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Abstract
In the domain of gas pipeline operations, significant safety hazards prevail. This study delves into the triggering mechanisms behind gas pipeline

leakage  incidents,  pinpoints  key  risk  factors  contributing  to  these  occurrences,  and  proposes  effective  control  measures.  By  classifying  risk

coupling forms associated with various accidents,  the N-K model formula is  utilized to assess the coupling degree of primary risk factors.  The

resultant coupling relationship is integrated into the University of California at Irvine NETwork (UCINET), forming a complex network model for

quantitative  analysis.  Secondary  risk  factors'  coupling  degrees  are  measured,  and  the  network's  characteristic  parameters  are  scrutinized.

Noteworthy  risk  factors  within  the  network  include  improper  maintenance  (A3),  unclear  or  missing  signage  (C4),  equipment  aging  and  wear

(B10), unauthorized occupation of ground space (C5), failure to implement rules and regulations (D3), and failure of electrical protection (B5). By

controlling  the  above  risk  factors,  disrupting  the  coupling  process  of  risk  factors,  and  blocking  the  transmission  pathways  of  risk  factors,  the

objective is to prevent leakage incidents and ensure the safe operation of gas pipelines.
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 Introduction

Currently,  some  gas  pipelines  have  been  laid  prematurely,
lacking  technological  maturity.  As  numerous  pipelines  enter
the  aging  stage,  ensuring  their  prolonged  safe  operation
becomes  challenging.  Analyzing  and  controlling  gas  pipeline
leakage accidents is crucial to mitigating risks and reducing the
likelihood of incidents.

Through  an  analysis  of  accident  cases,  it  has  been  estab-
lished  that  urban  gas  pipeline  leakage  incidents  are  rarely
caused  by  a  single  risk  factor;  rather,  they  result  from  the
combined  influence  of  multiple  risk  factors,  a  phenomenon
known  as  multi-factor  mutual  coupling.  Currently,  numerous
scholars both domestically and internationally have conducted
research  on  accident  causation  from  the  perspective  of  risk
coupling.  The  concept  of  'coupling'  originated  in  physics,  and
Professor  White  from  Cornell  University  in  the  United  States
first  introduced  the  concept  of  'risk  coupling'  in  the  20th

century.  He  posited  that  there  are  extensive  interactions
among  factors  within  risk  systems  and  applied  the  concept  of
'coupling'  from  the  'human-machine-environment'  system  to
industrial accident risk management. Subsequently, the theory
of  risk  coupling  gradually  found  application  across  various
domains.

In  the  field  of  highway  bridge  protection,  Kameshwar  &
Padgett  proposed  a  multi-hazard  coupling  risk  assessment
method, considering the coupling of risks between hurricanes,
waves,  and  earthquakes.  They  established  a  multi-hazard  risk
assessment model based on parameterized vulnerability, which
improved upon previous research focusing on risk  assessment

methods  under  single-hazard  conditions[1].  In  forest  fire
prevention, Nuthammachot & Stratoulias conducted a study on
the impact  of  multiple  risk  factors  coupling on the  probability
of  forest  fires.  They  used  the  Analytic  Hierarchy  Process  (AHP)
to  analyze  the  coupling  of  geographical  information  system
factors  such  as  altitude,  slope,  aspect,  precipitation,  river
distance,  settlement  distance,  and  land  and  evaluated  the  fire
risk  in  the  Huai  Sai  District's  peat  swamp  forest  in  Thailand.
They  also  mapped  the  fire  potential  based  on  the  evaluation
results[2].  In  the  field  of  automation  system  risk  control,  Naka-
mura aimed to reduce system failure rates and improve system
risk  management  technology.  They  utilized  methods  to  miti-
gate system failures,  quantifying the coupling effects between
system  configuration  elements  and  system  failure  frequency.
This  numerical  representation  effectively  addressed  the  main
obstacles of insufficient data and the inability to quantitatively
describe  the  effectiveness  of  risk  mitigation  assessments[3].  In
the  domain  of  factory  safety  management,  Wang  et  al.
analyzed the coupling mechanism of risk factors in mechanical
workshops  from  four  dimensions:  human  factors,  material
factors,  environmental  factors,  and  management  factors.  They
constructed  safety  assessment  indicators  for  mechanical  pro-
cessing  workshops,  established  a  coupling  model,  and  evalu-
ated  the  safety  of  mechanical  workshops  under  multi-factor
interaction coupling[4]. In the field of hazardous chemical trans-
portation  risk  prevention  and  control,  Morita  &  Jin  collected
and  organized  a  large  number  of  accidents  related  to  hazar-
dous  goods  transportation.  Through  an  analysis  of  accident
causes,  they  analyzed  the  coupling  situation  of  the  four  sys-
tems of personnel, machinery, environment, and management,
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and  calculated  their  coupling  degrees.  The  results  indicated
that the coupling degree of three factors was higher than that
of two factors and four factors[5].

In  terms  of  selecting  and  establishing  risk  coupling  models,
various  scholars  have  made  different  attempts.  Some  scholars
divide  the  risk  factors  influencing  the  system  into  multiple
systems for analysis and construct coupling models to quantita-
tively  analyze  the  degree  of  coupling  between  systems.  For
example,  Li  divided  the  impact  of  engineering  construction
into  two  systems,  including  the  natural  system  and  the  engi-
neering  system,  and  established  two  system  coupling  models
to analyze their coupling processes[6]. On the other hand, Xiong
et  al.  decomposed  the  risk  assessment  indicators  for  debris
flows on long-distance pipelines into two systems: the pipeline
body  and  the  natural  environment.  They  further  subdivided
specific  indicators  under  each  subsystem,  used  the  entropy
weight  method  to  determine  the  weights  of  indicators,  and
evaluated  the  robustness  of  long-distance  pipelines  facing
debris  flow  risks  based  on  coupling  principles[7],  making  the
establishment of system risk models more accurate. Qiao et al.
analyzed  coal  mine  accidents  from  the  perspectives  of  homo-
geneous  coupling  and  heterogeneous  coupling.  They  used
system  dynamics  principles  to  construct  a  coal  mine  accident
risk  factor  coupling  model  and  provided  an  effective  method
for  quantitatively  analyzing  the  degree  of  coupling  between
subsystems[8].  Xue et al.  studied the risk formation mechanism
of coupled disasters. They first elaborated on the definition and
types  of  coupled  disasters,  analyzed  possible  outcomes  of
coupling,  including  zero  coupling,  weak  coupling,  and  strong
coupling,  and  used  a  risk  matrix  to  visually  represent  the
coupling effects of risk factors with fuzzy relationships[9].

Additionally,  some  scholars  have  developed  different  risk
coupling models for quantitative analysis and measurement of
the  degree  of  coupling  between  various  risk  factors.  For
instance,  Sun  et  al.  conducted  a  study  on  accidents  involving
passenger  ropeways.  They  used statistical  data  to  identify  fail-
ure  risks  in  passenger  ropeways  and  analyzed  the  coupling
types of risk factors. Through specific case analysis, they found
that different factor couplings resulted in different failure prob-
abilities,  with  the  N-K  multi-factor  coupling  model  indicating
the  highest  coupling  value  for  four  factors[10].  On  the  other
hand, Li et al. improved the traditional N-K risk coupling model,
addressing  the  limitations  that  required  a  large  amount  of
statistical data for application. They used the analytic hierarchy
process  to  convert  the  probability  of  accidents  into  the
frequency of risk factors for risk coupling calculations, applying
this approach to the analysis of fire risks in public buildings[11].
Zhao  et  al.  used  factor  risk  coupling  theory  to  analyze  explo-
sions  in  oil  tank  areas.  They  proposed  an  evaluation  method
based  on  a  risk  coupling  matrix  and  conducted  an  explosion
risk assessment on an oil tank area to determine the weights of
various  risk  factors  and  risk  levels  under  the  concept  of  risk
coupling[12].  Meanwhile,  Shen  et  al.  considered  risk  coupling
effects  and  conducted  research  on  risk  warning  issues  during
the  construction  of  super-tall  buildings.  They  proposed  a  new
risk warning model covering personnel, operations, equipment,
and fuse indicators. They established new criteria for determin-
ing indicator levels and analyzed the impact of  multiple factor
couplings  on  warning  indicators  using  indicator  discounting,
presenting  a  new  risk  warning  approach[13].  He  focused  on
submarine  oil  and  gas  pipelines,  analyzing  databases  and

summarizing  leakage  risks  of  submarine  pipelines.  Using  the
Decision-making  Trial  and  Evaluation  Laboratory  (DEMATEL)
method and coupling coordination theory,  they constructed a
submarine  pipeline  coupling  risk  assessment  model.  The
authors  integrated  risk  causation  theory  and  fault  trees  into
Bayesian  networks,  developing  a  coupling  risk  assessment
model  capable  of  quantifying  the  probability  of  leakage  risk
failure[14].  Li  et  al.  studied  the  coupled  construction  risks  of
large  underground  spaces  in  urban  areas.  They  added  source
variables, failure indicators, and failure criteria to the traditional
safety risk quantification model, calculating the system's failure
rate. Using the Guangzhou South Station subway deep founda-
tion  pit  project  as  an  example,  the  analysis  showed  that  the
coupling  between  risk  factors  was  mostly  positive,  and  the
coupling  between  some  factors  could  even  amplify  local
system risks by more than twice[15].

The research in risk coupling primarily focuses on qualitative
analysis  of  risk  factor  management  and  quantitative  assess-
ment of risk factor couplings. Various coupling models such as
risk  propagation  coupling  models  and  N-K  models  have  been
commonly  employed  for  establishing  these  couplings.
Although these models analyze risk couplings, they lack a visual
representation of the couplings between risk factors. Therefore,
this  paper considers establishing a complex network model  of
risk factors based on complex network theory. The characteris-
tic  parameters  of  complex  network  models  can  reflect  the
coupling relationships between risk factors and can be used to
identify key risk factors using network node importance.

The  concept  of  complex  networks  emerged  relatively
recently  but  has  become  a  popular  research  area.  The  origin
and development of  complex networks can be summarized in
several  key  stages.  In  1998,  Watts  &  Strogatz  sought  a  middle
ground  between  completely  regular  and  completely  random
topological  structures,  leading  to  the  discovery  of  small-world
networks characterized by high clustering and small character-
istic  path  lengths,  achieved  through  rewiring  networks[16].  In
1999,  Albert  &  Hawoong  analyzed  various  complex  networks
and  observed  that  the  degree  distribution  of  network  nodes
follows  a  power-law  distribution,  introducing  the  important
characteristic  of  scale-free  networks[17].  Subsequently,  Ullah  et
al. improved the identification of global and local node impor-
tance by proposing a central measurement method (LGC) that
simultaneously considers the local and global topological struc-
tures of networks to identify important nodes. The LGC method
was  compared  with  local  structure  (GLS),  global  structure
model  (GSM),  and  eigenvector  (EVC)  methods,  showing  supe-
rior performance compared to the latter two[18]. These ground-
breaking studies paved the way for the application of complex
networks in various fields. In the field of tropical cyclone predic-
tion research, Gupta et al.  developed a method using complex
networks  to  construct  continuous  overlapping  short-time
window  networks  based  on  average  sea  level  pressure  data.
They found that network metrics such as degree and clustering
exhibited  important  features  of  tropical  cyclones[19].  In  the
water  quality  assessment  field,  Sitzenfrei  improved  the  water
quality  assessment  model  for  large  water  distribution  systems
by  developing  a  novel  high  computational  efficiency  water
quality  assessment  method  based  on  complex  network  analy-
sis.  This  method  reduced  the  computational  burden  of  typical
models  and  achieved  correct  recognition  rates  between  96%
and  100%[20].  In  the  field  of  electric  power  transportation  and
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trade, Pu et al. explored the structural characteristics and evolu-
tion  of  cross-border  electricity  trade  networks  using  complex
network  methods.  They  utilized  advanced  network  analysis
methods such as Exponential Random Graph Models (ERGM) to
identify  factors  influencing  network  formation.  The  results
showed  that  the  scale  of  the  electricity  trade  network  contin-
ues to expand, but many economies have not participated. The
centrality  of  the  network  shifted  from  west  to  east,  with  high
internal  electricity  interconnection  levels  in  Europe  and
increased  coordination  among  Asian  countries  in  the  cross-
border  electricity  trade  network.  Cross-border  electricity  trade
contributes  to  reducing  carbon  dioxide  emissions,  achieving
renewable  energy  transformation,  and  reducing  mismatches
between  electricity  supply  and  demand[21].  In  the  field  of  epi-
demiology,  complex  networks  have  also  been  widely  applied.
Lombardi et al. employed complex network methods to investi-
gate the spread of epidemics in the Lombardy region by using
an origin-destination matrix containing commuting flow infor-
mation between 1,450 urban areas. They conducted large-scale
simulations  of  epidemic  spread  on  networks  associated  with
three major motives (i.e.,  work, study, and occasional travel) to
quantify the potential contributions of each type of traveler to
the epidemic transmission process[22]. Scabini et al. proposed a
layered  spatial  complex  network  model  to  represent  different
transmission paths of viruses between individuals and modeled
the  spread  of  the  novel  coronavirus.  They  simulated  isolation,
social  distancing,  or  preventive  measures  to  estimate  the
potential  outcomes  under  current  isolation  levels  in  Brazil[23].
Importance is one of the crucial features in complex networks.
Xu  et  al.  addressed  the  common  oversight  in  existing  evalua-
tion  methods,  which  often  neglect  the  impact  of  edges  on
nodes,  by  proposing  a  new  method  that  simultaneously
assesses  node  and  edge  centrality  through  a  mutually  updat-
ing iterative framework[24].  This  method has found wide appli-
cation in the financial sector. Samal et al. analyzed daily closing
prices  of  financial  market  indices  from  different  countries  and
regions  spanning  15  years  from  2000  to  2015  using  complex
network  methods.  They  studied  the  impact  of  intense  stock
market fluctuations on the interactions between market indices
in the financial  market,  and the results showed that the use of
complex  network  methods  can  effectively  assess  the  vulnera-
bility of financial markets[25].

From the literature review, it can be seen that the concept of
risk coupling provides a new perspective for risk analysis,  with
applications  in  various  fields.  However,  there  is  still  room  for
improvement  in  practical  applications,  especially  in  obtaining
specific data for coupling degree and coupling probability. The
lack  of  clear  and  visual  models  for  coupling  processes  and
mechanisms is  another  challenge.  In  the research,  many scho-
lars  have  focused  on  evaluating  the  safety  status  of  urban
buildings  or  equipment  under  the  coupling  effects  of  various
natural disasters. And also many scholars have explored meth-
ods  of  coupling  or  integration  and  applied  various  models  or
mathematical  methods  for  risk  assessment.  However,  there  is
limited  research  on  the  coupling  effects  of  risk  factors  in  gas
pipeline leakage accidents, as well as the analysis of interaction
mechanisms between risk factors.

The  application  of  complex  network  theory  in  analyzing
complex  systems  has  significant  advantages,  allowing  for  the
intuitive  representation  of  relationships  between  multiple
entities.  Although  the  application  of  complex  networks  is

relatively new, it has already shown great potential in studying
various complex systems, such as social networks, food chains,
supply  chains,  and  power  networks.  Existing  studies  have
applied complex network analysis to analyze the network struc-
tures  of  oil  and  gas  pipeline  networks.  However,  similar
network  structures  also  exist  between  risk  factors  and  their
coupling  relationships  in  the  context  of  accident  causation.  In
the  complexity  of  gas  pipeline  systems,  there  are  various  risk
factors  with  complex  interactions.  The  multi-factor  coupling
between risk  factors  makes  the accident  process  complex  and
networked, exhibiting the characteristics of a complex network.
Therefore,  this  study  integrates  multi-factor  coupling  theory
with  complex  network  theory,  constructs  a  complex  network
with  risk  factors  as  nodes  and  the  coupling  relationships
between risk factors as edges, and identifies key risk factors.

Initially,  risk  factors  are  measured  using  the  N-K  model
formula, and their coupling relationships are assessed through
a system dynamics model. The obtained data is integrated into
UCINET  to  formulate  a  complex  network  model  for  quantita-
tive  analysis.  This  involves  measuring  the  coupling  degree  of
secondary  risk  factors  and  scrutinizing  network  characteristic
parameters  to  identify  the  more  critical  risk  factors  within  the
network.

 Theory and method

 Concept and classification of gas pipeline leakage
risk coupling

During the gas pipeline operation,  various risk  factors  come
into play.  Following the Classification and Code of Hazard and
Harmful  Factors  in  the  Production  Process[26] and  considering
accident  cases,  these  factors  can  be  categorized  into  four
subsystems:  human  factors,  equipment  factors,  environmental
factors,  and  management  factors.  The  coupling  of  these  four
subsystem  risk  factors,  either  directly  or  indirectly,  influences
the gas pipeline system, causing overall  or local characteristics
to  change.  When  these  changes  surpass  a  certain  threshold,
leakage  accidents  occur. Figure  1 illustrates  the  relationship
between the risk tolerance of the gas pipeline system and each
subsystem.

To  streamline  the  research,  the  leakage  risk  coupling  of  gas
pipelines  is  categorized  into  one-factor  coupling,  two-factor
coupling, and multi-factor coupling:

(1)  One-factor  coupling  refers  to  the  mutual  influence
between  the  risk  factors  of  the  same  type  in  the  gas  pipeline
leakage  risk  system.  Since  the  leakage  risk  of  gas  pipeline  is
divided  into  four  subsystems:  human  factor  risk  coupling,
equipment  factor  risk  coupling,  environmental  factor  risk
coupling, management factor risk coupling.

(2) Two-factor coupling refers to the interaction between two
types  of  subsystems  in  the  gas  pipeline  leakage  risk  system.
Two-factor coupling in gas pipeline leakage risk includes:

Human factor-equipment factor coupling;
Human factor-environmental factor coupling;
Human factor-management factor coupling;
Equipment factor-environmental factor coupling;
Equipment factor-management factor coupling;
Environmental factor-management factor coupling.
(3)  Multi-factor  coupling  refers  to  the  interaction  between

three  or  more  different  types  of  subsystem  risk  factors  in  the
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gas  pipeline  leakage  risk  system.  Multi-factor  coupling  in  gas
pipeline leakage risk includes:

Human  factor-equipment  factor-environmental  factor
coupling;

Human  factor-management  factor-environmental  factor
coupling;

Human  factor-equipment  factor-management  factor
coupling;

Equipment  factor-management  factor-environmental  factor
coupling;

Human  factor-equipment  factor-environmental  factor-
management factor coupling.

 Introduction to the N-K model
Numerous  scholars  have  made  substantial  progress  in

researching  risk  coupling  across  various  domains.  Commonly
utilized  coupling  models  include  the  Structural  Equation
Model, Coupling Degree Model, and N-K Model. Among these,
the  Structural  Equation  Model  serves  as  a  qualitative  analysis
model and is therefore unsuitable for calculating the degree of
coupling between risk factors in gas pipeline leakage accidents
within  the  scope  of  this  study.  While  the  Coupling  Degree
Model can calculate the degree of risk coupling among various
risk  factors,  it  necessitates  the  manual  setting  of  upper  and
lower limit values in the model parameters, resulting in subjec-
tivity.

On  the  other  hand,  the  N-K  Model,  grounded  in  historical
statistical  data,  offers  a  more  objective  approach  to  quantita-
tively  analyzing  the  degree  of  mutual  influence  among
elements within complex systems. Following a comprehensive
evaluation of  the strengths and limitations of  each model,  the
N-K Model is proposed for adoption in this study. Its utilization
will  facilitate  an  exploration  of  the  coupling  laws  and  the
strength  of  coupling  relationships  about  gas  pipeline  leakage
accident  risks,  leveraging  historical  data  for  a  more  rigorous
analysis.

In  the  N-K  model  introduction[27],  quantitative  analysis  is
achieved  through  the  N-K  model  formula  to  calculate  the  risk
coupling value T. The formula is as follows:

T (a,b,c,d)=
H∑

h=1

I∑
i=1

J∑
j=1

K∑
k=1

Phi jk · log2(phi jk/(ph... · p.i.. · p.. j. · p...k )) (1)

Where h = 1, 2, ... H; i = 1, 2, ...I; j = 1, 2, ... J; k = 1, 2, ... K.
The  first-level  risk  factors—human a,  equipment b,  environ-

mental c,  and  management d—are  represented. Phijk signifies
the probability of risk coupling that human factor in the h state,

machine factor in the i state, environmental factor in the j state,
and  management  factor  in  the k state.  The T value  quantita-
tively  assesses  accident  risk  coupling,  where  a  larger T value
indicates  a  greater  accident  risk.  This  calculation  enables  the
identification of  significant  coupling relationships among first-
level risk factors based on their respective risk coupling values.

The  N-K  model,  which  is  based  on  historical  statistical  data,
can  objectively  quantify  the  degree  of  reciprocal  effect
between  different  elements  within  a  complex  system.  After
considering the advantages and limitations of  various models,
the  N-K  model  will  be  employed  to  study  the  coupling  effect
and coupling strength relationship of  the gas pipeline system,
based on historical data.

 Introduction to the UCINET
UCINET  software  was  developed  by  a  group  of  network

analysts at the University of California, Irvine. The team respon-
sible  for  the  software's  expansion  include  Stephen  Borgatti,
Martin Everett, and Linton Freeman[28].

Social  network analysis  is  a  widely  used research tool  in  the
social  sciences.  However,  it  is  not  confined  to  the  social
sciences;  it  is  also  used  to  analyze  networks  and  complex
systems in a variety of natural scientific disciplines. In the past,
our  research  primarily  focused  on  attribute  data  such  as
gender,  age,  income,  attitudes,  and  values.  However,  because
we live in a specific social setting, our behaviors are influenced
by  others.  Conventional  statistics  works  with  attribute  data,
while  social  network  analysis  focuses  on  relational  data.  It
examines  social  phenomena  and  structures  from  a  relational
perspective,  capturing  attitudes  and  behaviors  shaped  by
social structures.

UCINET  is  currently  the  most  popular  software  for  social
network  analysis.  It  is  an  integrated  software  package  that
includes  NetDraw  for  one-dimensional  and  two-dimensional
data  analysis  and  Mage  for  developing  applications  in  three-
dimensional  visual  analysis.  It  also integrates the free software
program  Pajek  for  analyzing  large-scale  networks.  UCINET  is  a
Windows  program  and  is  widely  recognized  and  frequently
used  for  processing  social  network  data  and  similar  types  of
data.

 Introduction to the related theories of the
complex network model

Complex  network  theory  leverages  topological  network
structures,  incorporating  fundamental  graph  theory  principles
to  construct  network  graphs  for  researching  real-world

 
Fig. 1    Relation between the risk tolerance body of the gas pipeline system and each subsystem.
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complex  systems.  This  paper  specifically  concentrates  on
analyzing the network node degree.

(1) Degree and degree distribution
Node degree serves as the most intuitive parameter to gauge

the  significance  of  nodes  within  the  topological  network
connections. In a directed network graph, node degree is cate-
gorized  into  in-degree  and  out-degree.  In-degree  represents
the connections from other nodes to the specified node, while
out-degree  signifies  the  connections  from  the  specified  node
to other nodes. The degree k of the directed network ki is equal
to the sum of the in-degree and out-degree of the node. Nodes
with larger  degrees  typically  wield substantial  influence in  the
network, forming the basis for node importance ranking.

The  average  node  degree  of  the  network  is  computed  by
summing  the  degrees  of  all  nodes  and  averaging  the  results.
The formula for the average node degree <k> is as follows:

< k >=
1
N

N∑
i=1

ki (2)

A higher <k> value indicates a more complex network.
Degree distribution provides a macroscopic statistical depic-

tion  of  the  network,  reflecting  the  characteristics  of  network
nodes.  It  represents  the  probability  of  randomly  selecting  a
node with a node degree k.  The distribution probability of the
node degree in the network is denoted as P(k).

P (k) =
nk

N
(3)

Where nk represents the number of nodes with a node degree of
k, and N is the total number of nodes in the network.

(2) Degree of centrality
To  uniformly  measure  the  importance  of  nodes  in  the  net-

work using degree indicators, normalization is applied. Assum-
ing the network contains N nodes, with node vi having a degree
ki.  It  is  referred  to  as DC(vi).  The  degree  centrality  of  the  nodes
can be represented using the following formula:

DC(vi) =
ki

N −1
(4)

 Coupling analysis of risk factors of gas
pipeline leakage accident

 Coupling analysis of primary risk factors
This  study  examined  47  gas  pipeline  leakage  accidents,

analyzing  the  prevalence  and  occurrences  of  one-factor  risk
coupling,  two-factor  risk  coupling,  and  multi-factor  risk  coupl-
ing.  The results  of  this  analysis  are  detailed  in Table  1,  provid-
ing insights into the coupling relationships among primary risk
factors.

Based on the number of risk factors involved in coupling, the
risk  coupling  of  gas  pipeline  leakage  accidents  is  categorized
into  one-factor  risk  coupling,  two-factor  risk  coupling,  and
multi-factor risk coupling. The coupling probability of each risk
is calculated using the following method.

(1) One-factor risk coupling
Take P0… as an example, P0… = P0000 + P0100 + P0001 + P0101 +

P0110 + P0011 + P0111 .
The  same way to  calculate P1…，P.0..，P.1..，P..0.，P..1.，P…0，

P…1 .
(2) Two-factor risk coupling
Take P00.. as an example, P00.. = P0000 + P0010 + P0001 + P0011 .
The same way to calculate P01..，P11..，…，P1..1 .
(3) Muti-factor risk coupling
Take P000.as  an example, P000.=P0000+P0001.Similarly,  it  can be

calculated for the P100.，P010.，…，P11.1 .
The coupling probabilities of single, two, and multiple factors

under different coupling forms are detailed in Table 2.
Table 3 presents the risk coupling values for the various risk

coupling forms.
The research results lead to the following conclusions:
(1)  The  risk  coupling  value  rises  as  the  number  of  elements

engaged  in  the  coupling  increases.  Four-factor  coupling  has
the  highest  risk,  followed  by  three-factor  coupling,  and  the
lowest risk is found in two-factor coupling.

(2)  In  the  three-factor  coupling,  the  human-management-
environment risk coupling value is the highest, followed by the

Table 1.    Couple times and frequency of each risk factor.

Coupling
type Coupling factors No. of

couplings Frequency

One-
factor
coupling

Human 0 P1000 = 0
Equipment 0 P0100 = 0
Environment 1 P0010 = 0.021
Management 0 P0001 = 0

Two-
factor
coupling

Human-Equipment 1 P1100 = 0.021
Human-Environment 5 P1010 = 0.106
Human-Management 22 P1001 = 0.468
Equipment-Environment 1 P0110 = 0.021
Equipment-Management 1 P0101 = 0.021
Environment-Management 0 P0011 = 0

Multi-
factor
coupling

Human-Equipment-Environment 2 P1110 = 0.041
Human-Equipment-Management 9 P1101 = 0.191
Human-Environment-Management 2 P1011 = 0.041
Equipment-Environment-
Management

0 P0111 = 0

Human-Equipment-Environment-
Management

3 P1111 = 0.063

Table 2.    Coupling probabilities for different coupling forms.

One-factor coupling Two-factor coupling Muti-factor coupling

P0... = 0.063 P00.. = 0.021 P0.1. = 0.042 P1.0. = 0.680 P000. = 0.000 P010. = 0.021 P110. = 0.212 P011. = 0.021
P.0.. = 0.636 P.00. = 0.468 P0..1 = 0.021 P1..0 = 0.168 P00.0 = 0.021 P01.0 = 0.021 P11.0 = 0.062 P01.1 = 0.021
P..0. = 0.701 P..00 = 0.021 P.0.1 = 0.509 P11.. = 0.316 P0.00 = 0.000 P0.10 = 0.042 P1.10 = 0.147 P0.11 = 0.000
P...0 = 0.210 P0.0. = 0.021 P..01 = 0.680 P.11. = 0.125 P.000 = 0.000 P.010 = 0.127 P.110 = 0.062 P.011 = 0.041
P1... = 0.931 P0..0 = 0.042 P.10. = 0.233 P..11 = 0.104 P100. = 0.468 P.001 = 0.468 P.101 = 0.212 P.111 = 0.063
P.1.. = 0.358 P.0.0 = 0.127 P.1.0 = 0.083 P1.1. = 0.251 P10.0 = 0.106 P0.01 = 0.021 P1.01 = 0.659 P1.11 = 0.104
P..1. = 0.293 P10.. = 0.615 P..10 = 0.189 P.1.1 = 0.275 P1.00 = 0.021 P00.1 = 0.000 P10.1 = 0.509 P11.1 = 0.254
P...1 = 0.784 P01.. = 0.042 P.01. = 0.168 P1..1 = 0.763 P.100 = 0.021 P001. = 0.021 P101. = 0.147 P111. = 0.104

P1111 = 0.063 (four factors)
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equipment-management-environment,  This  indicates  a  higher
risk  associated  with  both  environmental  and  management
factors.  It  suggests  a  need  for  enhanced  supervision  of  gas
pipeline  environmental  conditions  and  a  focus  on  improving
the overall competency of management personnel by relevant
departments and stakeholders.

(3)  In  two-factor  coupling,  the  coupling  value  between
human  factors  and  management  factors  demonstrates  the
highest  value  and  poses  the  greatest  risk.  The  significant
coupling  value  in  human-management  risk  highlights  unsafe
behaviors among relevant personnel and unreasonable opera-
tional  practices  in  management,  increasing  the  likelihood  of
gas  pipeline  leakage  accidents.  Consequently,  it  is  imperative
to  concentrate  efforts  on reducing the  probability  of  coupling
effects between human risk factors and managed risk factors.

 Coupling analysis of secondary risk factors
Although  the  N-K  model  can  examine  the  coupling  impact

among  the  first-level  risk  factors  in  gas  pipeline  leakage  acci-
dents,  it  primarily  focuses on this  initial  level,  potentially  limit-
ing the depth of analytical results. To overcome this constraint,
we  build  an  accident  risk  coupling  network  using  complex
network  theory  inside  the  gas  pipeline.  This  enables  a  more
comprehensive  analysis  of  the  coupling  effect  among
secondary risk factors, providing targeted insights.

Referring to the Classification and Code of Hazard and Harm-
ful  Factors  in  the  Production Process[26],  secondary  risk  factors
associated with gas pipeline leakage accidents were identified
from an analysis of 47 cases. Table 4 details these secondary risk
factors.

Utilizing the 47 accident reports,  an analysis  was conducted
on  the  relationships  between  secondary  risk  factors.  The
coupling relationships of the risk factors were dissected, where
the split risk factors i and j have i→j and j→i. In this context, i→j
implies that risk factor i will exert a certain degree of influence
on j,  while j→i signifies  that  risk  factor j will  influence i.  When
both  relationships  coexist,  it  indicates  that  risk  factors i and j
mutually influence each other. The obtained coupling relation-
ships between secondary risk factors are outlined in Table 5.

After  identifying  the  connections  between  nodes,  the
UCINET  software  is  employed  to  construct  a  directed  correla-
tion  network  model  for  the  leakage  risk  of  gas  pipelines.  To
facilitate  data  input  into  the  modeling  software,  the  connec-
tions  between  nodes  are  binarized  and  transformed  into  a

matrix  format.  If  node i→j has  influence,  it  is  denoted  as  1;  if
there is no influence i→j has no connection, it is represented as
0.  Due  to  the  extensive  data,  only  a  part  of  the  subset  is
presented in Fig. 2 for illustrative purposes.

The data has been imported into UCINET to generate a multi-
factor  coupled  risk  network  model  for  gas  pipeline  leakage
accidents. The model consists of 33 nodes and 125 edges. Each
node in Fig. 3 represents a specific risk factor,  with colors indi-
cating different risk categories: red for human factor risk, yellow
for  equipment  factor  risk,  blue  for  environmental  factor  risk,
and  green  for  management  factor  risk.  The  coupling  relation-
ships  between  these  risks  are  shown  as  directed  arrows
between nodes. Figure 3 visually depicts the complex intercon-
nections within the gas pipeline leakage risk network.

The node degree k in the network is a very important index,
that  is,  the  definition  and  calculation  formula  are  introduced
accordingly  in  Eqn.  (2).  The  gas  pipeline  leakage  accident  risk
coupling network model established in this study is a directed
network,  in  which  the  nodal  degree  includes  both  out-degree
centrality  and  in-degree  centrality.  In  this  model,  the  out-
degree  centrality  measures  the  direct  influence  capability  of
the  risk  factor  associated  with  the  node,  while  the  in-degree
centrality measures the susceptibility of the node's risk factor to
external influences. Table 6 illustrates the values of each node's
degree in the gas pipeline leakage risk network model.

Table 3.    Risk coupling values for different risk coupling forms.

Coupling
type Coupling factors Risk coupling

value code

Risk
coupling

value

Two-factor
coupling

Human-Equipment T21 0.028
Human-Environment T22 0.038
Human-Management T23 0.056
Equipment-Environment T24 0.015
Equipment-Management T25 0.010
Environment-Management T26 0.034

Muti-factor
coupling

Human-Equipment-Environment T31 0.087
Human-Management-
Environment

T32 0.100

Human-Equipment-Management T33 0.405
Equipment-Management-
Environment

T34 0.401

Human-Equipment-
Environmental-Management

T4 0.426

Table 4.    Risk factors for city gas pipeline leakage U.

Factors Category Description

Human
factor risk A

A1 Malicious sabotage
A2 Unauthorized operations and operational

errors
A3 Improper maintenance
A4 Laxity in patrolling
A5 Poor physiological condition
A6 Low psychological resilience
A7 Weak safety awareness among staff
A8 Lack of sense of responsibility
A9 Inadequate professional skills

A10 Insufficient emergency response capabilities
Equipment
factor risk B

B1 Piping corrosion
B2 Stress corrosion
B3 Failure of internal protective layers
B4 Failure of external protective layers
B5 Failure of electrical protection
B6 Pipe material defects
B7 Equipment failures
B8 Equipment design flaws
B9 Failure of safety protection devices

B10 Equipment aging and wear
Environmental
factor risk C

C1 Hydrogeological conditions
C2 Soil environment
C3 Natural disasters
C4 Unclear or missing signage
C5 Unauthorized occupation of ground space
C6 Ground traffic environment

Management
factor risk D

D1 Unreasonable personnel arrangements
D2 Incomplete rules and regulations
D3 Failure to implement rules and regulations
D4 Inadequate safety culture development
D5 Insufficient employee training and education
D6 Decision-making errors
D7 Inadequate awareness and education of

surrounding residents
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As  computed  by  the  UCINET  software,  the  average  node
degree of the network is (<k> = 7.58). It represents the average
of  each  risk  factor  being  coupled  with  the  other  7.58  risk
factors. Figure 4 illustrates the node degree distribution of the
coupling network.

As  evident  from Fig.  4,  improper  maintenance  (A3)  has  the
highest  total  value  for  improper  maintenance,  followed  by
unclear or missing signage (C4) and equipment aging and wear
(B10). While these risk factors share high total values, the nature
of their impact differs. The elevated total values for B10 and C4

Table 5.    Coupling relationship of secondary risk factors.

Coupling system Incidence relation

Human factor risk coupling A5→A3; A5→A4; A5→A8; A6→A10; A7→A2; A7→A4; A8→A4; A8→A7; A8→A3
Equipment factor risk coupling B1→B10; B1→B2; B2→B1; B2→B10; B3→B1; B4→B1; B5→B1; B5→B3; B5→B4; B8→B7;

B8→B6; B10→B4; B10→B3; B10→B7
Environmental factor risk coupling C1→C3; C3→C4; C4→C5
Management factor risk coupling D2→D4; D3→D4; D3→D5; D6→D1
Human factor-equipment factor coupling A3→B7; A3→B10; A3→B9; A3→B5; A3→B4; A3→B6; A2→B7; A2→B9; A1→B7; A1→B9;

A1→B5; A1→B4; A1→B6
Human factor-environmental factor coupling A1→C4; A2→C5; A3→C4; A3→C5; A3→C6; A4→C5; A7→C5; A9→C4; A9→C6; C1→A4;

C1→A10; C3→A4; C4→A2; C6→A4; C6→A10; A4→C4; A7→C4
Human factor-management factor coupling A5→D6; A6→D6; A7→D4; A8→D3; A8→D7; A9→D6; A10→D6; D1→A4; D1→A3; D1→A9;

D1→A10; D2→A2; D2→A3; D2→A4; D3→A2; D3→A3; D3→A4; D4→A2; D4→A7; D5→A2;
D5→A3; D5→A9; D5→A6; D7→A10; D7→A1

Equipment factor-environmental factor coupling C1→B4; C1→B5; C1→B10; C2→B1; C2→B2; C2→B4; C2→B5; C3→B10; C3→B9; C3→B7;
C3→B5; C3→B4; C4→B4; C5→B2; C5→B10; C6→B2; C6→B10; C1→B4; C1→B5; C1→B10

Equipment factor-management factor coupling D5→B5; D5→B7; D5→B9; D5→B10; D3→B7; D3→B9; D3→B5; D3→B10; D7→B4; D2→B7;
D2→B9; D2→B10; D7→B5

Environmental factor-management factor coupling D1→C5; D1→C4; D2→C5; D2→C4; D7→C4; D7→C5; D5→C4; D5→C5; D3→C4; D3→C5
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Fig. 2    Node connectivity data matrix.

 
Fig. 3    Multi-factor coupled network model for gas pipeline leakage accidents.
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primarily  stem  from  their  high  in-degree,  indicating  that  B10
and C4 act as central nodes influencing other factors.

To provide a more intuitive analysis  of  the degree centrality
of  each  risk  factor,  the  UCINET  visual  analysis  function  was
employed to input the degree and degree centrality data of the
nodes.  Resulting  in  the  visual  network  map  of  the  out-degree
centrality of nodes presented in Fig. 5.

Table 7 displays the top six risk factors for out-degree in the
gas  pipeline  leakage  risk  network  model.  The  results  in  the
table  indicate  that  the  six  risk  factors  with  the  highest  out-
degree  centrality  are  Failure  to  implement  rules  and  regula-
tions  (D3),  Insufficient  employee  training  and  education  (D5),
Incomplete  rules  and  regulations  (D2),  Improper  maintenance
(A3),  Natural  disasters  (C3),  Inadequate  awareness  and  educa-
tion  of  surrounding  residents  (D7).  In  the  risk  network  model,
these  six  nodes  hold  the  greatest  influence.  They  can  impact
other nodes and create risk coupling, where risk factors related

to  management  make  up  as  much  as  66.7%  of  the  total.  To
break the link between risk factors, one should concentrate on
these  critical  nodes,  controlling  and  managing  the  main  risk
factors to lessen their influence on other components.

Figure 6 presents the visual network map of node in-degree
centrality in the gas pipeline leakage risk network model.

Table  8 outlines  the  top  six  risk  factors  based  on  in-degree
centrality in the gas pipeline leakage risk network model. The table
shows that the six risk factors with the highest in-degree centrality
are  Unclear  or  missing  signage  (C4),  Unauthorized  occupation  of
ground  space  (C5),  Equipment  aging  and  wear  (B10),  Equipment
failures  (B7),  Failure  of  external  protective  layers  (B4),  Failure  of
electrical  protection  (B5).  Among  these  six  risk  factors,  four  are
related to equipment risks and two to environmental risks. The in-
degree centrality of these top six factors accounts for 44.8% of the
total  in-degree.  By  concentrating on the  nodes  that  are  suscepti-
ble to external influences, risk factors can be strengthened in their
defensive capacity against such influences, thereby decreasing the
likelihood  of  risk  factor  coupling  and  increasing  the  gas  pipeline
system's resilience to risks.

Among  the  33  risk  factors,  the  top  six  in  terms  of  the  total
degree value are as follows:

(1) A3 - Improper maintenance;
(2) C4 - Unclear or missing signage;
(3) B10 - Equipment aging and wear;
(4) C5 - Unauthorized occupation of ground space;
(5) D3 - Failure to implement rules and regulations;
(6) B5 - Failure of electrical protection.
Risk factors with high total degree values are considered key

nodes  in  the  multi-factorial  coupling  network  of  gas  pipeline
leakages.  During  the  operation  of  the  pipelines,  it's  important
to  manage  and  control  these  key  nodes  specifically,  thereby
reducing  the  connectivity  of  the  network.  This  targeted
approach  aims  to  decrease  the  coupling  of  risk  factors,  ulti-
mately  minimizing  the  potential  for  accidents  within  the
network. Based on these findings, a decision analysis is carried
out  with  an  emphasis  on  the  system's  major  risk  variables  for
the safety management and control of the gas pipeline system.

Table 6.    Degree value of each node.

Panel
point

Out-
degree

In-
degree

Total
degree
value

Panel
point

Out-
degree

In-
degree

Total
degree
value

A1 6 1 7 B8 2 0 2
A2 3 6 9 B9 0 7 7
A3 9 6 15 B10 3 10 13
A4 2 8 10 C1 6 0 6
A5 4 0 4 C2 4 0 4
A6 2 1 3 C3 7 1 8
A7 5 2 7 C4 3 11 14
A8 5 1 6 C5 2 10 12
A9 4 2 6 C6 4 2 6

A10 1 6 7 D1 6 1 7
B1 2 5 7 D2 9 0 9
B2 2 4 6 D3 10 1 11
B3 1 2 3 D4 2 3 5
B4 1 9 10 D5 10 1 11
B5 3 8 11 D6 1 4 5
B6 0 3 3 D7 6 1 7
B7 0 9 9

A2

A4

A5

A6

A8

A9

A10

B1

B2

B3

B4

B5

B6B7

B8

B9

B10

C2

C4

C5

C6 D4

D6D7

D1

A1

A7

D3

D2
D5

A3

C3

C1

 
Fig. 4    Node degree in the network.
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(1) Improper maintenance:
Improper maintenance is  one of the main causes of leakage

accidents,  and  maintaining  equipment  in  good  condition  is
essential  for  ensuring  the  safe  operation  of  pipelines.

Inadequate and delayed maintenance, as well as possible harm
from  staff  operating  equipment  incorrectly  while  it  is  being
maintained, are all  examples of improper maintenance. Failure
to promptly detect these issues may create accident hazards or
lead  to  further  escalation  of  accidents.  Pipeline  companies
should  establish  equipment  inspection  and  maintenance  sys-
tems  that  clearly  define  responsibilities,  establish  supervision
and  reward/punishment  mechanisms,  and  ensure  the  imple-
mentation of  these  systems.  To  improve field  personnel's  pro-
fessional  technical  competence  and  safety  awareness,  safety
education and professional skills training should be provided.

(2) Unclear or missing signage:
There  have  been  numerous  cases  of  accidents  during

construction  due  to  unclear  or  missing  signage.  Gas  pipeline
signage  should  comply  with  local  laws  and  regulations,  and
pipeline companies should improve signage along the pipeline.
Signage may become illegible due to human damage or expo-
sure to weather, leading to oxidation and blurred text. To make
sure that the signage along the pipeline is complete, intact, and
readable, routine inspections should be carried out.
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Fig. 5    Node out-degree visualization network.

Table 7.    The top six risk factors for out-degree.

Ranking Number Risk factor Classification Out-degree

1 D3 Failure to implement rules and regulations Management factor risk 10
2 D5 Insufficient employee training and education Management factor risk 10
3 D2 Incomplete rules and regulations Management factor risk 9
4 A3 Improper maintenance Human factor risk 9
5 C3 Natural disasters Environmental factor risk 7
6 D7 Inadequate awareness and education of surrounding residents Management factor risk 6

Table 8.    The top six risk factors for in-degree.

Ranking Number Risk factor Classification In-degree

1 C4 Unclear or missing signage Environmental factor risk 11
2 C5 Unauthorized occupation of ground space Environmental factor risk 10
3 B10 Equipment aging and wear Equipment factor risk 9

4 B7 Equipment failures Equipment factor risk 9
5 B4 Failure of external protective layers Equipment factor risk 9
6 B5 Failure of electrical protection Equipment factor risk 8

 
Fig. 6    Node in-degree visualization network.
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(3) Equipment aging and wear:
The  key  to  dealing  with  equipment  aging  and  wear  is  the

timely identification of problems. For example, if the anti-corro-
sion  coating  of  a  pipeline  is  not  maintained  promptly  due  to
excessive  service  life,  it  may  result  in  a  more  severe  loss  of
external protection, resulting in cathodic protection failure and
accelerated  pipeline  corrosion.  Pipeline  companies  should
strictly enforce inspection and testing regulations for pipelines,
conduct  regular  maintenance,  and  establish  relevant  records.
Equipment  with  quality  issues  should  be  replaced  promptly,
and potential hazards should be eliminated promptly.

(4) Unauthorized occupation of ground space:
Long-term encroachments on pipelines by structures, equip-

ment,  or  debris  can  cause  ground  settlement,  leading  to
uneven  stress  on  the  pipeline  and  resulting  in  loose  connec-
tions, deformation, fractures, and other issues. Pipeline compa-
nies  should  strengthen  daily  inspections,  promptly  report  any
unauthorized  encroachments,  and  remove  illegal  encroach-
ments  promptly.  Additionally,  incentivizing  surrounding  resi-
dents  to  participate  in  supervision  and  preventing  encroach-
ments  on  gas  pipelines  through  reward  policies  can  also  be
effective.

(5) Failure to implement rules and regulations:
After  creating  strong  norms  and  guidelines,  appropriate

reward and punishment  systems should be implemented.  The
application of regulations and norms should be supervised, and
inspections should be conducted in strict accordance with the
reward  and  punishment  systems.  Management  personnel  of
pipeline  companies  should  attach  importance  to  the  imple-
mentation of  regulations  and rules  and emphasize  this  during
training  and  education.  A  positive  safety  culture  should  be
cultivated,  and  a  strong  sense  of  responsibility  among  practi-
tioners should be fostered to actively implement relevant regu-
lations and rules.

(6) Failure of electrical protection:
The failure of electrical protection in gas pipelines is a signifi-

cant  cause  of  pipeline  corrosion.  Ensuring  that  the  pipeline's
electrical  protection  system  is  in  normal  operation  is  key  to
ensuring  the  safe  operation  of  gas  pipelines.  Pipeline  compa-
nies should strengthen the monitoring, inspection, and mainte-
nance  of  the  electrical  protection  system,  monitor  the  opera-
tion  status  of  the  anti-corrosion  coating  and  cathodic  protec-
tion,  nip  pipeline corrosion in  the bud,  and prevent  its  further
deterioration.

 Discussion

This  study  integrates  the  N-K  model  with  complex  network
theory  to  examine  the  interrelated  risk  factors  in  gas  pipeline
leakage incidents, yielding notable insights. However, the anal-
ysis  recognizes  certain  limitations  that  warrant  further  explo-
ration:

(1)  The  identification  of  risk  factors  about  gas  pipeline  leak-
ages  in  this  investigation  drew  upon  an  extensive  review  of
literature,  publications,  and  case  studies.  Nonetheless,  it  is
feasible that certain risk aspects might be inconspicuous or not
given  adequate  consideration  in  routine  pipeline  operations,
thereby  leading  to  incomplete  risk  assessments.  Moreover,
factors critical in the escalation of leakage incidents into severe
disasters—such  as  the  site  of  ignition,  volume  of  leaked  gas,

and  the  ignition  energy—have  substantial  impacts.  These
factors not only significantly influence the emergency but also
present  considerable  challenges  in  detection  and  manage-
ment.  Their  coupling  dynamics  are  intricate  and  require  more
in-depth investigation.

(2) Analyses in extant reports on gas leakage accidents often
focus  predominantly  on  the  immediate  causes,  with  a  lack  of
emphasis on underlying indirect factors. Consequently, the risk
couplings derived from such case studies are not exhaustive. It
is imperative to develop a more holistic approach that encom-
passes  both  direct  and  indirect  causes,  thereby  providing  a
more  comprehensive  account  of  risk  factors  in  pipeline  leak-
ages.

(3)  The study of node degree in the network can be utilized
to  assess  the  accuracy  of  the  importance  of  network  nodes  in
theory.  However,  in  practice,  controlling  risk  factors  in  urban
gas pipeline systems is more complicated than simply identify-
ing crucial nodes in a network.

 Conclusions

In conclusion, this paper undertakes a systematic analysis of
gas pipeline leakage risk factors. The N-K model is employed for
quantitative  analysis,  revealing  that  a  higher  degree  of
coupling  among  risk  factors  corresponds  to  increased  overall
risk.  Muti-factor  coupling  is  identified  as  the  most  risky  form.
Then constructing a  complex network model  for  the quantita-
tive analysis of second-order risk factors. Node degree analysis
identifies  key  nodes  in  the  multi-factor  coupling  network,
including  improper  maintenance  (A3),  unclear  or  missing
signage  (C4),  equipment  aging  and  wear  (B10),  unauthorized
occupation  of  ground  space  (C5),  failure  to  implement  rules
and regulations (D3), and failure of electrical protection (B5). To
enhance pipeline operation safety,  these key nodes should be
the primary focus, reducing network connectivity and minimiz-
ing the coupling of risk factors. The objective is to prevent leak-
age incidents and ensure the safe operation of gas pipelines.

Controlling the critical risk factors associated with natural gas
pipeline  leakage  incidents  holds  paramount  significance  in
practical  terms.  Firstly,  this  initiative  serves  as  an  effective
means  to  diminish  the  occurrence  probability  of  natural  gas
pipeline leaks, thereby mitigating the environmental and safety
risks  posed  to  individuals.  Secondly,  by  effectively  managing
these key risk factors, it becomes possible to enhance the safety
and  reliability  of  natural  gas  pipeline  transportation  systems,
thereby ensuring the stability of natural gas supply and sustain-
ing  energy  provision.  Moreover,  the  strategic  control  of  these
pivotal  risk  factors  can  lead  to  a  reduction  in  post-accident
economic  losses  and  environmental  contamination  levels.
Consequently,  this  approach  contributes  significantly  to  mini-
mizing  the  socio-economic  impact  of  disasters,  thereby  safe-
guarding public interests and societal stability.
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