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Abstract
In recent years, China has experienced frequent chemical production accidents. This study collates 1900 briefings of such accidents from 2012 to
2023, sourced from a variety of repositories. By employing association rule mining, we analyzed the connections between causative factors and
patterns  of  these  accidents.  The  analysis  revealed  significant  association  rules  characterized  by  high  lift  values,  severe  consequences,  and
patterns  not  previously  recognized.  A  network  model  was  constructed  utilizing  Gephi® software  to  represent  the  causative  factors  of  these
accidents. Through a centrality analysis of the network nodes, key factors contributing to these incidents were identified. Moreover, a SARIMAX
model was developed and validated using time series data to predict future accident trends in chemical production. The forecasts generated by
this model provide valuable insights for chemical production sectors, highlighting periods with an increased likelihood of accidents. Conclusively,
this  integration  of  data  mining  and  predictive  modeling  could  provide  a  critical  method  for  improving  safety  protocols  and  enhancing  risk
management in chemical industry.
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 Introduction

The chemical  industry,  as  one of  the fundamental  sectors in
China,  has  experienced  a  significant  rise  in  safety  accidents.
Statistics  show  that  between  2016  and  2020,  the  chemical
safety production situation in China is not optimistic[1]. Accord-
ing to the life cycle theory of chemical products, chemical prod-
ucts  often  go  through  five  stages:  reaction  and  production,
output,  waste  disposal,  transportation,  and  storage[2].  During
the  production  stage,  operations  are  conducted  under  high
temperatures  and  pressures  due  to  the  flammable,  explosive,
and drug-manufacturing properties  of  the  chemicals  involved.
Accidents  occurring  at  this  stage  can  pose  a  serious  threat  to
public safety[3].

Accident  briefings  often  record  important  information  and
contain a wealth of professional knowledge. This information is
instrumental  in  comprehending  the  precursors  of  accidents
and primary causes,  playing a vital  role in accident prevention
and control[4,5].  Traditionally,  the analysis  of  historical  accident
briefings  relies  on  mathematical  statistics.  For  instance,  Wang
et  al.  employed  statistics  to  analyze  hazardous  chemical  acci-
dents in China's  chemical  industry during the 1989−2019 high
temperature  season,  focusing  on  accident  locations,  types,
involved chemicals, and occurrence links. This research offered
scientific  recommendations  for  safely  storing  combustible
substances during the summer[6].  In analyzing the 'Tianjin Port
dangerous  chemical  explosion  accident',  statistical  analysis
indicates  that  the  causative  factors  of  chemical  accidents  can
be  classified  into  four  categories:  human  factors,  equipment
and  technology  factors,  external  environmental  factors,  and
management  factors[7].  However,  employing  statistical  meth-
ods  necessitates  careful  sample  selection  based  on  sampling

theory  to  minimize  errors  in  conclusions.  The  challenge  of
obtaining  reliable  data  in  accident  analysis  can  significantly
impact  research  credibility.  Furthermore,  mathematical  statis-
tics often only scratch the surface of accidents, potentially over-
looking  deeper  connections  between  causative  factors  and
patterns[8].  Consequently,  scholars  are  increasingly  turning  to
data  mining  for  analyzing  extensive  accident  briefing  data,
uncovering  hidden  information,  actual  values,  or  rules[9].  Data
mining  technology  has  yielded  positive  outcomes  in  various
areas  of  accident  report  analysis.  For  example,  Castro  &  Kim
used the decision tree method to explore the effects  of  differ-
ent  causative  factors  on  the  risk  level  of  traffic  accidents,  and
found  that  the  causative  factors  involving  people  and  road
conditions  often  lead  to  traffic  accidents  with  serious  conse-
quences[10].  Kim  et  al.  took  multiple  features  as  synthetic
targets to process and analyze the traffic accident briefings[11].
Moreover,  data  mining  has  also  been  employed  to  analyze
500,000  collected  traffic  accident  briefings  to  identify  correla-
tion rules between driver errors and accident severity[12]. In the
field  of  chemical  accidents,  data  mining  techniques  have  also
produced some results. In the study conducted by Niu Yi, data
mining  was  applied  to  analyze  accident  briefing  data  from  a
chemical  enterprise  spanning  2010  to  2016.  The  LDA  topic
model  was  utilized  to  extract  the  causative  topics  from  the
briefing  papers,  revealing  potential  information  within  the
dataset[13].  After  collecting 109 investigation reports  of  chemi-
cal  safety  accidents  from  2015  to  2020,  Yang  et  al.  used  the
Human  Factor  Analysis  and  Classification  System  (HFACS)  to
analyze  the  factors  causing  accidents,  and  concluded  that
human  factors  are  often  pivotal  in  the  occurrence  and
evolution of accidents[14].
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Data  mining  technology,  compared  to  traditional  statistical
methods,  enables  the  rapid  and  thorough  extraction  of  acci-
dent  information  from  briefings,  aiding  in  the  prevention  and
control  of  accidents.  According to  existing studies,  it  is  under-
stood  that  accidents  are  not  isolated  incidents[15].  Although
injuries  may  appear  to  occur  suddenly  at  a  specific  moment,
they  are  the  result  of  the  interaction  of  multiple  levels  of
causative  factors.  To  effectively  mitigate  chemical  production
accidents and enhance enterprise risk management, this study
extensively  utilizes  and  analyzes  gathered  briefings  on  these
incidents. Firstly, employing data mining and complex network
modeling,  we  aim  to  find  correlations  between  causative
factors and accident patterns, seeking to identify key factors in
the  chemical  production  accident  system.  Subsequently,  we
leverage the briefings to generate time series data on chemical
production  accidents.  Utilizing  the  SARIMAX  model,  accident
trends  were  forecast,  thereby  aiding  in  the  identification  of
periods with a higher incidence of accidents.

 Materials and methods

 Data sources and processing
Research  relies  on  data,  and  it  is  imperative  to  ensure  both

sufficient  data  volume  and  data  validity.  This  study  utilized
crawler  code  to  collect  a  total  of  1,900  chemical  production
accident  briefings  from  the  official  websites  of  emergency
management  agencies  (bureaus)  in  different  provinces  of
China,  as  well  as  the  Chemical  Accidents  Information Website,
spanning  from  2012  to  2023.  The  collected  accident  briefing
data encompass a  diverse range of  common accident types in
chemical  production  processes.  After  the  collection  is  com-
pleted,  the  information  extraction  work  is  carried  out  accord-
ing to  the  content  involved in  the  accident  briefings.  To  meet
the  subsequent  data  mining  and  accident  trend  prediction
research, the information extracted from the accident briefings
includes  three  major  categories:  accident  basic  information,
accident  causative  information,  and  accident  consequence
information, as shown in Table 1.

As can be seen from the collected accident briefings, chemi-
cal production accidents often lead to secondary incidents after
the  initial  incident  due  to  untimely  control  or  other  reasons,
resulting  in  an  expansion  of  the  consequences.  Therefore,  in
this  study,  in  the  process  of  extracting  information  from  acci-
dent briefings, we consider dividing accident patterns into 'First
Accident'  and  'Secondary  Accident',  which  represent  the
pattern  of  the  initial  incident  triggered  by  the  main  causative

factors in chemical production accidents and the pattern of the
secondary incident  generated by the interlocking of  the initial
incident,  respectively.  For  example,  in  a  specific  briefing:  'At
23:10  on  27  February  2021,  workers  inhaled  hydrogen  sulfide
gas while  preparing to resume production at  a  chemical  plant
in Jilin,  resulting in five deaths and eight injuries.  The cause of
the  accident  was  found  to  be  a  failure  of  the  power  supply
system  in  the  workshop,  which  prevented  the  ventilation
system from working properly. Consequently, hydrogen sulfide
gas,  released from high-level  tanks  on the  third  floor,  couldn't
be ventilated through the ventilation pipelines. This resulted in
the  release  of  hydrogen  sulfide  gas  from  the  tank  openings,
spreading to the stairwell.  Subsequently, a significant accumu-
lation  of  hydrogen  sulfide  occurred  in  the  stairwell,  reaching
lethal  concentrations.  An  employee  unknowingly  passed
through the stairwell and inhaled large quantities of hydrogen
sulfide  gas  resulting  in  poisoning.  During  the  resuscitation
process,  the  poisoning  incident  occurred  due  to  the  failure  of
several people to wear protective equipment, which led to the
expansion  of  the  consequences'.  In  this  specific  briefing,  the
'First  Accident'  is  presented  as  a  'leak'  and  the  corresponding
'Secondary  Accident'  is  'poisoning',  due  to  the  leakage  of
hydrogen  sulfide  gas.  The  First  Accident  and  the  Secondary
Accident provide further insight into the occurrence pattern of
chemical production accidents.

For  the  acquisition  of  causative  factors  of  chemical  produc-
tion  accidents,  text  mining  was  considered  as  a  method  to
extract  the  causative  factors  extracted  from  accident  briefings
texts[16].  After  text  segmentation,  vectorization  and  normaliza-
tion  of  accident  briefings  texts,  the  text  feature  vectors  are
screened and similar or identical causative factors are merged,
and  a  total  of  55  representative  causative  factors  of  chemical
production  accidents  are  finally  obtained  from  1,900  accident
briefings.  By  the  accident  causative  factors  'MMEM'  theory[17],
the causative factors obtained from the above text mining are
classified according to the four levels of human factors,  equip-
ment  and  technology,  environment,  and  management.  Then
the accident causative factors under all the levels, as well as the
First  Accident  patterns  and  Secondary  Accident  patterns  are
numbered, as shown in Table 2.

 Methods
As shown in Fig. 1, the steps of this study include the follow-

ing.  Based  on  the  premise  of  the  theoretical  support  of  the
above  literature,  this  paper  innovatively  proposes  to  study
chemical  production  accidents,  which  have  a  more  complex
accident  mechanism,  through  data  mining  technology,
complex network, and predictive modeling of time series data.
Firstly,  the association rules  analysis  is  carried out  by  the Eclat
algorithm,  which  seeks  to  explore  the  potential  correlation
between  accident  causative  factors  and  accident  occurrence
patterns. Then, based on the results of association rule mining,
this  study  constructs  a  network  model  of  accident  causative
factors  and  determines  the  key  causative  factor  nodes  in  a
quantitative  way  through  network  centrality  analysis.  Finally,
this  study  considers  a  more  in-depth  application  of  the
collected chemical production accident briefings. As it is known
from previous studies[6],  there are certain seasonal characteris-
tics  of  chemical  production  accidents,  so  this  study  considers
the  quarterly  statistics  of  the  proportion  of  accidents  in  each
quarter  to  the  total  amount  in  the  year  (Accident-Percentage)

Table 1.    Category of accident information extraction.

Category Information extraction content

Basic information Times: years, months, season, time period.
Corporations: nature of enterprise, industry,
province.
Addressees involved: operational phase, fixtures,
type of hazardous chemical.

Cause information Accident patterns: first accident, secondary
accident.
Causative factor layer: man, machine,
environment, management.

Consequence
information

Accident casualties: number of deaths, number
of injuries.
Classification of severity: fatal, injury, harmless.
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and  creates  the  chemical  production  time  series  data.  Then,
through  a  series  of  works:  smoothing  judgment,  first-order
difference processing, SARIMAX model selection and feasibility
verification, model fitting, etc.,  the trend of chemical accidents
in  China  in  the  coming  period  is  predicated  innovatively  and
provide data support for identifying the high-incidence period
of accidents.

 Association rule mining
Association  rule  mining  is  used  to  analyze  the  potential

correlation  between  the  antecedent  and  the  consequent  of  a
rule  and  to  find  the  hidden  information  that  cannot  be
obtained in traditional mathematical  and statistical  analysis.  In
this  study,  association  rule  mining  technology  is  applied  to
chemical  production  accidents  to  analyze  the  correlation
between the causative factors of accidents and the patterns of
accidents.  Through  the  association  rules  analysis,  previously

undiscovered  or  neglected  information  can  be  obtained  from
massive  accident  briefings,  which  can  provide  certain  help  for
enterprises in the identification of hidden hazard sources, acci-
dent prevention,  and control,  it  also provides data support  for
the  construction  of  the  accident  causative  factors  network
model.

The  traditional  Apriori  algorithm  performs  well  in  handling
small data sets, but with the expansion of the data volume, the
Apriori  algorithm  needs  to  scan  the  data  table  several  times,
which  takes  up  a  large  amount  of  computer  hardware
resources  and  generates  association  rules  that  are  not  ideal,
and  there  are  more  invalid  rules.  In  this  paper,  we  consider
using the Eclat algorithm for association rule mining to improve
the  efficiency  and  accuracy  of  association  rule  results.  Com-
pared with  the traditional  association rule  algorithm,  the Eclat
algorithm  adopts  the  new  database  structure  of  vertical  data

Table 2.    Causative factors and patterns of chemical production accidents.

Layers Causative factors

Human Improper or faulty operation (H01) Illegal changes in production processes or procedures
(H10)

Unauthorized welding operation (H02) Smoking violation (H11)
Work without safety equipment (H03) Human-caused fires (H12)
Violation of safety operating regulations (H04) Human-caused damage to equipment or piping (H13)
Unauthorized use of equipment or raw materials that pose a safety
hazard (H05)

Failure to close valves promptly after operation (H14)

Failure to carry out fire separation or clearance of flammable material
prior to operation (H06)

Unauthorized absence (H15)

Incorrect or excessive addition of reaction materials (H07) Command error (H16)
Failure to conduct safety tests prior to operating in a limited space (H08) Lack of specialized skills (H17)
Operating equipment without appropriate qualifications (H09)

Machine Equipment or system failure (Eq01) Equipment ageing leakage (Eq13)
Circuit short or power supply system failure (Eq02) Equipment not equipped with electrostatic discharge

device (Eq14)
Pipe rupture (Eq03) Valve failure (Eq15)
Problems with process or technology (Eq04) Heat or static electricity from mechanical friction (Eq16)
Reaction kettle over-temperature or over-
pressure (Eq05)

Material strength defects (Eq17)

Tank rupture leak (Eq06) Clogged pipes (Eq18)
Seal failure or ineffective sealing (Eq07) Failure of ventilation equipment (Eq19)
Valve internal leakage (Eq08) Pump body failure (Eq20)
Broken or disconnected pipe connections (Eq09) Boiler rupture (Eq21)
Safety defects in equipment or failure of safety interlocking devices
(Eq10)

Flange leakage (Eq22)

Loose or dislodged valve (Eq11) Collapse of support frame (Eq23)
Seal dislodged or corroded (Eq12) Safety valve trip (Eq24)

Environment High temperature exposure (En01) Ambient moisture corrodes equipment or reacts with
substances (En04)

Rainstorm (En02) Lightning fire (En05)
Gale (En03) Cold temperatures (En06)

Management Failure to rationalize storage according to the nature of the chemical
(M01)

Illegal handling of reaction gases or wastes (M05)

Illegal business (M02) Failure to regularly service equipment (M06)
Ventilation not switched on due to chaotic management (M03) Deficiencies in fire management (M07)
Deficiencies in security management (M04) Insufficient training in emergency response capacity

(M08)

First
Accident

Explosion (FA01) Over-pressure (FA06)
Fire (FA02) Object strikes (FA07)
Poisoning (FA03) Fall from height (FA08)
Leakage (FA04) Other (FA09)
Over-temperature (FA05)

Secondary
Accident

Explosion (SA01) Leakage (SA05)
Fire (SA02) Object strikes (SA06)
Poisoning (SA03) Fall from height (SA07)
Blindly Rescue (SA04) No secondary accidents (SA08)

Analysis of chemical production accidents in China
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representation,  applies  the vertical  database to store the data,
and  searches  the  frequent  items  based  on  the  probability
lattice  theory  by  using  the  equivalence  relationship  based  on
prefixes  to  divide  the  search  space  into  smaller  subspaces[18].
The  vertical  database  consists  of  items  and  all  the  transaction
numbers  (TIDs)  that  contain  the  items.  Based  on  the  chemical
production accident dataset, the causative factor items and the
accident  occurrence  pattern  items  counted  above  are  inte-
grated  to  construct  the  vertical  database,  as  shown  in  the
example  in Fig.  2.  Unlike  the  horizontally  structured  database
used by the traditional Apriori algorithm, the vertical database
is  identified  by  items,  and  the  Eclat  algorithm  avoids  the

problem of the large amount of  time required for  multiple I/O
(Input/Output) operations by scanning each item[19].

The  Eclat  algorithm  implementation  consists  of  two  main
steps: 1) Scanning the vertical database to get the set of TIDs of
all  items and their containing transactions, and calculating the
support  of  all  items  by  modeling.  A  support  threshold  is  set
when  performing  association  rule  mining,  and  items  less  than
the  threshold  are  pruned  (removed  from  the  collection).  After
pruning  is  complete,  then  construct  the  frequent  term  set.  2)
After  the  completion  of  the  above,  each  item  will  be  merged
with all other items to get a new candidate set. And so on, keep
iterating  the  operation  to  get  all  the  candidate  sets.  Then  do

Chemical production accident briefings collection (2012-2023)
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Fig. 1    Process of analyzing chemical production accidents based on data mining.
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Fig. 2    Example of a vertical database.
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the intersection process according to the TIDs of the candidate
sets to get the TIDs of the new candidate sets. If the support of
the new candidate set is less than the threshold value, pruning
is done again, and the cycle is repeated again[20].

Support  and  Confidence  are  used  to  evaluate  the  results  of
association  rules.  The  Eclat  algorithm  needs  to  find  out  the
rules whose support and confidence are greater than the preset
threshold  value,  the  higher  the  support  of  a  rule  indicates  its
higher universality, and the higher the confidence indicates the
higher  the  credibility  of  the  rule[21].  In  addition  to  confidence
value  and  support  value,  lift  value  can  also  provide  an  overall
measure  of  a  rule.  The  lift  measures  the  correlation  between
the  rule's  antecedent  and  the  rule's  consequent.  If  the  lift  is
greater  than  1,  it  means  that  there  is  a  positive  correlation
between  the  antecedent  and  the  consequent,  and  the  higher
the lift, the more valuable the information provided by the rule,
and vice versa for a negative correlation. Normally we consider
that  rule  with  a  lift  value  greater  than  1  to  be  a  valid  rule.
Threshold  determination  has  an  important  impact  on  the
results of the association rule algorithm rule generation, due to
the different values of the minimum confidence threshold and
the minimum support threshold, there will be differences in the
association  rules  generated  according  to  the  frequent  item
set[22]. If the threshold value is set too high, it may ignore some
correlation rules of  practical  significance,  which can often play
a  guiding  role  in  accident  prevention  and  control.  If  the  thre-
shold value is set too low, a large number of interference rules
and  some  irrelevant  rules  will  be  generated.  At  present,  the
determination  of  the  threshold  value  in  the  association  rule
analysis  algorithm  is  usually  calculated  using  the  formula  (1)
and (2)[23]. The formula is related to the number of occurrences
of the rule antecedent and the total number of associated rules.
After  calculation,  this  study  finally  determines  that  the  mini-
mum support threshold value is 0.015 and the minimum confi-
dence threshold value is 0.25.

Support (Q) =
Number o f accident which f actor Q appears

Total number o f accident occurred
(1)

Con fidence (Q→ R) =
S upport(Q∪R)

S upport (Q)
(2)

 Network modeling of accident causative factors
The  study  of  accident  causative  factors  is  often  based  on

modeling. Zhang & Lowndes studied typical causative factors in
gas protrusion accidents using fault trees[24]. Wu et al. used the
24-model  to  qualitatively  analyze  the  causative  factors  of  the
major  hazardous  chemical  explosion  accident  in  Xiangshui  in
comparison  with  other  models,  which  provided  a  common
framework  for  companies  and  regulatory  agencies  to  prevent
hazardous  chemical  accidents[25].  Network  modeling  has  a
good track record in identifying important factors in a system.
Complex relational network models can systematically analyze
individual  nodes  within  a  network,  quantifying  where  each
node  in  the  network  is  located  in  the  network  system,  its
impact on the nodes associated with it, and the degree of node
criticality[26]. This study applies the relational network model to
the  analysis  of  chemical  production  accidents,  constructs  a
network  model  of  causative  factors  for  chemical  production
accidents,  and  determines  the  key  causative  factors  in  the
model  through  the  analysis  of  network  centrality,  so  as  to
understand  the  system  of  causative  factors  for  accidents  in  a
more comprehensive way.

In this study, Gephi software was used to generate complex
network  models.  In  the  network  model,  the  network  layout
adopts  the  random  layout  form,  and  the  connection  between
nodes  is  set  as  a  directed  connection  due  to  the  existence  of
certain  directionality  between  the  causative  factors  and  the
accident  occurrence  pattern.  In  the  network  model,  the  node
size  indicates  the  frequency  of  the  causative  factor,  and  the
greater  the  frequency,  the  larger  the  node.  The  node  color
depth indicates  the sum of  the connectivity  of  each node and
the connectivity of each node, the larger the value the deeper
the color. The thickness of the edge indicates the weight value
of  the  enhancement  of  the  association  rule,  the  higher  the
enhancement  the  thicker  the  edge  is.  The  color  depth  of  the
edges is determined by the connectivity of the nodes entering
and exiting the network, the darker the color, the more impor-
tant the position of the nodes entering and exiting the network
is in the network.

To  clarify  the  key  nodes  in  the  network  model  of  causative
factors  of  chemical  production  accidents,  to  put  forward
targeted  prevention  strategies,  this  paper  applies  Gephi  soft-
ware to analyze the centrality  of  network nodes and identifies
the key nodes in  the network.  Based on the ranking of  indica-
tors such as Degree Distribution, Closeness Centrality Distribu-
tion,  Betweenness  Centrality  Distribution,  and  Eigenvector
Centrality,  determine the key nodes in the network,  and these
nodes  are  the  important  causative  factors  in  the  chemical
production  accidents  system.  Degree  Distribution  can  intui-
tively  react  to  the  status  of  a  node  in  the  network.  The  larger
the node degree value, the more edges are connected into and
out  of  the node,  and the deeper  the influence of  the node on
other nodes in the network. Closeness Centrality Distribution is
used  to  measure  the  shortest  distance  from  a  node  to  every
other node in its connected component. This concept is widely
used  in  application  scenarios  such  as  the  discovery  of  key
nodes  in  the network.  The value of  Closeness  Centrality,  rang-
ing from [0, 1],  indicates that nodes with values closer to 1 are
nearer  to  the  center  of  the  network.  Betweenness  Centrality
Distribution is used to measure the probability that a node is in
the  shortest  path  between  any  two  other  nodes.  The  concept
was first  proposed by Linton in 1977,  and is  able to accurately
calculate the nodes that play an important role as bridges and
mediators between multiple parts of the network model. Eigen-
vector  Centrality  measures  the  influence  of  nodes  on  network
transmission.  Edges  from  high  centrality  nodes  contribute
more  to  the  target  node's  centrality  than  edges  from  low
centrality  nodes,  a  target  node  having  a  high  eigenvector
centrality  value  means  it  is  connected to  many high centrality
nodes[27].  Eigenvector  centrality  emphasizes  the  surroundings
in which a node is located, for example, in a network model of
causative factors and accident patterns, causative factor nodes
with  higher  eigenvector  centrality  value  are  more  likely  to  be
closer  to  accident  pattern  nodes  and  need  to  be  guarded
against.

 Prediction of chemical production accident trend
The  essence  of  accident  prediction  in  the  chemical  industry

lies  in  conducting  a  quantitative  analysis  to  evaluate  prospec-
tive  safety  conditions.  This  analysis  can  be  categorized  into
macroscopic and microscopic levels, depending on the predic-
tion  objectives.  At  the  macroscopic  level,  historical  accident
data is analyzed through mining and forecasting techniques to
identify  general  trends  in  accident  occurrences.  This  process
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assists relevant departments in anticipating potential risks and
supports the formulation of safety policies through robust data.
At the microscopic level,  the focus shifts to identifying specific
latent hazards within a system, conducting quantitative predic-
tions,  and  implementing  measures  to  mitigate  these  hazards,
thus  enhancing  system  safety.  The  research  presented  in  this
paper is  primarily  grounded in the macroscopic level,  employ-
ing  scientific  models  to  forecast  general  accident  trends  and
periods of high incidence in the chemical industry.

A  time  series  data  is  a  set  of  data  observed  based  on  time
(years,  quarter,  month,  day,  etc.).  Time  series  data  can  be
analyzed  by  fitting  the  appropriate  model  to  forecast  a  future
period. Generally speaking, time series analysis mainly includes
two ways,  one is  to  establish the mechanism of  series  genera-
tion by monitoring and capturing the formation pattern of the
series;  the  other  is  to  predict  the  possible  development  trend
based on the manual acquired data. Auto regressive Integrated
Moving Average Model (ARIMA) is a model commonly used for
forecasting tasks  on time series  data,  the main purpose of  the
model is to complete the description of the time series through
a  specific  mathematical  model  and  to  predict  future  values
based on historical data with historical inheritance characteris-
tics  and  periodicity[28].  In  the  process  of  statistics  of  chemical
production accidents,  due to  the existence of  certain  seasonal
variation  characteristics  of  time  series  data,  this  study  consi-
ders  the  construction  of  Seasonal-ARIMA  (SARIMA).  The
SARIMA  model  is  usually  expressed  as  SARIMA(p,d,q)(P,D,Q),
where P is  the  number  of  seasonal  auto  regressive  terms, D is
the  seasonal  differencing  term,  and Q is  the  seasonal  moving
average term[29]; p is  the number of auto regressive terms, q is
the number of  sliding average terms,  and d is  the differencing
term.  The  mathematical  expression  of  the  SARIMA  model  is
shown in formula (3), where yt is a non-stationary time series, ωt
is  a  Gaussian  white  noise  process, E,p(Bm), θQ(Bm) are  seasonal
moving  average  polynomials,  and B is  the  backward  shift
operator[30].

E, p (Bm)φp (B) (1−Bm)D(1−B)dyt = θQ (Bm)θq (B)ωt (3)
In actual production, the occurrence of chemical production

accidents is often influenced by certain external factors, such as
the  occurrence  of  major  accidents,  the  revision  of  safety  laws
and  regulations,  and  changes  in  the  total  output  value  of  the
chemical industry. The appearance of these external factors will
have  a  certain  impact  on  the  number  of  chemical  production
accidents  in  a  certain  period.  Therefore,  this  study  constructs
the  SARIMAX  model  by  introducing  the  exogenous  variable  X
based on the original  SARIMA model,  which is  an extension of
the SARIMA model by adding exogenous variables through the
correlation  between  predictor  variables  and  response
variables[31]. The format of the SARIMAX model is SARIMA(p,d,q)
(P,D,Q)-AR(X),  The  components  of  X  in  this  study  include  (the
following indicators are weighted and summed): (1) Number of
accidents of major and above level; (2) The quantification of the
impact  of  the  revision  of  the  Law  of  the  People's  Republic  of
China  on  Production  Safety;  (3)  The  average  value  of  the
Petroleum and Chemical Industry Prosperity Index (PICP).

Applying the SARIMAX model for time series data prediction,
firstly, we need to judge whether the collected time series data
are  smooth  or  not,  and  if  they  are  not  smooth,  difference
processing  is  required.  The  time  series  Auto  Correlation  Func-
tion (ACF) and Partial Auto Correlation Function (PACF) provide
information  about  the  lag  period,  and  the  model  parameters
can be selected based on the information provided by the ACF

as  well  as  the  PACF  plots[32].  The  final  model  determination
needs to be determined by relevant evaluation metrics,  which
commonly  include  low  Schwartz-Bayes  information  criterion
(SBIC), Akaike information criterion (AIC), and high adjusted R2
and least  volatility  (sigma 2)[31−33].  Among them,  the AIC crite-
rion is more widely used in the work of evaluating the effective-
ness  of  model  information  extraction.  Once  the  model  has
been determined, it is necessary to validate the feasibility of the
chosen model, and once the model diagnostics are satisfactory,
the fitted predictions can be made.

 Result and analysis

 Association rule mining
 Comparison of algorithms

When  the  support  and  confidence  thresholds  are  the  same,
the  results  of  association  rule  mining  by  the  Apriori  algorithm
and the Eclat algorithm under the same size dataset are shown
in Table 3.

It  can be seen that the Eclat algorithm can improve the effi-
ciency  of  the  algorithm  by  reducing  the  number  of  I/O.
Compared  to  the  Apriori  algorithm  which  generates  a  large
number of invalid rules, the Eclat algorithm generates a higher
proportion of valid association rules to all  the generated rules.
The  Eclat  algorithm  performs  better  on  datasets  with  large
amounts of data.

 Analysis
Among the 96 association rules generated by the Eclat algo-

rithm,  the  top  20  item  sets  with  the  highest  frequency  are
shown in Fig.  3.  We believe that  an association rule with a Lift
greater than 1 is regarded as a valid association rule, that is, the
Lhs  and  Rhs  of  the  rule  are  positively  correlated.  A  total  of  63
valid rules are retained for the 96 association rules after redun-
dant rule deletion and deletion of rules with Lift value less than
1  and  sorted  these  rules  by  Lift  value  from  highest  to  lowest.
There  are  four  types  of  association  rules  represented  in Fig.  4,
and  the  visual  representation  of  63  valid  association  rules  is
shown in Fig.  5.  Each point with a color represents an associa-
tion rule, the size of the point is determined by the Confidence
of the association rule, the larger the value, the larger the point;
the color depth of the point is determined by the Lift value, the
larger the value, the deeper the color.

The  scatter  plot  of  the  distribution  of  Confidence,  Support,
and Lift values of the valid association rules is shown in Fig. 6. It
can be seen that among the 63 valid association rules, there are
results such as Rule 1−10 with very high Lift values, and most of
the rules  have Lift  values  of  (2,  5),  which is  at  a  relatively  high
level,  with  high  Lift  values,  indicating  that  these  association
rules  have  certain  practical  significance.  Confidence  values
between (0.5, 0.8), indicate that the confidence of these associ-
ation rules  is  at  a  high level,  that  is,  the  occurrence of  the  Lhs
will  have  the  occurrence  of  the  Rhs.  From  the  scatter  plot,  we
can  also  see  that  in  some  association  rules  (e.g.,  Rule  5,  7,  11,
13,  etc.),  although  the  Support  value  is  low,  the  Lift  and

Table 3.    Comparison of two algorithms.

Algorithms No. of rules
generated

No. of valid
rules (lift > 1)

Time
(t/s)

Apriori 167 49 87
Eclat 96 63 62
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Confidence values are high, that is, the frequency of these rules
is  low,  but  it  is  more  credible  and  there  is  a  certain  practical
significance.

The  specific  results  of  association  rules  generated  by  the
Eclat  algorithm  are  shown  in Table  4.  The  results  of  the  study
show some undiscovered or underappreciated intrinsic associa-
tions  between  the  causative  factors  and  accident  patterns.  By
comprehensively  summarizing  and  analyzing  the  specific
results  of  association  rule  mining  technology,  we  can  summa-
rize the association rules that  are of  practical  help to chemical
production  safety  management  and  put  forward  relevant
suggestions  to  provide  certain  support  for  enterprises  in  the
work of hazard identification, accident prevention and control.

Rule  1  indicates  that  under  the  premise  of  abnormal  over-
pressure and over-temperature of  the reaction kettle  (Eq05),  it
often  causes  physical  overpressure  explosion  (SA01).  This  rule
has  a  high  degree  of  confidence  (0.872)  and  support  (10.593),
and  also  has  a  high  proportion  in  the  statistics,  so  the  actual
production  needs  to  focus  on.  In  the  reaction  kettle  reaction
production  process  there  are  many  dangerous  factors:  rule  22
can  be  seen  in  its  main  accident  form  for  the  explosion  acci-
dent (FA01) and explosion after the object strikes the accident
(SA06); Material strength problems lead to shell damage corro-
sion (Eq17),  interlocking device failure (Eq10),  often leading to

the  occurrence  of  accidents  are  the  main  factors  (rules  48,  51
are reflected); Problems with the process (Eq04), operator error
or overfilling leading to uncontrolled reactions (H07) are often
a  secondary  factor  in  accidents  (reflected  in  rules  10,  22,  24).
Combined with the Accident Trajectory Crossing Theory, in the
prevention  of  reaction  kettle  overpressure  accidents,  we  can
consider proposing preventive measures by cutting off the two
paths  of  equipment  factor  trajectory  and  human  factor  trajec-
tory.  For  example,  it  can  improve  the  material  strength  of  the
reaction kettle,  using corrosion-resistant  and rigid materials  to
manufacture  the  kettle  and  accessories;  setting  up  pressure-
reducing  valves,  rupture  discs,  and  other  safety  interlocking
devices;  in  the  process  or  man-made  problems  caused  by  the
reaction  kettle  out  of  control  after  the  over-pressure  can  be
released  in  a  timely  manner,  and  so  on.  All  of  these  measures
can  provide  targeted  prevention  of  reactor  over-pressure
explosion  accidents  as  well  as  secondary  accidents  such  as
object  strikes  (SA06)  caused  by  reactor  accessories  flying  out
after an explosion.

Rules  23,  33,  and  44  also  indicate  a  more  important  type  of
accident  occurrence  pattern.  The  antecedent  of  the  rule  (LHS)
contains 'limited space operation without safety testing (H08)',
which  can  be  learned  that  workers  violate  the  regulations  on
limited space operation, and do not carry out the required test-
ing of toxic substances or flammable and explosive substances
before  entering  (H08).  These  behaviors  often  result  in  poison-
ing or explosion accidents. Combined with rules 2 and 26 it can
be seen that in an accident in limited space operation, the 'First
Accident'  in the form of poisoning and asphyxiation,  and after
the occurrence of specific 'Secondary Accidents' often exists in
the  form  of  blind  rescue  (SA04)  leading  to  expansion  of  the
consequences.  This  is  closely  related  to  the  lack  of  daily
emergency  rescue  ability  training  (M08)  for  safety  manage-
ment  departments  of  chemical  enterprises  (confidence  =
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Fig. 3    Histogram of the top 20 frequency ranked items.
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Fig. 4    Examples of different association rule types.
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0.754). After the accident, rescuer often has poor safety aware-
ness,  do  not  consider  their  own  safety,  enter  the  restricted
space,  and  blindly  carry  out  rescue,  leading  to  the  occurrence
of secondary accidents. Preventing the occurrence of such acci-
dents  requires  companies  to  start  with  management  and
strictly  implement  the  operating  procedures  of  'First  ventila-
tion,  then  detection,  and  finally  operation',  and  to  test  and
clean  up  toxic  and  hazardous  substances  in  the  limited  space
before operation. Operators must obtain a limited space oper-
ating license and wear protective equipment and must operate
under  the  condition  of  confirming  safety  and  having  safety
commanders  present  to  supervise.  Enterprises  should  also
strengthen  the  daily  emergency  safety  education,  and  profes-
sional  knowledge  education  for  emergency  rescue  personnel,
to  avoid  the  expansion  of  the  consequences  of  accidents
caused by the lack of blind rescue capabilities.

Among the many association rules, some of them have fewer
occurrences but higher Confidence and Lift values of the rules.
The correlation between the causative factors and the patterns
indicated by these rules is often overlooked in actual chemical
production, yet the consequences of these accidents indicated
by these correlation rules  are large.  For  example,  Rule  59 indi-
cates  that  the  associated  causative  factor  of  flange  leakage
(Eq22) exists under the environment of low temperature (En06),
and these two causative factors often cause personnel poison-
ing  accidents  with  serious  consequences.  It  was  analyzed  that

flange  bolts  tend  to  shrink  under  low  temperatures,  gaskets
create  gaps,  and  the  medium  leaks  due  to  the  difference  in
internal  and  external  pressures,  resulting  in  poisoning  acci-
dents.  Although  this  type  of  accident  accounts  for  a  small
proportion of the dataset, the serious consequences of person-
nel poisoning and casualties usually occur,  and the correlation
rule has a high value of Confidence and Lift, that is, it indicates
that  the rule  has  a  high degree of  credibility,  and it  should be
focused  on.  Combined  with  the  Accident  Trajectory  Crossing
Theory,  consider  cutting  off  the  trajectory  of  the  equipment
factors  to  prevent  the  accident  from  occurring.  Such  as  consi-
dering the replacement of flange sealing form, using steel elas-
tic  gaskets  to  prevent  leakage,  or  using  insulation  cover  and
other  forms  of  flange  insulation  to  avoid  the  phenomenon  of
cold  shrinkage.  Further  examples  are  Rule  11  and  Rule  47,
reflecting  the  explosion  accidents  caused  by  static  electricity
from mechanical  friction (Eq16).  The above rules  also  relate  to
the causative  factors:  equipment  is  not  equipped with  a  static
electricity  export  device  (Eq14),  process  or  technology  pro-
blems (Eq04).  Analysis shows that the occurrence of such acci-
dents  is  usually  due  to  process  or  technical  problems.  Com-
bined with the accident briefings, this type of accident is often
due to flammable liquids or flammable gases in the process of
conveying  an  abnormal  increase  in  flow  control,  resulting  in
friction  between  the  conveying  medium  and  the  wall  of  the
pipe  generated  by  static  electricity.  Due  to  the  equipment  is

 
Fig. 5    Visualization of valid association rules.
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not  equipped  with  a  static  electricity  conductivity  device,  the
static  electricity  accumulates  to  generate  sparks  and  ignite
flammable substances. Conveyance of flammable substances in
high concentrations, resulting in accidents is often in the form
of  an  explosion.  This  type  of  accident  rule  has  a  low  value  of
Support,  indicating  that  it  does  not  apply  to  other  accident
cases, but the Confidence and the Lift values are high, i.e., if the
above  causative  factors  occur,  there  is  a  high  likelihood  that
they  will  lead  to  an  explosion.  In  order  to  control  the  occur-
rence of the above types of accidents, including the control of
process  flow,  flow  abnormalities  in  a  timely  manner  to  shut
down  the  valve  or  material  pumps,  the  installation  of  electro-
static  discharge device for  the equipment and other measures
can be considered.

For  the  rest  of  the  rules,  we  can  also  summarize  them  and
find certain patterns. For example, rules 4, 6, 20, 21, 37, 50, and
58  focus  on  pipelines,  high-temperature  boilers,  valves,  tanks,
and  other  special  equipment  critical  connection  welding,  due
to material aging, and strength decline caused by leakage acci-
dents. The size of this type of accident is often small, and can be
controlled in time,  due to leakage often leading to 'Secondary
accidents'  such as  fire  and localized poisoning.  These  rules  for
chemical  enterprises  to  determine  the  key  maintenance  of
special equipment maintenance parts to provide certain recom-
mendations. Another example are rules 5, 9, 17, 27, 30, 52, and
55 which focus on the fire accidents caused by human factors.
These  include  operators  performing  welding  operations
without  determining  safe  ignition  conditions  (H02),  failure  to
carry  out  fire  separation  or  clearance  of  flammable  material

prior  to  operation  (H06),  employee  smoking  violation  (H11),
illegal  use  of  equipment  or  raw  materials  with  safety  hazards
(H05) and other factors.  From these correlation rules,  it  can be
learned that fires caused by unregulated operation of  welding
operations tend to occur more frequently.  Therefore,  chemical
companies  need  to  focus  on  the  safety  management  of  weld-
ing operations and especially need to regulate the behavior of
operators. Such as welding operations need to do a good job of
improving the effective fire isolation and cleaning of flammable
substances  in  the  operating  area,  the  operators  need  to  carry
out systematic welding professional training, and so on.

This study analyses a large amount of accident briefing data
through  association  rule  mining  techniques.  By  summarizing
the  results  of  association  rule  mining,  some  typical  accident
patterns  in  the  chemical  production  process  are  identified,  as
well as the intrinsic correlation between some undiscovered or
unappreciated  causative  factors  and  accident  patterns.  The
purpose  of  this  study  is  to  deepen  the  understanding  of  the
causes of chemical production accidents and to assist relevant
departments  in  carrying  out  effective  safety  management.
Through the internal correlation between the causative factors
and the accident occurrence patterns, combined with the Acci-
dent  Trajectory  Crossing  Theory,  scientific  suggestions  are
provided  for  enterprises  in  the  prevention  and  control  of  fire
and explosion, poisoning in confined spaces and other specific
accidents, and hazard identification.

 Network centrality analysis
Based  on  the  63  valid  association  rules  generated  by  the

above research, a complex network model is constructed using

 
Fig. 6    Scatter plot of the distribution of important values of association rules.
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Table 4.    Table of results of association rules for chemical production accidents.

Lhs Rhs Support Confidence Lift Count

1 {Eq05} => {FA06, SA01} 0.018857 0.872609 10.594386 39
2 {H03, M08} => {FA03} 0.030857 0.720602 10.445452 45
3 {Eq04} => {FA06, SA01} 0.026857 0.752778 9.130587 35
4 {Eq03, Eq17} => {FA04, SA03} 0.018286 0.683636 8.462905 41
5 {H02, H04} => {FA02} 0.022286 0.469881 7.873096 34
6 {Eq06, Eq17} => {SA03} 0.021238 0.712457 7.567132 25
7 {H14, M08} => {SA04} 0.015429 0.675116 7.467463 18
8 {H03} => {FA01, SA07} 0.035429 0.746988 6.903249 21
9 {H06} => {FA02, SA08} 0.016571 0.630435 6.513123 29
10 {H01, Eq05} => {FA01, SA01} 0.016571 0.627705 5.947571 25
11 {Eq16, Eq14} => {FA01} 0.018286 0.771429 5.811594 26
12 {En04, M01} => {FA01} 0.028001 0.680556 5.299092 31
13 {H09, H16} => {FA01, SA02} 0.015571 0.758333 4.946804 22
14 {M02, M05} => {FA03} 0.017857 0.441861 4.857999 19
15 {M06} => {FA04, SA02} 0.039429 0.534884 4.739863 22
16 {En01, M01} => {FA02, SA01} 0.054223 0.752121 4.562423 24
17 {H02, M07} => {FA02, SA08} 0.017571 0.785714 4.232118 18
18 {H15, Eq05} => {FA06} 0.035452 0.572254 4.225193 31
19 {Eq18, M06} => {FA04} 0.025461 0.712252 4.195752 19
20 {Eq13, Eq17} => {FA04, SA03} 0.023429 0.417101 3.941898 41
21 {Eq08, Eq17} => {FA04, SA02} 0.015429 0.870968 3.833074 21
22 {Eq05, Eq04} => {FA01, SA06} 0.016286 0.214286 3.746835 18
23 {H08} => {FA03, SA04} 0.017571 0.711628 3.722009 34
24 {Eq05, H07} => {FA05, SA01} 0.015429 0.776191 3.509662 18
25 {Eq01, Eq24} => {FA04, SA03} 0.013571 0.236559 3.446755 22
26 {M08} => {SA04} 0.034569 0.754203 3.434612 19
27 {H11} => {FA02} 0.016286 0.857143 3.416856 14
28 {En04, En02} => {SA01} 0.017857 0.679570 3.387493 14
29 {H01, H17} => {FA01, SA03} 0.022857 0.437869 3.319013 25
30 {H12, M07} => {FA02} 0.019143 0.821429 3.274487 21
31 {M01, M03} => {FA01} 0.024286 0.768182 3.264962 16
32 {H01} => {FA04, SA03} 0.025143 0.560656 3.173137 31
33 {Eq19, H08} => {FA01, SA01} 0.021238 0.792662 3.157745 15
34 {Eq06} => {FA04, SA03} 0.011429 0.526316 3.117362 20
35 {Eq12, Eq10} => {FA04, SA03} 0.010857 0.752113 3.090149 19
36 {Eq23} => {FA08} 0.034137 0.763224 3.015276 12
37 {Eq09, Eq17} => {FA04, SA01} 0.015429 0.654225 2.927509 23
38 {Eq02} => {FA02, SA03} 0.022857 0.663636 2.862905 32
39 {H04, H17} => {FA07} 0.011429 0.515054 2.851092 20
40 {Eq07, Eq22} => {FA04} 0.015429 0.743754 2.744540 19
41 {Eq03, Eq20} => {FA06, SA05} 0.013714 0.652284 2.602230 17
42 {Eq11, H13} => {SA03} 0.024643 0.426992 2.541138 24
43 {Eq15, Eq10} => {FA04, SA01} 0.035824 0.724271 2.421214 12
44 {M03, H08} => {FA01, SA02} 0.042341 0.551981 2.348722 17
45 {M01, M02} => {FA02, SA01} 0.011429 0.398507 2.267932 31
46 {H01, H16} => {FA01} 0.020571 0.415082 2.253382 26
47 {Eq04, Eq16} => {SA01} 0.016571 0.617857 2.199636 19
48 {Eq17, Eq05} => {FA01, SA03} 0.010286 0.381255 2.131466 27
49 {Eq03, H10} => {SA02} 0.017714 0.352273 2.116807 21
50 {H13, Eq17} => {FA04, SA03} 0.010286 0.486486 1.957130 18
51 {Eq10, Eq05} => {FA04, SA02} 0.017714 0.324638 1.954165 31
52 {H05, M04} => {FA02, SA03} 0.018286 0.532432 1.836788 21
53 {En03, H03} => {FA08} 0.012571 0.526559 1.769477 15
54 {M01} => {SA03} 0.013714 0.358209 1.736471 18
55 {H06} => {SA01} 0.012001 0.538462 1.707079 14
56 {H05} => {FA01} 0.013714 0.375000 1.592841 24
57 {H01} => {FA06, SA01} 0.011429 0.785116 1.474553 20
58 {Eq21, Eq17} => {FA04} 0.024275 0.412414 1.265134 14
59 {Eq22, En06} => {SA03} 0.024254 0.703145 1.252132 10
60 {M04} => {SA02} 0.016571 0.391892 1.242411 13
61 {M04} => {SA03} 0.011429 0.230270 1.087294 20
62 {En05} => {FA02} 0.029312 0.786116 1.002431 7
63 {En03, Eq23} => {FA08} 0.027416 0.532441 1.000123 10
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Gephi software. Firstly, the causative factors as well as the acci-
dent patterns involved in the above effective association rules
are taken as the nodes of the network model, and the rule rela-
tionships are taken as the edges between the nodes. Due to the
different  rule  lift  values,  the rule  lift  value is  considered as  the
weight  of  the  network  edges  for  the  construction  of  the
network  model.  The  visualization  of  the  accident  causative
factors network model is shown in Fig. 7.

Gephi software was used to iteratively calculate the network
model and analyze the centrality of each causative factor node
in  the  network.  The  main  evaluation  indicators  include  node
degree,  node  closeness  centrality,  node  betweenness  central-
ity, and eigenvector centrality. The distribution of values of the
above evaluation indicators  are  shown in Fig.  8.  In  the bubble
plot,  different  colors  represent  different  types  of  causative
factor nodes, and the size of the bubble represents the degree
value of each node.

After  calculation  by  Gephi  software,  the  causative  factor
nodes  with  the  top  eight  scores  for  each  evaluation  indicator
were screened, and the statistical results are shown in Table 5.
Combining  the  network  model  and  the  centrality  values  of
each node, the following conclusions can be drawn:

At the human factors level, the nodes of improper operation
or error (H01), failure to conduct safety inspection before work-
ing  in  limited  space  (H08),  failure  to  wear  safety  protective
equipment  (H03),  illegal  change  of  production  process  (H10),
and  lack  of  professional  competence  (H17)  are  the  key  nodes,
i.e., the important causative factors in the chemical production
accident  causation  system.  The  closeness  centrality  value  of

H01 is 1, which indicates that this node is located in the centre
of  the  network  and  has  some  correlation  with  many  other
nodes.  Combined with the network model,  workers'  operation
errors  often  trigger  a  series  of  causative  factors  under  other
levels (mainly under the equipment level), such as problems in
the  reaction  process,  faults  in  the  reaction  equipment,  and
static electricity generated by friction, which work together and
lead  to  accidents.  At  the  environment  and  equipment  level,
equipment  material  problems  (Eq17),  reaction  kettle  tempera-
ture  and  pressure  control  (Eq05),  chemical  reaction  process
problems  (Eq04),  safety  interlocking  device  problems  (Eq10),
and  storage  environment  humidity  and  substance  reaction
(En04)  are  the  key  causative  factors  for  accidents.  Eq17  has  a
high  closeness  centrality  value  (1)  and  a  high  betweenness
centrality value (36.806), which means that this node is located
in the center of the network in the network model and plays a
key  connection  role  in  each  part.  Combined  with  the  network
model, material strength problems are often caused by factors
such  as  material  design  problems  (Eq04)  or  insufficient  daily
management  of  related  equipment  (M06),  and  material
strength  defects  often  lead  to  the  appearance  of  other  causa-
tive factors in the equipment level in succession. Eq05 has the
highest  betweenness  centrality  (1),  indicating  that  this  node
plays  an  important  role  as  a  bridge  between  the  levels  of  the
network.  Reaction  kettle  over-temperature  and  over-pressure
are often triggered by the presence of  other  causative factors,
and  reaction  kettle  over-temperature  and  over-pressure  often
lead to the emergence of other causative factors as well, result-
ing  in  accidents.  Among  the  management  level,  insufficient

 
Fig. 7    Network modeling of accident causative factors.
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training  of  emergency  response  capability  (M08),  hazardous
chemical storage management problem (M01), safety manage-
ment  problem  (M04),  illegal  operation  without  qualification
(M02),  and  special  equipment  maintenance  management

problem (M06) are the key nodes in the causation model, which
need to be highly valued.

In each level,  there is  less correlation between nodes within
the  level  and  more  correlation  between  nodes  between

a b

c

 
Fig.  8    Distribution  of  each  centrality  value  of  nodes.  (a)  Betweenness-degree  centrality  distribution,  (b)  Closeness-degree  centrality
distribution, and (c) Eigenvector-degree centrality distribution.
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different  levels.  Combined  with  the  chemical  production
process, it can be seen that the occurrence of accidents is often
not  caused  by  a  certain  type  of  causative  factors,  but  is  the
result of the mutual coupling of causative factors under differ-
ent  levels.  Such  as  human  factors  under  the  causative  factor
node  will  often  appear  with  the  equipment  level  under  the
causative factor node's common role, and often due to human
causes leading to equipment failure, management problems, or
environmental factors, leading to human error. Enterprise daily
safety management, we can focus on the key causative factors
in  the  model  nodes,  for  the  prevention  and  control  of  acci-
dents, you can play an important role in controlling the model
bridge nodes or nodes in the center of the network, cut off the
path  of  accidents,  reduce  the  same  or  similar  pattern  of  acci-
dents, play a multiplier effect. The construction of the chemical
production  accident  network  model  provides  certain  sugges-
tions and help for  safety managers to systematically  study the
causes of chemical production accidents and accident patterns.

 Chemical production accident prediciton with
time series data
 Time series data acquisition and model selection

First of all, the collected accident briefings need to be statisti-
cally processed. In this study, the proportion of each quarter to
the total number of accidents in every year from 2012 to 2023
was  obtained  quarterly.  Due  to  the  existence  of  certain  sea-
sonal  and  temporal  characteristics  of  chemical  production
accidents[6],  this  percentage  data  (referred  to  as  Accident-

Percentage time series data) has a certain historical inheritance
and  periodic  characteristics,  and  can  be  used  to  fit  the  SARI-
MAX  model  and  predict  the  occurrence  trends  of  accidents.
Figure  9 shows  the  trend  in  the  number  of  Accident-Percent-
age  from  the  beginning  of  2012  to  the  end  of  2023  by  per
quarter.  It  can  be  clearly  observed  from Fig.  9 that  this  time
series  data  has  certain  periodic  characteristics.  As  shown,  the
Accident-Percentage  is  small  in  the  first  quarter  of  the  same
year, but the proportion generally tends to increase over time,
reaching a maximum in the third quarter of each year, and then
a minimum as the timeline lengthens. In this paper, to validate
the  accuracy  of  the  SARIMAX  model  predictions,  the  sample
period is divided into two time periods: the first quarter of 2012
to the fourth quarter of 2022 is used as a training set for train-
ing  the  SARIMAX  model,  and  fitting  it,  and  the  first  quarter  of
2023  to  the  fourth  quarter  of  2023  is  used  as  a  test  set  for
validating  the  accuracy  of  the  SARIMAX  model  obtained  from
the training.

 Smoothness test with ACF and PACF plots
The  time  series  data  of  chemical  production  accidents  are

tested for  smoothness  to  determine whether  they are  smooth
time  series,  and  the  fitted  time  series  must  be  tested  for
smoothness  before  fitting  the  time  series  model  to  avoid
pseudo-regression[34].  Augmented Dickey-Fuller (ADF) test was
used  in  this  paper  to  determine  the  smoothness  of  the  quan-
tity  sequence  during  the  sample  period,  and  the  results  are
shown in Table 6.

Table 5.    Key causative factors of chemical production accidents.

Evaluation indicators Causative factor nodes of chemical production accident Value

Degree distribution Material strength defects (Eq17) 21
Reaction kettle over-temperature or over-pressure (Eq05) 16
Improper or faulty operation (H01): 13 13
Failure to rationalize storage according to the nature of the chemical (M01) 13
Equipment or system failure (Eq01) 11
Problems with process or technology (Eq04) 7
Safety defects in equipment or failure of safety interlocking devices (Eq10) 5
Failure to conduct safety tests prior to operating in a limited space (H08) 5

Betweenness centrality Reaction kettle over-temperature or over-pressure (Eq05) 53.159

Material strength defects (Eq17) 36.806
Problems with process or technology (Eq04) 33.199
Failure to rationalize storage according to the nature of the chemical (M01) 28.638
Safety defects in equipment or failure of safety interlocking devices (Eq10) 9.658
Illegal changes in production processes or procedures (H10) 9.542
Illegal business (M02) 8.993
Insufficient training in emergency response capacity (M08) 8.861

Closeness centrality Improper or faulty operation (H01) 1.0
Material strength defects (Eq17) 1.0
Deficiencies in security management (M04) 0.714286
Illegal changes in production processes or procedures (H10) 0.707421
Reaction kettle over-temperature or over-pressure (Eq05) 0.666667
Work without safety equipment (H03) 0.588235
Lack of specialized skills (H17) 0.583333
Failure to rationalize storage according to the nature of the chemical (M01) 0.574492

Eigenvector centrality Failure to conduct safety tests prior to operating in a limited space (H08) 0.482147
Illegal business (M02) 0.422739
Failure to rationalize storage according to the nature of the chemical (M01) 0.415532
Incorrect or excessive addition of reaction materials (H07) 0.402775
Reaction kettle over-temperature or over-pressure (Eq05) 0.384915
Insufficient training in emergency response capacity (M08) 0.372148
Ambient moisture corrodes equipment or reacts with substances (En04) 0.344168
Failure to regularly service equipment (M06) 0.328852
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From  the  results  in Table  6,  the  Dickey-Fuller  (Test  statistic)
for the training set time series data is −3.4473, with a p-value of
0.06219, and the p-value is significantly higher than 0.05. There-
fore, the hypothesis that 'the original series contains a unit root'
is accepted at the 5% level of significance, and the original time
series data is a non-smoothness time series data. After the first-
order  differencing  treatment,  the  ADF  test  was  performed
again,  and  the  Dickey-Fuller  value  and  the  corresponding  p-
value  were  −6.2364  and  0.01,  where  the p-value  was  signifi-
cantly  less  than 0.05,  and therefore  the hypothesis  of  contain-
ing  a  unit  root  was  rejected  at  the  5%  level  of  significance,
therefore the time series after the first-order differencing was a
smoothness  time series  data.  The trend plot  of  the time series
data after first-order differencing is shown in Fig. 10.

Figure  11 shows  the  Auto  Correlation  Function  (ACF)  plot
and  Partial  Auto  Correlation  Function  (PACF)  plot  of  the  Acci-
dent-Percentage  time  series  data  after  first-order  differencing,
respectively.  The horizontal  axis  of  the ACF plot  and the PACF
plot represent the order of lag, and the vertical axis represents
the  correlation  coefficient  between  the  corresponding  lag

series and the original series. To reduce the effect of other vari-
ables  in  the  autocorrelation coefficient,  consider  taking partial
derivatives  of  the  correlated  variables,  known  as  partial  auto-
correlation  functions  (PACF).  The  dashed  blue  areas  in  both
plots  represent  confidence  intervals  that  indicate  whether  the
correlation  coefficients  are  statistically  significant.  In  simple
terms,  if  the  correlation  number  falls  within  the  confidence
interval,  it  means  that  the  correlation  coefficient  of  the  corre-
sponding two series can represent their  true correlation.  From
Fig. 11, it can be clearly observed that there is a certain degree
of smoothness characteristic of Accident-Percentage after first-
order  differencing,  and  there  is  a  significant  trailing  pheno-
menon in the ACF plot of Accident-Percentage with a lag of 15
orders. At the same time, there is a more significant third-order
truncation  in  the  PACF  plot[34].  As  a  result,  the  Accident-
Percentage  time  series  data  after  first-order  differencing  has
some  degree  of  smoothness  as  well  as  periodic  trends.  To
further increase the accuracy of SARIMA prediction, X, which is
closely  related  to  the  occurrence  of  accidents,  will  be  further
used as an exogenous variable to fit the SARIMAX model.

 
Fig. 9    Trend of Accident-Percentage from 2012 to 2023.

Table 6.    ADF test results.

Data Dickey-Fuller Lag order p-value Alternative

Original series ADF test Da1 −3.4473 5 0.06219 Stationary
ADF test after first-order differencing Da2 −6.2364 5 0.01 Stationary

 
Fig. 10    The trend of the time series data after first-order differencing.

a b

 
Fig. 11    (a) Auto correlation functions plot. (b) Partial auto correlation functions plot.
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 Model selection
In order to fit the Accident-Percentage time series data in the

time period of the sample period more effectively, and to make
the later prediction effect more accurate, this paper selects the
Akaike  Information  Criterion  (AIC)  to  evaluate  the  different
models  and  select  the  optimal  model[35].  In  this  paper,  it  is
initially considered that the optimal SARIMAX model is selected
from  the  following  models  with  different  combinations  of
P/D/Q  parameters  and  the  AIC  values  for  the  different  SARI-
MAX model fits are shown in Table 7.

By  the  AIC  minimum  criterion,  the  AIC  value  of  the  fitted
SARIMA(0,1,1)(1,1,0)[4]-AR[X]  model  is  −153.53,  which  is  the
smallest  value  of  the  eight  types  of  SARIMAX  models  with
different  lag  orders.  Therefore,  this  model  can  better  fit  the
Accident  percentage time series  data  in  the  training set.  Next,
the feasibility  of  the  selected model  was  verified by  Standard-
ized  residual  plots,  ACF  of  residual  and  P-value  for  Ljung-Box
Statistic plots, and the results are shown in Fig. 12.

The analysis is as follows:
(1) Standardized Residual Plot. The standardized residuals of

a  good  SARIMAX  model  should  be  free  of  fluctuating  aggre-
gation.  From Fig.  12a,  it  can  be  clearly  observed  that  the

standardized  residuals  have  lost  their  aggregation  after  the
time  series  data  starting  from  the  first  quarter  of  2012  to  the
fourth  quarter  of  2022  have  been  fitted  with  the
SARIMA(0,1,1)(1,1,0)[4]-AR[X] model.

(2)  ACF of Residual Plot.  A good ARIMA model with an Auto
Correlation  Function  fitted  to  the  residuals  does  not  have
significant  auto  correlation.  The  ACF  plot  in  this  example
performs well and is within the confidence interval throughout
the lag period,  demonstrating that  there is  no significant  auto
correlation  in  the  standardized  residuals  of  the  Accident-
Percentage time series data within the training set after model
fitting.

(3) P-value for Ljung-Box Statistic Plots. If the p-values of the
Ljung-Box  statistic  are  all  greater  than  0.05,  this  indicates  that
the  residuals  are  not  correlated  in  any  way.  As  can  be  seen  in
Fig.  12c,  after  fitting  the  model,  the  p-value  of  the  Ljung-Box
test  is  significantly  greater  than  0.05  at  a  lag  of  10  periods.
Therefore,  the selected model can well  extract all  the informa-
tion  of  the  time  series  data  for  the  period  of  2012−2022,  and
the remaining is only 'noise data'.

In  summary,  the  SARIMA(0,1,1)(1,1,0)[4]-AR[X]  model  can  fit
the  Accident-Percentage  time  series  data  from  the  beginning
of  the  first  quarter  of  2012  to  the  fourth  quarter  of  2022  very
well,  and  therefore  the  model  can  be  used  to  forecast  the
series.

 Model fitting and analysis
The  SARIMAX  model  determined  above  was  used  to  fit  the

collected time series data of chemical production accidents for
the  years  2012−2022  to  predict  the  trend  of  the  accidents  in
the  last  four  periods  of  the  training  set,  and  the  prediction
results are shown in Fig.  13,  and the specific values are shown
in Table 8.

From Fig.  13,  it  can  be  seen  that  during  the  predicted  four
periods, the trend is similar to that of the training set, showing
an  inverted  U-shaped  trend:  from  17.2%  in  the  first  quarter  of

Table 7.    Values of different evaluation indicators for the SARIMA models.

SARIMAX model

Model evaluation criterion

AIC Sigma2 SBIC Log
likelihood

SARIMA(1,1,2) (1,1,0)[4]-AR(X) −149.87 7.96 −144.02 76.03
SARIMA(1,1,1)(1,1,0)[4]-AR(X) −151.82 8.57 −144.31 77.31
SARIMA(0,1,1)(1,1,0)[4]-AR(X) −153.53 8.89 −146.88 80.77
SARIMA(0,1,2)(1,1,0)[4]-AR(X) −151.79 8.44 −145.97 80.93
SARIMA(2,1,2)(1,1,0)[4]-AR(X) −147.98 7.24 −143.73 75.92
SARIMA(2,1,0)(1,1,0)[4]-AR(X) −146.39 7.03 −144.68 75.41
SARIMA(2,1,1)(1,1,0)[4]-AR(X) −149.95 7.91 −144.27 76.58
SARIMA(1,1,0)(1,1,0)[4]-AR(X) −147.74 7.54 −145.53 76.21

a

b

c

 
Fig. 12    Correlation plot for model feasibility validation. (a) Standardized residual. (b) ACF of residual. (c) p-value for Ljung-Box Statistic.
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2023 its  rises  to  37.37% in  the third  quarter  of  2023,  and then
falls  to 25% in the fourth quarter  of  2023.  Forecasts  in Table 8
are  specific  forecasts,  while  Lo80  and  Hi80  are  the  upper  and
lower end forecasts with 80% confidence intervals at that point
in time, respectively (purple area in Fig. 13), and similarly Lo95
and Hi95 are the upper and lower end forecasts with 95% confi-
dence intervals at that point in time (grey area in Fig. 13. These
two regions indicate that there is an 80% and 95% probability,
respectively,  that  the  predicted  value  of  Accident-Percentage
time  series  data  will  fall  within  this  confidence  interval  during
the  forecast  period.  Next,  the  predicted  values  are  compared
with  the  actual  values  in  the  test  set  (2023). Figure  14 clearly
shows  that  there  is  only  a  small  difference  between  the

predicted  values  fitted  by  the  SARIMAX  model  and  the  actual
Accident-Percentage values,  and that  the predicted trends are
basically  the  same  as  the  actual  trends  in  the  test  set.  Mean-
while, Fig. 14 shows that most of the predicted values fitted by
the  SARIMAX  model  are  within  the  80%  prediction  interval,
with only one value higher than this interval,  while all  of them
are within the 95% prediction interval. Therefore, it can be seen
that the SARIMAX model has high accuracy in predicting Acci-
dent-  percentage  time  series  data,  and  can  accurately  predict
the trend of accidents.

Combined with the fitting results of the above model, it can
be seen that the trend of chemical production accidents in the
next  four  forecast  periods  (from  the  first  quarter  to  the  fourth
quarter  of  2023)  is  similar  to  that  before.  According  to  the
prediction results and trends of the number of accidents in the
sample  period,  it  can  be  seen  that  the  Accident-Percentage
values  in  the  first  quarter  and  the  fourth  quarter  of  each  year
are  small,  and  the  first  quarter  is  usually  the  lowest  and  the
trend  of  accidents  increased  again  in  the  second  quarter.  The
third quarter tends to be the most frequent quarter of the year.
The  analysis  shows  that  the  lowest  proportion  of  accidents  in

Table 8.    SARIMAX predition values for the year 2023.

Forecast Lo80 Hi80 Lo95 Hi95

2023 Q1 0.1720433 0.1333529 0.2107337 0.1128714 0.2312152
2023 Q2 0.2065148 0.1678244 0.2452053 0.1473429 0.2656867
2023 Q3 0.3737203 0.3350299 0.4124107 0.3145484 0.4328922
2023 Q4 0.2499829 0.2112925 0.2886735 0.1908112 0.3091548

 
Fig. 13    Trend predition with historical Accident-Percentage data.

 
Fig. 14    Comparison of the model predicition values with the actual values in the year 2023.
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the first quarter of the year may be related to the fact that there
are  more  holidays  in  the  first  quarter  and  the  chemical  enter-
prises have stopped production for a long time, and the reason
why  the  second  quarter  tends  to  increase  significantly
compared  with  the  first  quarter  may  also  be  related  to  the
prolonged  suspension  of  production.  Some  large-scale  chemi-
cal  equipment  often  malfunctions  when  they  are  started  up
after  a  long  period  of  suspension  of  production.  In  addition,
after  returning  to  work  during  holidays,  employees  generally
have  a  weak  sense  of  safety  and  are  relatively  slack  in  their
thinking,  at  which  time  there  may  be  some  omissions  in  the
safety  management  of  the  enterprise.  According  to  the  fore-
cast results and the change trend of Accident-Percentage value
in  the  sample  period,  it  can  be  seen  that  the  third  quarter  of
each year, namely July to September, is the highest occurrence
period of chemical production accidents in the whole year, and
the proportion of accidents accounts for the maximum value of
the total number of accidents in the whole year. In the forecast
results,  the  Accident-Percentage  reached  the  highest  value  of
37.37%  in  the  third  quarter  of  2023.  The  analysis  shows  that
July  to  September  is  the season with the highest  temperature
in  the  whole  year,  and  the  high-temperature  weather  poses
certain challenges to the use and storage of hazardous chemi-
cals with active physical and chemical properties. According to
the statistics of the accident briefings, due to the hot weather,
nitrification, phosphide and other hazardous chemicals sponta-
neous  combustion  resulting  in  major  safety  incidents  is  not
uncommon.  In  the  study  of  the  above  causative  factors  and
accident  occurrence  patterns,  there  are  also  many  association
rules (Rules 31, 45, 46, etc.)  to show the spontaneous combus-
tion  accidents  of  dangerous  chemicals  occurring  in  high-
temperature weather.

According to the prediction results of SARIMAX model fitting
and  the  above  analysis,  it  can  be  seen  that  in  the  whole  year,
the beginning of the second quarter and the month of the third
quarter are the key periods for the whole year, and they are also
the periods with a high incidence of chemical production acci-
dents,  which  need  to  be  paid  attention  to.  Chemical  enter-
prises can refer to the prediction results and carry out targeted
safety  production  education  and  vocational  skills  training  for
employees  at  this  stage  after  the  holiday.  It  can  also  increase
safety  investment,  introduce  a  safety  production  reward
system,  and  improve  the  enthusiasm  of  employees  in  safety
production, to reduce accidents caused by human negligence.
Similarly, in the high-temperature period of summer each year,
chemical  enterprises  need  to  focus  on  the  storage  and  use  of
hazardous chemicals with active physical and chemical proper-
ties,  improve  the  daily  safety  inspection  and  the  update
frequency of hazardous chemical storage lists, and prevent the
occurrence of spontaneous combustion accidents of hazardous
chemicals in high-temperature weather.

 Conclusions

This study employs data mining technologies to conduct an
extensive  analysis  of  briefings  on  chemical  production  acci-
dents,  yielding  insights  that  surpass  the  capabilities  of  tradi-
tional  mathematical  statistics.  These  results  significantly
support  hazardous  chemical  production  enterprises  in  areas
such as safety management, accident prevention, hazard iden-
tification,  accident  trend  forecasting,  and  overarching  safety
regulation.

By applying association rule mining with the Eclat algorithm,
the  research  reveals  critical,  intrinsic  associations  and  robust
measures  of  confidence,  support,  and lift,  elucidating relation-
ships between various causative factors (reactor over-tempera-
ture, over-pressure, and limited space operation accidents), and
their  corresponding  accident  patterns.  The  study  also  exam-
ines  associations  involving  less  frequent  but  significant  acci-
dent  occurrence  patterns.  Furthermore,  the  construction  of  a
causative  factor  network  model  using  Gephi® software,
coupled  with  network  centrality  analysis,  has  identified  key
factor nodes, thereby enhancing the prevention and control of
similar  incidents.  Additionally,  the  analysis  incorporates  time-
series  data  and  SARIMAX  model  fitting  to  predict  future  acci-
dent trends based on quarterly Accident-Percentage data.

Despite  its  contributions,  the  study  acknowledges  several
limitations,  including  the  insufficient  quantity  of  data  and  a
weak  correlation  between  association  rule  mining  and  acci-
dent trend predictions.  Future research will  aim to expand the
data  collection  timeframe  and  refine  the  analysis  of  specific
accident  patterns  by  integrating  association  rule  mining  with
time  series  prediction  to  develop  more  precise  prevention
strategies.
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