment  for  susceptible
individuals.

(4)  Effects  of  human  movement  on  airborne  transmission
mechanisms.

(5)  Effects  of  facemasks  on  source  characteristics  and  infec-
tion risk.

 Source characteristics of respiratory
infectious diseases

Pathogens  of  respiratory  infectious  diseases  (viruses,  bacte-
ria,  etc.)  usually  replicate  in  a  patient's  respiratory  tract  and
enter the environment through the patient's respiratory activi-
ties  (breathing,  speaking,  coughing,  sneezing,  etc.)[5,16].  Most
pathogen's particle sizes are in the nanometer to micron range,
such  as  the  COVID-19  virus  at  about  60~140  nm[17] and  the
influenza  virus  at  about  80~500  nm[18].  These  pathogens
usually  need  to  be  attached  to  a  carrier  for  airborne  transmis-
sion. Droplets and aerosols produced by respiratory activity are
typical  carriers[19].  The  carrying  infectious  substances  are
suspended, evaporated, and dispersed in the environment and
may be deposited on objects or human surfaces or inhaled by
humans, posing an infection risk[20].

The particle size and concentration characteristics of droplets
generated  by  the  respiratory  activities  of  patients  are  key
factors  affecting  their  diffusion  characteristics[21].  In  the  past
few  decades,  scholars  have  studied  the  particle  size  distribu-
tion,  quantity,  concentration,  and velocity of  exhaled droplets.
In  terms  of  experimental  research  methods,  early  research
mainly  used  high-speed  cameras,  solid  impact,  liquid  impact,
and other  technologies.  With  the  development  of  technology,
optical  particle  counter,  aerodynamic  particle  counter,  laser
particle size analyzer, electromigration particle size spectrome-
ter,  and  other  measurement  methods  have  been  frequently
used.  Individual  differences  exist  in  the  particle  size  distribu-
tion of patients' exhaled droplets, but most are in 0.05~500 µm,
especially  0.1~100 µm[22−24].  Considering  the  evaporation
process,  scholars  combined  experimental  and  computational
fluid  dynamics  (CFD)  methods  to  study  the  relationship

 
Fig. 1    Three main factors in indoor airborne transmission of respiratory infectious diseases: Source of infection, airborne transmission route,
exposure risk assessment.
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between  the  initial  particle  size  of  the  droplet,  evaporation
time,  environmental  relative  humidity,  and  the  final  particle
size  and  established  a  fitting  curve.  It  showed  that  the  final
particle  size  of  the  droplet  after  evaporation  is  usually  about
1/3  of  the  initial  particle  size[25,26].  In  the  COVID-19  pandemic,
many scholars have collected and analyzed pathogens exhaled
by  patients.  Most  of  these  studies  were  conducted  in  indoor
and  healthcare  environments,  including  air  and  environment
sampling.  Collection  mechanisms  include  impact  dust  filters,
cyclones,  impactors,  filters,  water-based  condensation,  and
passive  sampling.  The  RT-PCR  method  was  used  to  detect
SARS-CoV-2 RNA in collected samples[27]. The particle size distri-
bution  of  exhaled  infectious  substances  varies  from  person  to
person. It is affected by the type of respiratory activity and the
exercise  state[28],  and  individualized  analysis  is  required  for
specific case studies.

It  is  worth  noting  that  the  pathogens  of  different  types  of
respiratory  infectious  diseases  have  different  replication  and
shedding sites in the respiratory tract of patients. For example,
the  SARS  virus  usually  replicates  in  a  patient's  lung,  while  the
COVID-19  virus  independently  replicates  and  sheds  in  a
patient's  larynx[29].  It  was  found  that  a  higher  percentage  of
particles  released from the lungs were deposited in  the larynx
during exhalation[30]. Moreover, the number of people infected
with  COVID-19  is  much  higher  than  SARS.  Wu  &  Weng  found
that the difference in the replication site of infectious agents in
the patient's respiratory tract will affect the exhaled proportion
and  indoor  exposure[31].  The  exhaled  fraction  of  viruses  that
replicate independently in the larynx is higher than that which
replicate  only  in  the  lungs,  increasing  the  risk  of  exposure  for
susceptible  persons.  This  finding  provides  a  possible  explana-
tion for the high transmissibility of some respiratory infectious
diseases  such  as  COVID-19.  Differences  in  where  pathogens
replicate in a patient's respiratory tract may affect their exhala-
tion and the exposure risk of susceptible individuals. However,
existing studies  usually  use  the  surface  of  the  patient's  mouth
or nose as the release location of infectious substances, and the
impact of the difference in the release site of pathogens in the
respiratory tract is insufficient. Clarifying the exhalation process
of pathogens in the respiratory tract of patients is the basis for
assessing  the  indoor  transmission  rule  and  exposure  risk  of
susceptible  individuals.  It  has  significant  reference  value  for
scientific protection measures.

 Airborne transmission route of respiratory
infectious diseases

Over  a  long  historical  period,  contact  and  droplet  transmis-
sion  were  considered  to  be  the  main  transmission  routes  of
respiratory  infectious  diseases,  while  airborne  transmission
routes  were  considered  negligible.  Until  1962,  airborne  trans-
mission began to attract  attention in the study of  tuberculosis
outbreaks[32]. However, the view that contact and droplet trans-
mission  were  the  main  transmission  routes  remained  main-
stream for a period. After SARS in 2003, many scholars studied
the transmission mechanism of  respiratory infectious diseases.
Morawska  et  al.  studied  indoor  droplet  diffusion  law  and
personnel exposure assessment methods[33]. Qian & Li, and Li et
al.  studied the influence of indoor ventilation on the transmis-
sion mechanism of respiratory infectious diseases[34,35]. Melikov
studied  measures  to  reduce  indoor  risks,  such  as  personalized

ventilation  and  air  purification[36].  Xie  et  al.  and  Wei  &  Li  stud-
ied exhaled droplets' particle size distribution and transmission
distance[37,38].  Liu  et  al.  proposed  the  mechanism  of  short-
distance  airborne  transmission  of  respiratory  infectious
diseases[39].  But  until  COVID-19,  there  was  still  controversy
about  the  airborne  transmission  mechanism  of  respiratory
infectious  diseases,  and  only  a  few  infectious  diseases  that
caused  cross-room  infections  were  generally  recognized  as
having airborne characteristics[40].

Since  2019,  interdisciplinary  studies  under  the  COVID-19
pandemic  have  shown  that  airborne  transmission  is  likely  the
main transmission route of respiratory infectious diseases[41−43].
Many  scholars  have  conducted  studies  on  the  airborne  trans-
mission  of  respiratory  infectious  diseases  based  on  actual
cases[44,45].  Li  summarized  the  main  transmission  routes  of
COVID-19  and  proposed  that  short-range  airborne  transmis-
sion  is  the  leading  cause  of  cross-infection.  Long-distance
airborne  transmission  continues  with  short-range  airborne
transmission[46].  At  present,  scholars  and  official  organizations
such  as  the  WHO  have  widely  recognized  the  airborne  trans-
mission  route  of  respiratory  infectious  diseases[47].  Airborne
transmission, also known as aerosol transmission, refers to 'the
spread  of  an  infectious  agent  caused  by  the  dissemination  of
droplet  nuclei  (aerosols)  that  remain  infectious  when
suspended in air  over  long distances and time'[48].  Evidence of
airborne transmission has been found for respiratory infectious
diseases  such  as  measles,  influenza,  and  COVID-19.  Richard  et
al.  verified  that  SARS-CoV-2  could  spread  in  the  air  through
animal  experiments[49].  Milton  et  al.[50] and  Alsved  et  al.[51]

detected  viral  RNA  in  the  exhaled  aerosol  of  influenza  and
COVID-19  patients  through  experimental  sampling  and  found
that  aerosols  smaller  than  5 µm  contained  a  high  amount  of
virus.  In addition,  viruses have also been detected in the air  of
COVID-19 patients' wards or living environments[52].

Due  to  the  similarity  of  transmission  processes,  airborne
transmission  is  often  confused  with  droplet  transmission.  The
existing  studies  mainly  distinguish  them  based  on  the  differ-
ence  in  particle  size,  with  large  particles  usually  classified  as
'droplets' and small particles as 'aerosols'.  'Droplets' are usually
mainly affected by gravity and have a short diffusion distance,
while  'aerosols'  may  be  suspended  for  a  long  time,  leading  to
long-distance  transmission[53].  However,  the  demarcation  of
particle  sizes  remains  a  subject  of  controversy.  The  academic
community  has  debated whether  particles  would settle  to  the
ground  within  1  to  2  m  after  being  exhaled,  and  a  commonly
used  threshold  for  distinguishing  between  droplet  transmis-
sion  and  aerosol  transmission  was  set  at  5 µm.  With  further
research,  scholars  found  that  this  discrimination  method  may
not  be  accurate:  not  only  aerosols  less  than  5 µm  have  the
possibility  of  long-distance  airborne  transmission,  but  also
some  droplets  with  medium  particle  size  of  5~100 µm  might
also  suspend  in  the  air  for  a  long  time  and  be  inhaled  by
susceptible  people,  leading  to  cross  infection[54].  Considering
that  some  droplets  will  evaporate  into  droplet  nuclei  before
settling,  and  the  final  particle  size  is  like  that  of  aerosol,  the
actual  particle  size  of  droplet  and  aerosol  is  estimated  to  be
60~100 µm.  It  is  generally  believed  that  aerosols  smaller  than
30 µm  can  be  suspended  in  the  air  for  more  than  1  min.
Droplets  between  30  and  100 µm  are  inhaled  only  near  the
patient  and  deposited  only  in  the  upper  respiratory  tract,  and
droplets  larger  than  100 µm  are  usually  not  inhaled  directly.

Respiratory infectious disease transmission
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From  an  aerodynamic  point  of  view,  the  probability  of  tiny
aerosols entering the lungs after being inhaled is  more signifi-
cant,  which  may  lead  to  infection  of  the  alveolar  tissue  of  the
lower  respiratory  tract.  Chen  et  al.  showed  that  because  the
areas  where  droplets  deposited  and  could  infect  susceptible
persons  (eye  membranes,  mouth,  nose)  accounted  for  only
about  1.15%  of  the  frontal  area  of  the  head[55],  it  is  likely  that
the airborne route of  small-size aerosols dominated the risk of
infection even during close exposure[55]. The amount of virus in
the  exhaled  aerosol  of  influenza  patients  was  about  8.8-fold
higher than that in large droplets[56],  and similar findings have
been  observed  in  COVID-19  patients:  more  than  90%  of  the
exhaled viral RNA of patients was present in aerosols, suggest-
ing  the  role  of  viral  aerosols  in  COVID-19  transmission.  These
studies suggest that airborne transmission is essential in trans-
mitting respiratory infectious diseases.

Many  factors  affect  the  airborne  transmission  of  infectious
substances,  such  as  respiratory  airflow  velocity,  ventilation,
walking,  and  other  human  activities,  among  which  the  key  is
indoor airflow[57]. Studies have shown that infections of respira-
tory  infectious  diseases  mainly  occur  in  indoor  scenes  with
poor  ventilation[58].  Temperature  stratification  in  the  displace-
ment ventilation environment may lead to the concentration of
infectious  substances  exhaled by  patients  at  the  height  of  the
respiratory  zone,  increasing  the  risk  of  susceptible  persons[59].
In  general,  airflow  significantly  impacted  the  spread  range  of
infectious  substances.  When  there  is  no  wind,  the  concentra-
tion of  virus  droplets  exhaled by patients  in  a  static  scene will
decrease rapidly within 1~2 m[39].  However, some droplets can
spread  more  than  6  m  with  wind[60].  In  addition,  the  airflow
velocity  of  infectious  substances  exhaled  by  patients  can  also
affect  the  spread  distance  of  infectious  substances.  For  exam-
ple, droplets released by sneeze may spread more than 8 m due
to  high  initial  velocity  (>  15  m/s)[61].  Ai  &  Melikov  studied  the
effects  of  factors  such  as  air  exchange  rate,  relative  position,
distance, and indoor airflow on individual transient exposure in
the near-exposure scenario and found that individual exposure
changes  significantly  in  short-term  interaction  events,  indicat-
ing  that  the  research  conclusions  based  on  the  steady-state
scenario may not apply to the non-steady-state scenario[62].

Scholars  have  clarified  the  basic  rules  of  airborne  transmis-
sion  of  respiratory  infectious  diseases  through  experimental
and numerical simulation studies. These studies provide a refer-
ence for understanding the transmission process of respiratory
infectious  diseases  and  designing  prevention  and  control
measures. From the perspective of the research trend, the early
studies were mainly in steady-state scenarios. With the deepen-
ing  of  research,  the  studies  that  considered  the  transient
changes  of  respiratory  airflow  were  gradually  enriched.  The
research on the transmission law of infectious substances in the
dynamic  scenario  with  human  movement  also  attracts  more
attention.

 Exposure and infection risk assessment for
susceptible individuals

To  assess  the  spread  and  prevalence  of  infectious  diseases,
an essential basic work is to assess the infection risk of suscepti-
ble individuals in typical areas. For individual respiratory expo-
sure and infection risk assessment methods of respiratory infec-
tious  diseases,  scholars  have  carried  out  a  series  of  studies  on

typical  indoor  scenarios  such  as  classrooms[63],  hospitals[64],
conference  rooms[65],  and  aircraft  cabins[66].  Many  methods
have  been  established  to  analyze  the  susceptible  individuals'
exposure and risk of respiratory infectious diseases[67−70], includ-
ing  the  Wells-Riley  equation,  Dose-Response  model,  Monte
Carlo  model,  CFD-Eulerian  method,  CFD-Lagrangian  method,
and Experimental methods. These methods have been used to
study human exposure and infection risk due to airborne trans-
mission.  It  should  be  noted  that  the  Wells-Riley  equation  and
Dose-Response  model  are  commonly  used  to  assess  the  aver-
age  infection  risk.  Only  in  combination  with  the  Euler  or
Lagrangian methods can these two methods obtain the spatial
distribution of pathogen concentration and infection risk[71].

There  are  differences  in  the  specific  principles  of  these
models. The most critical parameters assess susceptible individ-
uals'  inhalation  or  exposure  dose  of  infectious  substances.
Taking  the  Wells-Riley  model  as  an  example,  Wells  first  pro-
posed  the  'quantum  of  infection'  concept  in  1955  to  calculate
the  risk  of  airborne  infection.  The  'infective  quantum'  is  the
dose  that  directs  infection  to  a  susceptible  individual  and  can
be  one  or  more  pathogens  that  can  attach  to  the  droplet.  In
1978,  based  on  the  'infection  quantum'  concept,  Riley  et  al.
proposed  and  developed  the  Wells-Riley  equation  to  predict
the risk of airborne infection[72].  In the follow-up studies, scho-
lars made various modifications considering the effects of filtra-
tion,  particle  sedimentation,  respiration,  non-steady state con-
ditions, etc. However, for a long period, most studies using the
Wells-Riley model are confined to a single enclosed space and
assume  that  infectious  substances  are  evenly  distributed  in
space,  which  is  different  from  the  real  situation.  Qian  et  al.
established a mathematical  model  to predict  the spatial  distri-
bution  of  airborne  infection  risk  of  respiratory  infectious
diseases by combining the Wells-Riley model and CFD method,
considering the inhomogeneity of  spatial  distribution of  infec-
tious  substances,  which  can  be  used  for  indoor  regional  risk
assessment.  A  large  outbreak  in  Hong  Kong  during  the  SARS
epidemic  was  used  to  verify  the  model's  validity[73].  Guo  et  al.
introduced  the  spatial  flow  impact  factor  (SFIF)  on  this  basis.
They  combined  with  the  Wells-Riley  model  to  propose  a
method to obtain the spatial  distribution of infection probabi-
lity, which can be used to guide the optimization of the indoor
layout  of  personnel  and  purifiers[74].  Zhang  &  Lin  proposed  a
dilution-based  infection  risk  assessment  method.  The  applica-
ble  scope  of  the  Wells-Riley  model  is  further  expanded[75].  In
general, the risk assessment of airborne transmission of respira-
tory  infectious  diseases  using  the  Wells-Riley  model  has  the
advantages  of  being  simple  and  efficient.  However,  due  to  its
assumption  based  on  steady  state,  it  needs  to  be  modified  in
the risk assessment study of dynamic scenarios combined with
the non-steady state calculation results to achieve a more accu-
rate  quantitative  assessment  of  regional  risk  and  individual
exposure risk.  In  related studies,  quantifying the proportion of
inhaled  air  of  susceptible  individuals  to  the  exhaled  breath  of
patients  combined  with  the  Wells-Riley  model  to  assess  sus-
ceptible  individuals'  infection  risk  quickly  has  shown  good
application prospects[76−78].

Based on the transmission mechanism and exposure assess-
ment  study,  scholars  preliminarily  defined  the  range  of  high-
risk  areas  in  typical  environments.  They  proposed  relevant
control  strategies,  such  as  ventilation,  disinfection,  and  main-
taining a  safe  distance.  They also have explored the impact  of
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protective  measures.  To  control  the  source,  the  influence  of
protective  measures  such  as  masks  on  the  transmission  range
and  safe  distance  of  infectious  substances  was  discussed[79,80].
Personalized  ventilation,  air  curtains,  and  other  means  have
shown  good  application  prospects  in  terms  of  indoor  ventila-
tion  and  airflow  control.  Regarding  reducing  the  activity  of
pathogens,  scholars  have  carried  out  studies  on  ultraviolet,
photocatalysis,  high-efficiency  filters,  and  other  means.  Yao  et
al.  found  that  ozone  and  high  temperatures  may  reduce
viruses' activity in studying environmental factors[81].  However,
most existing studies on the airborne transmission mechanism
of respiratory infectious diseases are based on static scenarios,
and the relevant conclusions (e.g., safe social distance) ignored
the influence of human movement in dynamic scenarios[82,83].

 Effects of human movement on airborne
transmission

Human  activities  can  change  indoor  airflow  and  affect  the
infectious  substances  diffusion[84].  Since  the  1990s,  scholars
have  conducted  studies  on  the  effects  of  human  behavior  on
flow  field  and  pollutant  diffusion.  The  involved  behaviors
include  local  movement  (e.g.,  hand  movement)  and  whole-
body  movement  (e.g.,  walking),  and  opening  the  door  or
window,  sitting  down,  and  standing  up.  With  the  frequent
occurrence  of  respiratory  infectious  diseases,  studies  on  the
influence  of  human  movement  on  infectious  substances  and
risk  attract  scholars'  attention.  Zhang et  al.  studied the impact
of  three  passenger  behaviors  in  cabins  on  air  quality  and
human  infection  risk,  showing  that  human  behavior  greatly
impacted  the  flow  field  and  pollutant  distribution  in  the
surrounding  microenvironment[85].  Personnel  walking  induced
airflow  in  the  operating  room  would  increase  the  concentra-
tion of bacteria on the operating table, leading to an increased
risk of postoperative infection[86]. Recently, Liu et al. studied the
interactions  of  exhaled  buoyant  jet  flow  and  human  motion-
induced airflow in a water  tank.  An apparent stagnant layer in
the  wake  region  and  might  lead  to  long-time  suspension  for
patient-exhaled droplets[87].

For  experiments,  it  is  common  to  simulate  human  move-
ment  using  rail  cars  and  manikins.  The  development  in
mechanical technology, material science, ergonomics, and full-
scale thermal manikin have progressed in the past few decades.
They  have  been  widely  used  in  the  field  of  human  safety,
human  thermal  injury,  and  the  transmission  mechanism  of
respiratory  infectious  diseases[88−90].  Han  et  al.  measured  the
transient  airflow  around  various  parts  of  a  manikin  when  it
moved and its limbs swung, revealing that the flow field distur-
bance  by  body  motion  is  much  more  significant  than  that  of
limb  swing  alone[88].  Therefore,  many  studies  adopted  the
translational  model  to  simplify  human  walking  behavior.
Kalliomäki et al. used a rail car with a full-scale manikin to study
the behavior of opening doors and moving across rooms, indi-
cating that human movement significantly promotes the diffu-
sion  of  pollutants[91].  Halvoňová  et  al.  studied  the  effect  of
human movement on other people's exposure,  indicating that
the  interactive  distance  between  the  moving  person  and  the
stationary person may be the key parameter[92]. Bhattacharya et
al.  studied  the  induced  airflow  on  both  sides  of  real  people
walking at 1 m/s and found that the unilateral lateral influence
range  was  about  0.6  m[93].  Based  on  the  similarity  criterion,

some conducted experimental research on small-scale models.
Poussou et al. studied the diffusion characteristics of pollutants
with  a  small  cabin  model  with  a  1/10  scale  in  the  water  tank,
indicating that human movement would carry pollutants to the
passing  area[94].  Tao  et  al.  developed  a  smoke  visualization
method to show the wake phenomenon around small moving
objects[95].  Using  a  1/5  scale  model,  they  found  that  human
form  significantly  impacted  the  wake.  Luo  et  al.  used  a  1/8
scaled manikin  to  study the characteristics  of  wake and found
that  there  was  obvious  convection  in  the  vertical  direction
around human movement[96].  Although the small-scale experi-
ment has the advantages of saving space and cost, the effect is
not  ideal[97].  Therefore,  full-scale  experiments  are  needed  to
accurately study the real scale human movement airflow, espe-
cially  the  transient  airflow  characteristics  of  interactive  human
movement and its influence on the transmission mechanism of
infectious  diseases.  The  moving  object's  shape  should  be  as
close as possible to real humans. The commonly used methods
for measuring motion-induced airflow include hot ball/hot wire
anemometer, ultrasonic anemometer, laser Doppler anemome-
ter,  smoke  visualization,  particle  image  velocity  measurement
(PIV).

Over  the  past  decades,  the  effects  of  human  movement  on
airflow have been studied in detail. However, many studies did
not  consider  the  interaction  between  human  movement  and
other  people's  respiratory  airflow.  In  fact,  interactive  move-
ment often occurs in the office, factory, train, aircraft cabin, and
other  indoor  scenes.  In  this  process,  the  airflow changes  obvi-
ously  and  rapidly.  Especially  in  the  interactive  movement
between  patients  and  susceptible  persons,  the  interactive
airflow may promote the long-distance transmission of exhaled
infectious  substances.  Recently,  Wu  et  al.  conducted  a  series
study on the transient airflow characteristics of this process and
its  influence  on  the  transmission  mechanism  of  respiratory
infectious  diseases[98,99].  The  airflow  characteristics  of  interac-
tive  human  movement  and  its  influence  on  respiratory  infec-
tious diseases' transmission were revealed. The mechanism and
differences  between  interactive  human  movement's  transient
and continuous effects on individual respiratory exposure were
quantitatively  revealed.  The 'enhancement  effect'  that  interac-
tive human movement leads to expanding the high-risk area of
respiratory  infectious  diseases  was  proposed  and  verified[99]

(Fig. 2).
Due  to  limited  experimental  sites  and  expensive  measuring

instruments,  studying  all  scenarios  and  variables  is  tricky.  For
invasive  measurement  methods,  the  presence  of  instruments
will  also interfere with the airflow field and pollutant  diffusion
process,  affecting the accuracy of measurement results.  There-
fore, the CFD method was introduced into the study of indoor
airflow  in  the  1970s[100] and  was  widely  used  in  the  following
decades, and also used to study the transmission law of respira-
tory infectious diseases and individual respiratory exposure risk
assessment[101−103].  With  the  improvement  of  computers,  the
CFD  method  has  been  used  to  study  the  impact  of  human
movement  on  the  airflow  field  and  the  respiratory  infectious
diseases spread. Compared with experiments, the CFD method
can  study  the  influence  of  parameters  in  detail.  It  has  the
advantages of being low cost, strong repeatability, and has rich
visual information[104],  which can provide reference for individ-
ual  exposure  and  regional  risk  assessment.  In  CFD  methods,
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numerical  and turbulence models are the key factors affecting
the accuracy of calculation[105,106].

To  reduce  computational  costs,  numerical  models  are  often
simplified.  Early  studies  used  simplified  cylinder  or  prism  to
represent  humans[107,108].  However,  simplifying  the  human
model  (e.g.,  ignoring  the  gap  features)  will  affect  the  results.
Therefore, with the development of laser 3-D and CT scanning
technologies,  numerical  human body models with real  human
shape  for  CFD  research  has  gradually  become  the
mainstream[86,96,109]. It can better simulate and restore the influ-
ence of real human movement. The induced airflow caused by
moving objects  increases with movement intensity[110,111],  and
the  peak  wake  velocity  can  reach  about  1.8  times  the  move-
ment velocity. Han et al. quantitatively studied the influence of
personnel movement in the cabin on droplet propagation and
regional  deposition  distribution[112],  indicating  that  personnel
exercising in the cabin usually face a higher infection risk. Choi
& Edwards studied the behavior of five people walking through
a door in turn[113]. Luo et al. found that people's movement will
promote the diffusion and mixing of indoor pollutants at differ-
ent  heights,  and  increase  the  individual's  respiratory
exposure[114]. Researchers have different views on the impact of
human movement  on indoor  particle  concentration and diffu-
sion.  Wang  &  Chow  believe  that  walking  may  reduce  the
suspended  droplets[115].  In  contrast,  Cao  et  al.  showed  that
higher walking speed may prolong suspended aerosol concen-
tration  decay  time  and  increase  the  respiratory  exposure
risk[116]. These differences may be related to human movement
patterns, scene layout, and ventilation differences. So, building
a  numerical  model  closer  to  the  real  human  body  shape  is
necessary. Hence, there may be significant spatial differences in

the  impact  of  human  movement  on  the  diffusion  process  of
pollutants, and the impact on specific areas needs to be further
studied.

Selecting a suitable turbulence model  is  crucial  to the accu-
racy of numerical simulations. Reynolds mean (RANS) methods
such as renormalization group RNG k-ε turbulence model,  and
large eddy simulation (LES) methods are widely used. Poussou
et al. found that the RANS methods can simulate wake changes
caused  by  human  motion[94] and  has  high  computational  effi-
ciency.  Therefore,  although  the  method  is  less  effective  than
the  LES  method  in  restoring  the  details  of  transient
turbulence[108],  the  RANS  method  is  still  widely  used  in  the
numerical  simulation  of  human  movement.  Scholars  designed
specific  scenarios  and provided references for  selecting turbu-
lence models by comparing experimental and numerical simu-
lation  results.  Chen  verified  the  effectiveness  of  calculating
indoor  airflow  by  turbulence  model  through  experimental
results[117].  Blocken  analyzed  the  RANS  and  LES  methods  in
simulating indoor airflow and pollutant transmission[118]. Luo et
al.  studied  a  moving  manikin's  wake  by  PIV  experiment  and
numerical simulations, found that the LES method could better
restore  experimental  results[119].  Overall,  the  LES  method
performs well  in transient simulation and restoring turbulence
details, while the RNG k-ε turbulence model has a good balance
of  comprehensive  performance.  The  choice  depends  on  the
actual scenario and the calculation needs.

Due to the COVID-19 pandemic, the effects of human move-
ment  on  the  transmission  of  respiratory  infectious  substances
have received more attention. Li et al. simulated the diffusion of
droplets  from  coughing  in  walking  patients.  The  droplets
tended to be distributed below the waist of patients, meaning

 
Fig. 2    The 'enhancement effect' of human movement on the high-risk range[99].
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that children may have a higher risk of infection than adults[120].
Chen  et  al.  studied  the  impact  of  head  movement  on  the
transient exposure risk of people in close dialogue scenes. They
found  that  when  the  heads  of  patients  remained  motionless,
the exposure level of susceptible people was relatively high[121].
Furthermore,  some  scholars  conducted  simulations  on  multi-
person  interactive  motion.  Zhao  et  al.  studied  the  impact  of
multi-person,  side-by-side  directional  walking  in  a  terminal  on
airflow  and  pollutant  diffusion[122].  Liu  et  al.  simulated  the
impact of people taking a van passenger escalator on the diffu-
sion  of  exhaled  droplets  of  patients.  Infectious  substances
significantly  followed the wake[123],  and results  also suggested
that  the  multi-person  interactive  movement  may  promote
long-distance airborne transmission[124] (Fig. 3).

Overall,  human  movement  will  promote  indoor  air  mixing,
enhance  the  diffusion  of  droplets,  and  might  reduce  particle
removal  speed.  The  whole-body  movement's  influence  is  the
most  significant.  It  is  necessary  to  consider  the  influence  of

human movement on airflow and infectious material  diffusion
for epidemic control.

 Effects of facemasks on source characteristics
and infection risk

Facemasks  can  slow  or  stop  the  transmission  process  of
respiratory  infectious  diseases,  and  they  are  classified  into
source control and respiratory protection[125].  Source control is
placing facemasks on the infection source to reduce emission,
and respiratory protection is placing facemasks on the suscep-
tible individual, i.e., the receiver. Source control modifies exha-
lation flow and respiratory protection modifies inhalation flow.
Figure 4 shows the facemask protection model.

 Effect of facemasks on source control
Scholars  quantitatively  studied  the  effect  of  wearing  masks

on  significantly  reducing  the  exhaled  droplets  number  and

 
Fig. 3    Multi-person movement's effects on airborne transmission[124].
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limiting  the  diffusion  range  of  aerosols[126,127].  Chu  et  al.[128]

carried out a systematic analysis on countermeasures of COVID-
19 including physical distancing, facemasks and eye protection.
The  result  shows  that  facemasks  could  reduce  infection  risk
significantly,  while  N95  facemasks  provide  better  protection
than  surgical  masks.  However,  Bartoszko  et  al.[129] compared
surgical  and N95 masks and found that both masks offer  simi-
lar protection against viral respiratory infectious diseases. Adjo-
dah  et  al.[130] found  a  statistical  association  between  mask
mandates  and  decreased  newly  infected  cases,  deaths,  and
hospital admissions. Meta-analysis conducted by Liang et al.[131]

shows  similar  results  that  facemasks  had  a  protective  effect
against viruses.

Based  on  an  analysis  of  facemask  protection  mechanism,
Schmitt  &  Wang[125] identified  three  types  of  facemasks:  high-
performance  respirators,  surgical/medical  and  community
masks. High-performance respirators are designed to offer both
source  control  and  respiratory  protection.  Surgical/medical
masks  and  community  masks  can  be  used  for  source  control,
but  are  inadequate  for  respiratory  protection  due  to  looser  fit
and  lower  protection  efficiencies.  High  performance  respira-
tors including N95, KN95, and FFP2 respirators have played an
important  role  against  SARS-CoV-2  Omicron  variant.  Baker  et
al.[132] reported that instituting of N95 respirators and daily test-
ing  rapidly  abated  infection  clusters  in  hospitals.  KN95,  N95,
and  FFP2  are  equivalent  in  protection  effectiveness.  KN95
follow the standard GB2626-2019 issued by China in December
31,  2019.  There  are  also  facemasks  like  FFP2  and  N95  that
follow  different  standards  offer  protection  which  is  equivalent
to  that  of  KN95.  FFP2  (filtering  face  piece  2)  follow  the  Euro-
pean  standard  EN  149-2001+A1:  2009,  and  N95  follow  Ameri-
can  standard  NIOSH  42  CFR  Part  842019.  All  three  kinds  of

facemasks  are  designed  for  respiratory  protection,  Details  of
these regulations are shown in Table 1.

Source  control  (exhalation protection)  offered by  facemasks
is  expected  to  change  dynamics  of  exhaled  air  jets,  and  thus
reduce expulsion of aerosols of respiratory fluids into the envi-
ronment.  Lindsley  et  al.[133] assessed  source  control  perfor-
mance of  cloth masks  (community  masks),  medical  masks  and
high  performance  respirators,  and  found  that  filtration  effi-
ciency ranged from 17% to 71% for coughing and 35% to 66%
for  exhalation.  Filtration  efficiency  is  affected  by  multiple
factors  such  as  aerosol  particle  size,  respiratory  flowrate,  and
mask-face  fit  factors.  Ni  et  al.[134] defined  outward  fitted  filtra-
tion  efficiency  (oFFE)  that  takes  particle  diameter,  respiratory
flowrate  and  mask  fit  factor  into  consideration  in  order  to
represent realistic source control effectiveness. Qualitative visu-
alizations  have  been  conducted  on  breathing,  speaking  and
laughing using a Schlieren imaging setup[135,136],  Bourrianne et
al.[137] used infrared imaging and particle image velocimetry to
visualize  exhalation  flow  with  and  without  facemasks.  Experi-
ments  showed  that  facemasks  confined  exhaled  flows  within
tens  of  centimeters  in  front  of  a  person,  and  turned  jetlike
exhaled flows into quasivertical buoyancy-driven flows.

Respiratory  protection  (inhalation  protection)  changes
dynamics  of  inhaled  air  flows  and  stop  virus-laden  droplets
from  entering  the  respiratory  tract.  van  der  Sande  et  al.[138]

investigated  respiratory  protection  efficiency  of  multiple  face-
masks  by  short  and  long  term  inward  protection  experiment.
Results  showed  that  reductions  in  viral  exposure  and  risk  of
infection were seen in experiments with all types of masks, and
high performance respirators provided most protection despite
imperfect  fit  (Fig.  5)  .  Hu[139] reviewed  advances  in in  vivo
sampling  facemask  devices.  Filtration  residuals  collected  by

 
Fig. 4    Model of facemask protection. Source control aims to reduce virus-laden droplets exhaled from infected individuals, and respiratory
protection aims to protect susceptible individual from inhaling droplets emitted by infection sources.

Table 1.    High-performance respirator regulations.

Region Regulation Name Particle Filtration
Effciency (PFE, %) FE test flowrate Particle diameter (µm)

China GB2626-2019 KN90 ≥90 30~100 L/min, continuous flow 0.075 ± 0.020
KN95 ≥95

KN100 ≥99.97
Europe EN 149-2001+A1: 2009 FFP1 ≥80 95 L/min, continuous flow 0.02~2

FFP2 ≥94
FFP3 ≥99

America NIOSH 42 CFR Part 84-2019 N95 ≥95 20.0~65.0 L/min, breathing 0.075 ± 0.020
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facemasks can be used for investigation of inhaled and exhaled
pathogens,  thus  contributing  to  personal  viral  exposure  and
regional infection risk assessment.

 Infection risk assessment method considering
facemask application

Application  of  facemasks  can  alter  personal  and  regional
infection  risk.  On  the  macroscopic  level,  epidemiology  meth-
ods  are  applied  to  determine  effectiveness  of  facemasks  from
real world epidemic data, while simulation methods are used to
understand facemask-altered epidemic dynamics,  and forecast
epidemic spread. Zeng et al. performed an epidemiology inves-
tigation  on  effect  of  facemasks  on  COVID-19.  Results  showed
that  facemasks  showed  statistical  correlation  to  reduction  of
daily infection cases.  Cheng et al.[140] performed epidemiologi-
cal  analysis  on  confirmed  cases  of  COVID-19,  and  compared
masking  populations  with  non-mask-wearing  populations.
They  found  that  COVID-19  infection  case  number  was  signifi-
cantly lower in the masked regions. Mniszewski et al.[141] devel-
oped epidemic simulation model of large social  networks,  and
experimented  impact  of  facemask  usage  on  the  spread  of
epidemic.  Results  showed  that  facemasks  alone  have  limited
effect  on  epidemic  spread,  but  could  become  more  effective
when  combined  with  other  interventions  such  as  hand  sani-
tizer.  The  SEIR  model  is  the  most  used  model  for  epidemic
dynamics simulation. Maged et al.[142] found that usage of face-
masks  reduced  reproduction  number  of  SARS-CoV-2  by  49%,
when 60% of  1 million simulation population wore facemasks.
Kai  et  al.[143] used stochastic dynamic network based compart-
mental SEIR model and agent-based Monte Carlo simulation to
investigate  effect  of  facemask  usage  and  latency  of  mask
mandates. A modified SEIAQR model was adopted by Yadav &
Singh[144] for analysis of efficacy of vaccine and facemasks.

On  the  microscopic  level,  effectiveness  and  regional  risk
assessment  are  carried  out  by  experimental  and  simulation
methods.  Experimental  methods  include  techniques  such  as
light  scattering[145,146],  thermal  imaging[147] and  particle
tracing[148].  These  methods  qualitatively  determine  infection
risk  by  visualizing  respiratory  flow,  and  quantitively  assess

infection risk by measuring properties of respiratory flow field.
Simulation methods mainly refers to CFD simulations. CFD has
been  used  to  quantify  the  infection  risk  of  inhalation[127].
Properties  of  respiratory  flow  and  infection  risk  can  be  deter-
mined using Eulerian-Lagrangian multiphase model. The trans-
mission  process  including  viral  droplet  evaporation,  breakup
and  turbulent  dispersion  can  be  well  simulated[149].  Another
CFD simulation focused on variance of protection of facemasks
with  respiratory  particles  diameters[150].  Smaller  particles  (dia-
meters smaller than 10 µm) tended to escape through leaking
flow,  while  most  larger  particles  were  caught  by  facemasks.
Besides CFD models, other methods were adopted. Ni et al.[134]

proposed a reduced order model, using electric circuit to repre-
sent  respiratory  flow,  so  that  fraction  and  distribution  of  leak-
ing  flow  can  be  determined.  Liu  et  al.[151] simulated  close
contact  behavior  on  a  subway  system,  and  found  that  virus
exposure could be reduced by 82% if all passengers wore surgi-
cal masks.

Overall, scholars care about the effectiveness of facemasks in
curtailing  the  transmission  of  respiratory  infectious  diseases,
with a particular emphasis on source control. Facemasks serve a
dual  function:  source control  and respiratory protection.  High-
performance respirators, including N95, KN95, and FFP2 masks,
are  pivotal  in  providing  both  source  control  and  respiratory
protection. They have proven instrumental in mitigating infec-
tions.  Source  control  involves  placing  facemasks  on  infected
individuals  to  reduce  the  emission  of  virus-laden  droplets.
Filtration  efficiency,  aerosol  particle  size,  respiratory  flow  rate,
and  mask  fit  are  influential  factors.  Visualizations  and  experi-
ments  demonstrate  how  facemasks  alter  exhaled  airflows,
confining them near the wearer. Respiratory protection, on the
other  hand,  prevents  the  inhalation  of  virus-laden  droplets.
High-performance  respirators  have  been  found  to  offer  effec-
tive  protection,  even  with  less  than  perfect  fits.  A  range  of
methods,  including  CFD  simulations  and  experimental  tech-
niques, have been employed to assess facemask efficacy at the
microscopic level. Epidemiological studies confirm the substan-
tial positive effects of facemasks when used in conjunction with
other interventions.

 Future research

Public  health  emergencies  are  more  frequent  and  have
become  a  massive  threat  to  public  safety  nowdays.  Although
the WHO declared the end of the global health emergency for
COVID-19,  there remains a possibility  of  large-scale respiratory
epidemics  in  the  future.  The  COVID-19  pandemic  shows  that
many  infections  occur  during  interactive  movement  between
susceptible  and  patients.  Therefore,  further  elucidating  the
transmission  mechanism  of  respiratory  infectious  diseases,
especially  in  dynamic  scenarios,  is  significant  for  guiding  the
formulation of epidemic control measures. Further research can
be carried out in the following aspects.

 Patients' pathological characteristics and
personnel protection characteristics

The  difference  in  respiratory  infectious  substances  in
patients' respiratory tract replication sites significantly impacted
exhalation  characteristics  and  indoor  individual  exposure.  For
different types of respiratory infectious diseases,  it  is  necessary
to combine the pathological characteristics of patients, consider
various  respiratory  activities  (such  as  sneezing  and  coughing),
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Fig. 5    Synthetic schlieren images of exhaled flows changes with
and without a facemasks under different scenarios: (a), (d) breath-
ing quietly; (b), (e) saying 'also'; (c), (f) laughing[136].
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and  comprehensively  consider  factors  such  as  lung  environ-
mental  humidity,  aerosol  condensation,  respiratory  rate,  and
phase.  Wearing  facemasks  in  indoor  spaces  with  many  people
has become the norm. The impact of facemasks on the protec-
tive effect, such as the filtration efficiency of pathogens and the
gaps generated during the breathing process,  deserves further
study to improve the accuracy of risk assessment and guide the
scientific setting of prevention and control measures.

 Multi-pose human database for personalized and
refined evaluation

The body size difference of personnel will significantly affect
the airflow characteristics of interactive motion, and most exist-
ing  studies  have  chosen  medium  body  size  manikins  to  carry
out  research.  Volunteers  with  different  body  characteristics
should  be  recruited.  The  personalized,  multi-pose  numerical
human  model  database  should  be  entirely  constructed  in
combination with CT imaging and laser 3D scanning technolo-
gies,  and quantitative  research should be carried out  in-depth
using the human movement experiment platform and numeri-
cal  simulation methods to provide more comprehensive infor-
mation  and  rules  of  human  movement  airflow.  A  refined  risk
assessment  model  should  be  established,  considering  factors
such as individual immunity differences and vaccination status.

 Interdisciplinary cooperation and consider
people's activity patterns' effects

The  types  of  indoor  human  activities  are  diverse,  the  multi-
person  movement  scene  flow  field  is  complex,  and  the  risk  of
infectious  disease  transmission  is  high.  In  the  future,  environ-
ments with high human activity, such as railway stations, trans-
portation  hubs,  industrial  production  workshops,  and  other
densely  populated  areas,  should  leverage  video  data,  image
recognition,  and  other  tools  to  analyze  typical  behavior
patterns.  Additionally,  combining  these  findings  with  CFD
methods  can  help  study  airflow  characteristics  and  explore
effective intervention methods. The transmission mechanism of
respiratory infectious diseases is multidisciplinary and complex,
involving  virology,  respiratory  physiology,  aerosol  dynamics,
fluid mechanics, building ventilation systems, human behavior,
risk  assessment,  and  other  fields  involving  experimental,
numerical  simulation,  theoretical  analysis,  and  other  technical
means. In the next step, we should continue to promote inter-
disciplinary  cooperation  research  to  deeply  explore  the  influ-
ence  of  personnel  interaction  on  the  transmission  mechanism
of  infectious  diseases.  Quantifying  individual  exposure  and
regional risk changes in dynamic scenarios provides a scientific
basis  for  formulating  prevention  and  control  strategies  for
respiratory  infectious  diseases.  On  this  basis,  to  explore  effi-
cient  infectious  disease  prevention  and  control  measures  to
protect public safety better and promote sustainable economic
and social development.

 Conclusions

Respiratory  infectious  diseases  could  trigger  public  health
emergencies.  In  the  past  decades,  scholars  have  carried  out
many  studies  on  the  transmission  mechanism  of  respiratory
infectious  diseases  and  have  clarified  the  characteristics  of
infection  sources,  airborne  transmission  mechanisms,  and
exposure risk assessment methods for susceptible populations.
The effects  of  human movement on the airborne transmission
mechanism were summarized.  The fundamental  issues are the

airflow characteristics induced by human movement, the influ-
ence  of  human  movement  on  the  indoor  flow  field  and
pollutant  concentration  changes,  and  established  experimen-
tal  and CFD methods suitable for  studying unsteady airflow. A
regional  dynamic  risk  assessment  method  was  established.
These  research results  can be  applied to  guide  indoor  ventila-
tion  design  and  infectious  disease  control  measures.  These
findings  provide  scientific  reference  for  the  prevention  strate-
gies of respiratory infectious diseases.

The  research  has  shown  the  following  trends.  First,  more
research  focuses  on  the  non-steady  state  and  local  interactive
environment.  During  the  current  time  scale,  the  steady-state
research  has  changed  to  more  complex  non-steady-state  and
transient  research,  and  more  attention  has  been  paid  to  the
accurate assessment of key elements such as airflow character-
istics,  particle  concentration,  and  individual  respiratory  expo-
sure  in  transient  processes  like  human movement  in  the  envi-
ronment.  At the spatial  scale,  it  has changed from focusing on
the  characteristics  of  the  whole-space  airflow  field  to  the
microenvironment  airflow  characteristics  around  the  human
body  (e.g.,  the  breathing  zone)  and  the  local  space  of  human
interaction. Second, quantitative research tends to be personal-
ized and refined. With CT, laser scanning, and computer perfor-
mance  development,  constructing  numerical  human  models
with  real  human  shapes  and  respiratory  boundaries  has
become a common research method with CFD simulations. The
assessment of individual respiratory exposure and infection risk
has  also  changed  from  the  overall  regional  risk  assessment  to
the precise quantitative assessment of individual exposure and
risk.  Third,  facemasks  play  a  vital  role  in  mitigating  the  trans-
mission  of  respiratory  infectious  diseases.  High-performance
respirators,  with  their  dual  source  control  and  respiratory
protection mechanisms, are crucial in reducing disease spread.
The  research  findings  contribute  to  understanding  facemask
dynamics, offering valuable insights for public health measures
and interventions.
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