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Abstract
As global warming increases forest fire frequency, early prevention and effective management become crucial. This requires models that are both

accurate and easily understood. However, traditional machine learning models, which typically use preset parameters, are often inaccurate and

hard to interpret. Therefore, this study introduces an enhanced approach using data from 2000 to 2019 in the Sichuan and Yunnan provinces of

China, incorporating 18 driving factors.  Bayesian optimization algorithms, i.e.,  the Gaussian Process (GP) and Tree-structured Parzen Estimator

(TPE) probabilistic proxy models, were used to optimize the hyperparameters for LightGBM, Random Forest (RF), and Support Vector Machine

(SVM),  respectively.  Finally,  forest  fire  danger prediction models  were constructed to draw forest  fire  danger maps,  and the performance was

compared between different models. In detail, the model's predictive performance was evaluated using metrics like accuracy, recall, precision,

Balanced F Score (F1), and area under curve (AUC). The evaluation demonstrated that the TPE-LightGBM exhibited remarkable accuracy (AUC =

0.962). The forest fire danger map categorizes the study area into five danger levels. The TPE-LightGBM effectively classifies 62.58% of the study

area  as  low-danger  level  and  5.33%  as  high-danger  Level  V.  The  Shapley  additive  explanation  (SHAP)  model  interpretation  of  TPE-LightGBM

highlights  daily  the  average  relative  humidity,  sunshine  hours,  elevation,  daily  average  air  pressure,  and  daily  maximum  ground  surface

temperature as the primary influential factors, followed by the human activity indexed by the gross domestic product (GDP) and the distance to

the nearest railway.
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Introduction

In the context of climate change and global warming, forest
fire  occurrence  increases  threat  to  life,  property,  forest
resources,  and  the  environment[1].  As  given  by  the  National
Bureau  of  Statistics  of  China[2],  a  total  of  7,301  forest  fires
occurred and burned an area  of  48,000 hectares  from 2018 to
2022.  Therefore,  the  development  of  accurate  and  inter-
pretable  forest  fire  danger  models  is  crucial  for  early  warning
and emergency response.

Forest  fires  involve  the  interaction  of  multiple  factors  at
different  spatial  and  temporal  scales,  including  vegetation,
topography,  meteorology,  and  human  activities[3−5].  Early
studies of forest fires mainly explored the temporal and spatial
distribution.  They  estimated  the  spatial  clustering  characteris-
tics  of  fire  occurrence[6],  but  they  were  limited  to  judging  the
macroscopic  distribution  of  forest  fires.  The  remote  sensing
technology  coupled  with  Geographic  Information  Systems
(GIS)  facilitates  extensive  data  acquisition,  which  in  turn
supports  the  application  of  logistic  regression  models,  Geo-
graphically  Weighted  Logistic  Regression[7],  Poisson  models[8],
and  various  other  statistical  methods  for  the  analysis  of  factor
interrelationships.  However,  statistical  methods  assume  that
the  interactions  between  factors  are  linear,  leading  to  poor
prediction accuracy of the developed models[9].

Many  studies  recently  utilized  the  'black  box'  approach  of
machine learning to address the complex relationships among

factors.  It  has  been  demonstrated  that  machine  learning
models  are  adept  at  handling  the  complex  nonlinear  relation-
ships  inherent  among  meteorological,  topographical,  anthro-
pogenic,  and  vegetative  factors,  thereby  enabling  the  precise
mapping  of  forest  fire  danger.  Van  Beusekom  et  al.[10] con-
ducted  a  study  in  Puerto  Rico,  utilizing  meteorological  data
and human activities as predictors.  They applied RF to analyze
the  correlation  between  fire  occurrences.  In  another  study,
Yue  et  al.[11] focused  on  Nanning  City,  incorporating  meteor-
ology, topography, human activities, and vegetation as predic-
tors.  They  employed  LightGBM,  Classification  and  Regression
Tree (CART), RF, and XGBoost to develop a susceptibility predic-
tion  model.  Their  findings  indicated  that  the  XGBoost  model
outperformed  others,  particularly  in  identifying  high-danger
areas within a specific region of Nanning. Wang et al.[12], in their
research  on  Yunnan  Province,  selected  16  predictors  encom-
passing  meteorological,  topographical,  vegetative  data,  and
measures  such  as  the  distance  between  vegetation  and  rivers
or roads, as well as population density. They employed Logistic
Regression  (LR),  SVM,  Artificial  Neural  Network  (ANN),  RF,  Gra-
dient  Boosting  Decision  Tree  (GBDT),  and  LightGBM  models
for  analysis.  Their  analysis  revealed  that  LightGBM  was  the
most  accurate  model,  which  was  subsequently  utilized  to
construct susceptibility models for forest fire and to map asso-
ciated danger areas.

Although  machine  learning  models  have  achieved  good
performance in forest fire danger assessment, choosing model
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parameters  is  crucial  for  achieving  high  classification  accuracy
and effective danger mapping. The 'black box' nature poses an
additional  challenge,  making  the  interpretation  of  machine
learning  model  results  less  transparent.  To  address  this  issue,
there  is  a  need  for  models  that  are  not  only  accurate  but  also
understandable,  which  helps  to  interpret  what  causes  forest
fires  and  why  the  model  predicts  what  it  does.  Optimization
algorithms  can  be  instrumental  in  fine-tuning  the  hyperpara-
meters  of  machine  learning  models,  thereby  enhancing  their
predictive  performance[13,14].  Furthermore,  interpretable  artifi-
cial intelligence (AI) offers solutions to the 'black box' dilemma,
with  the  SHAP  model  being  a  notable  example.  It  provides
insights  into  the  output  results,  objectively  quantifying  the
impact  and  contribution  of  each  factor[15−17].  It  is  noteworthy
that  previous  studies  have  often  relied  on  Gaussian  Pro-
cess  (GP)  models  as  probabilistic  proxies  for  hyperparameter
optimization[12,18].  However,  the  potential  of  tree-structured
Parzen estimator (TPE) models as probabilistic proxies has been
somewhat overlooked.  Further  research is  needed to compare
the advantages and disadvantages of TPE for predicting forest
fires.

In  this  study,  an  interpretable  machine  learning  model  is
developed  to  predict  forest  fire  danger  based  on  GP  and  TPE
optimization.  The  fire  occurrence  data  from  2000−2019  in
Sichuan and Yunnan provinces, China were utilized for analysis.
Eighteen factors, encompassing vegetation, topography, mete-
orology,  and  human  activities,  were  selected  to  interpret  the
temporal  and  spatial  distribution  of  forest  fires.  Six  optimal
machine  learning  models  were  developed,  after  using  GP  and
TPE probabilistic  proxy models  within  a  Bayesian optimization
framework  to  fine-tune  the  hyperparameters  of  LightGBM,  RF,
and  SVM,  respectively.  Comparative  analyses  were  conducted

for the six models, using Accuracy, Precision, Recall, Balanced F
Score  (F1),  and  area  under  curve  (AUC)  indexes.  The  SHAP
model  was  used  to  interpret  the  optimal  machine  learning
models,  providing insights into the contribution and influence
of each factor. Finally, a forest fire danger map was produced to
serves  as  a  scientific  foundation  for  forest  fire  likelihood  pre-
diction and early warning systems in Sichuan and Yunnan. 

Data and methods
 

Study area
Sichuan  and  Yunnan  Provinces  in  China,  covering  880,100

km2, were chosen for this study (Fig. 1). The two provinces have
complex  topography  and  landscape  dominated  by  mountains
and  plateaus.  Sichuan  Province  has  three  main  climate  zones:
the  Central  Subtropical  Humid  zone,  the  Southwest  Mountain
Semi-Humid  zone,  and  the  Northwest  Alpine  Plateau  zone.
Yunnan province belongs to the Subtropical  Plateau Monsoon
type.  The  overall  climate  features  include  a  slight  annual
temperature  difference  and  an  extensive  daily  temperature
difference.  Precipitation  distribution  across  seasons  and
regions is uneven, showing characteristics of 'east wet and west
dry'. Additionally, the study area has diverse vegetation, includ-
ing  approximately  73.87  million  hectares  of  forest  and  about
2.25 billion cubic  meters  of  forest  reserves.  The area often has
many forest fires in China. Therefore, mapping the fire suscepti-
bility in this region can help effectively predict the likelihood of
such occurrences[19].

Figure  2 displays  the  uneven  distribution  of  forest  fires  in
Sichuan and Yunnan provinces from 2000 to 2019. In 2010, the
number of  forest  fires reached a maximum value of  3606.  This

 

Fig. 1    Overview of the study region.
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was followed by 2,287 and 2,823 fires in 2004 and 2007, respec-
tively. The number of forest fires declined sharply from 2010 to
2011, dropping from 3,606 to 1,045 fires. Figure 3 indicates that
most forest fires happen from January to May,  peaking in May
with 7,891 fires.  Fires are much fewer from June to December,
making up less than 10% of the yearly total. 

Data sources 

Fire database
The dependent variable in this study was whether forest fires

occurred or not. The National Institute of Natural Hazards of the
Ministry  of  Emergency  Management  provided  fire  point  data
for Sichuan and Yunnan from 2000 to 2019, including informa-
tion  on  the  longitude,  latitude,  and  date  of  occurrence  of  fire
points.

The  data  were  corrected  to  avoid  duplication,  records  with
inconsistent  data  were  deleted,  and  only  those  with  the  loca-
tion  type  of  forest  land  were  retained.  A  total  of  25,591  fire
point records are used in this study. As shown in Fig. 1, each fire
pixel represents a fire point.

Non-fire points were also considered to construct a dichoto-
mous  forest  fire  model,  which  was  randomly  generated  by
ArcGIS  10.8  software  at  a  scale  of  1:1.5  in  the  study  area.  For
analysis,  fire  points  were  assigned  a  value  of  1,  and  non-fire
points were assigned a value of 0.

Based on GlobeLand30, i.e.  a 30-meter global surface cover-
age  dataset  from  the  National  Catalogue  Service  for  Geogra-
phic Information of China (www.webmap.cn), the extent of the
forested  areas  in  Sichuan  and  Yunnan  Provinces  were
extracted.  To  differentiate  between  non-fire  and  fire  points  in
time  and  space,  a  circular  buffer  with  1,000-m  diameter  was
established around each fire point[20]. Then the buffer zone was
subtracted from the extent of the forested areas in Sichuan and
Yunnan Provinces to define the range for non-fire points. Non-
fire points were assigned random dates using Python to ensure
temporal randomness[21,22]. 

Fire triggering factors
Many factors contribute to forest fires, which can be catego-

rized  into  meteorological,  topographical,  vegetation,  and
human  activity  factors[23,24].  Especially,  21  factors  affecting  the
forest  fire  occurrences  in  Sichuan  and  Yunnan  were  identified
and detailed in Supplementary Table S1.

Meteorological  factors  influence  the  likelihood  of  fires  and
impact the combustion characteristics of fuels[25]. Meteorologi-
cal data are derived from the 'China Surface Climatic Data Daily

Value Dataset (V3.0)' in the China Meteorological Data Network
(https://data.cma.cn).  These  data  include  the  daily  average
temperature,  daily  maximum  temperature,  daily  minimum
temperature,  cumulative  precipitation  from  20:00  to  20:00,
daily average relative humidity, daily average wind speed, daily
maximum  wind  speed,  daily  average  air  pressure,  sunshine
hours,  daily  average  ground  surface  temperature,  and  daily
maximum  ground  surface  temperature.  Daily  meteorological
data for both fire points and non-fire points were sourced from
the  nearest  weather  station.  The  Thiessen  polygon  method  in
ArcGIS  10.8  was  used  to  associate  each  sample  point  with  its
nearest meteorological station. Python was then used to corre-
late  the  daily  meteorological  records  for  these  sample  points
over the period from 2000 to 2019[4].

Topographic  factors  indirectly  influence  the  occurrence  of
forest  fires  by  affecting  climate,  vegetation,  and  other
factors[26,27].  The  topographic  data  were  obtained  from  the
Geospatial  Data  Cloud  of  the  Computer  Network  Information
Center  of  the  Chinese  Academy  of  Sciences  (www.gscloud.cn)
using  the  ASTER  GDEM  V3.0  elevation  model.  The  elevation,
slope, aspect, and topographic wetness index (TWI) of the study
area were extracted, and TWI is expressed by[28,29].

TWI = ln
( SCA
tanα

)
(1)

where, the SCA represents the contributing area per unit contour
length at any point along the slope gradient, and α is the slope.

During  the  modeling  process,  topographic  factor  values  for
each sample point were extracted to categorize the slope direc-
tion  into  eight  cardinal  and  intercardinal  directions:  North,
Northeast, East, Southeast, South, Southwest, West, and North-
west. These directional categories were then assigned codes for
the purpose of classification.

Only areas of land covered by forest were considered. Forest
vegetation data were from the 1:1,000,000 Vegetation Atlas of
China that can be downloaded from the Resource and Environ-
mental  Science  Data  Platform  of  the  Chinese  Academy  of
Sciences  (www.resdc.cn).  The  vegetation  was  categorized  into
eight  distinct  types:  coniferous  forests,  mixed  coniferous  and
broad-leaved  forests,  Broad-leaved  forests,  Shrublands,  Grass-
lands, Meadows, Alpine vegetation, and Cultivated vegetation.
The vegetation types at the locations of the sample points were
identified using ArcGIS 10.8 software.

Human activities,  especially construction, road building, and
outdoor  activities,  greatly  affect  where  and  how  often  forest
fires  happen[30−32].  Data  on  human  activities  are  sourced  from
the 1:250,000 National Basic Geographic Database available on
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Fig.  3    Inter-monthly  variation  of  forest  fires  in  Sichuan  and
Yunnan provinces.
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Fig.  2    Inter-annual  variability  of  forest  fires  in  Sichuan  and
Yunnan provinces.
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the  National  Catalogue  Service  for  Geographic  Information
(www.webmap.cn),  encompassing  roads,  railways,  and  settle-
ments. The Resource and Environment Science Data Platform of
the Chinese Academy of Sciences (www.resdc.cn) provides the
gross  domestic  product  (GDP)  and  population  density  data  in
2000,  2005,  2010,  2015,  and  2019.  Utilizing  ArcGIS  10.8  soft-
ware,  Euclidean  distances  from  roads,  railways,  and  settle-
ments,  along  with  average  population  density  and  GDP  for
2000-2019, were calculated for the sample points[33].

To  standardize  the  satellite  imagery  for  modeling  purposes,
given  the  variability  in  resolution  and  dimensions,  the  data
were  uniformly  transformed  into  a  consistent  projection  coor-
dinate  system.  Furthermore,  each  factor  was  uniformly  resam-
pled  to  achieve  a  uniform  resolution  of  30  m  ×  30  m,  as  illus-
trated in Supplementary Fig. S1. 

Technology route
In  this  study,  historical  fire  data  was  used  to  analyze  the

temporal  and  spatial  distribution  of  fire  points  in  Sichuan  and
Yunnan  provinces.  Then,  the  correlation  between  each  factor
was  assessed  through  the  multicollinearity  analysis,  and  the
data  scale  was  standardized via normalization.  Subsequently,
the data was randomly split into a training set and a test set in a
7:3  ratio[34,35].  Three  machine-learning  models  were  trained
using  the  dataset.  Two  probabilistic  proxy  models  with
Bayesian  optimization  were  employed  to  fine-tune  the  hyper-
parameters of the three models. The models' performance was
evaluated  using  the  test  set  with  metrics  such  as  Accuracy,
Precision,  Recall,  AUC, and F1 scores.  The trained models were
used  to  predict  the  fire  danger  across  the  study  area.  Finally,
model  interpretation  was  conducted  using  SHAP.  The  experi-
ments  were  carried  out  in  a  Jupyter  Notebook  environment

using  Python  3.11.5  and  ArcGIS  10.8  software,  on  a  system
equipped with a COREi5 processor and a 16GB NVIDIA GeForce
RTX  3060  graphics  card.  The  detailed  workflow  is  depicted  in
Fig. 4 and Supplementary Fig. S2. 

Multicollinearity analysis
To prevent  high covariance between factors  that  could bias

the  results  and  reduce  model  accuracy,  the  Variance  Inflation
Factor  (VIF)  was  used  to  check  for  multicollinearity[36].  The VIF
was calculated by:

VIF =
1

1−R2 (2)

where, R2 is the coefficient of complex determination. 

Data normalization
To  standardize  the  data  and  mitigate  discrepancies  in  their

impact on the model due to varying scales, the data were nor-
malized to the interval of [0,1][37]. This process is illustrated by:

X∗i =
xi− xmin

xmax− xmin
(3)

X∗iwhere,  is the normalized data, xi is the original data, xmax and
xmin are  the  highest  and  lowest  values  of  the  full  original  data,
respectively.

Equation  (3)  cannot  be  used  for  the  normalization  of  slope
and daily average relative humidity. The slope is normalized by:

xα = sinα (4)
where, α is the slope angle.

The daily average relative humidity is normalized by:

xβ =
β

100
(5)

where, β is the humidity value. 

 

Fig. 4    Technology route.
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Fire danger assessment model construction 

Bayesian optimization algorithm
In  machine  learning  models,  the  choice  of  hyperpara-

meter  values  substantially  affect  performance  and  predictive
accuracy[13,14].  This  study  employs  two  categories  of  Bayesian
optimization algorithm to fine-tune the hyperparameters of the
model, as depicted by:

x∗ = argmaxx∈X f (x,T ) (6)
where, x* is the set of hyperparameters that can yield the highest
score; x is  the  hyperparameter  combination  of  the  machine
learning  model; X is  the  hyperparameter  search  range; f is  the
acquisition  function; T is  the  proxy  model.  In  Eqn  (6),  argmax  is
an  operator  used  to  find  the  point  at  which  a  given  function
attains its maximum value.

The  Bayesian  optimization  algorithm  contains  two  key
components,  i.e.  a  probabilistic  proxy  model  and  an  acqui-
sition  function.  The  former  is  used  to  fit  the  probability  distri-
bution  of  the  sampled  points,  and  the  latter  evaluates  the
potential  of  each  distribution  point.  Adaptively  scaling  the
parameter  search  space  enables  handling  high-dimensional
hyperparameter  optimization  tasks  and  facilitates  finding  the
globally  optimal  solution  in  as  few  iterations  as  possible.  The
computational formulas refer to the study by Bergstra et al.[38].
GP  and  TPE  are  two  distinct  methodologies  for  modeling  and
optimizing hyperparameters within the realm of Bayesian opti-
mization.  The  GP  approach  is  centered  on  employing  proba-
bilistic  models  to  seize  the  smoothness  of  the  objective  func-
tion. It posits that the variations of the objective function across
the  hyperparameter  space  is  smooth,  thereby  constructing  a
probabilistic  distribution  that  describes  the  behavior  of  the
objective  function.  This  method  is  particularly  adept  at  scena-
rios  where  the  objective  function  exhibits  gradual  changes,
providing  uncertainty  estimates  about  the  objective  function
that  are  instrumental  in  guiding  the  selection  of  subsequent
hyperparameters.  Conversely,  TPE  adopts  a  tree-based  struc-
ture to more nimbly manage intricate high-dimensional hyper-
parameter spaces. TPE simulates the hyperparameter selection
process  by  constructing  a  decision  tree,  leveraging  historical
data  to  assess  the  performance  of  various  hyperparameter
combinations,  and  endeavoring  to  identify  the  configuration
that maximizes the objective function. The strength of TPE lies
in  its  capacity  to  address  hyperparameter  spaces  rife  with
uncertainty  and  complexity,  especially  when  interactions
between hyperparameters are present.

This  study  uses  both  GP  and  TPE,  which  are  probabilistic
proxy-based models, for modeling purposes. The GP model was
selected  for  its  capability  to  capture  the  smoothness  of  the
objective function, while the TPE model was chosen for its  fle-
xibility  in  dealing  with  complex  hyperparameter  spaces.  By
integrating  the  two  methods,  we  aim  to  inspect  the  hyper-
parameter  space  more  comprehensively  with  the  expectation
of  identifying  the  optimal  hyperparameter  configuration,
thereby  enhancing  model  performance.  The  study  will  assess
how well these methods work in different scenarios and discuss
their  complementarity  and  applicability  in  Bayesian  optimiza-
tion. The framework for model hyperparameter optimization is
shown in Supplementary Fig. S2. 

LightGBM
LightGBM  is  a  framework  based  on  the  Gradient  Boosting

Decision  Tree  (GBDT)  algorithm.  It  was  developed  by

Microsoft[39] in  2017  to  improve  the  efficiency  and  calculation
speed  of  the  GBDT  algorithm  when  dealing  with  extensive  or
high-dimensional  data.  Unlike  GBDT  that  uses  the  Level-wise
algorithm, LightGBM adopts a leaf growth strategy, specifically
one that incorporates depth limitation.

Fr(x) =
r∑

k−1

fk(X) (7)

where, Fr(x) is the model comprising a set of r decision trees, and
fk(X) is the kth decision tree.

The  objective  function  consists  of  the  loss  function  and  the
regularization term. The loss function formula is:

L(yq,y′q) =
1
A

A∑
q=1

(yq log Pq+ (1− yq) log(1−Pq)) (8)

where, yq is the type of recognition after Xq; A is the sample size; Pq
is the probability of recognizing Xq as a one after it is entered into
the model.

The  regularization  controls  the  splitting  of  leaf  nodes  to  re-
duce overfitting in the model. The objective function formula is:

O = L(yq,y′q)+γZ+
1
2
λ

z∑
v=1

(Wv)2 (9)

γ λ

where, O is the objective function; Z is the number of leaf nodes;
Wv is  the  output  value  of  the v-th  leaf  node;  and  are  set
parameters.

LightGBM  enhances  performance  by  refining  several  key
algorithms[39].  It  utilizes  an  improved  Histogram  decision  tree
algorithm that discretizes data eigenvalues into a total of k bins
to  identify  optimal  split  points,  thereby  maximizing  gain  and
boosting  computational  efficiency.  The  one-sided  gradient
sampling  (GOSS)  algorithm  prioritizes  samples  with  higher
gradients  and  randomly  samples  those  with  lower  gradients,
ensuring  consistency  with  the  original  data  distribution  and
maintaining  model  accuracy.  The  mutually  exclusive  feature
bundling (EFB) algorithm tackles the sparsity common in high-
dimensional  datasets  by  bundling mutually  exclusive  features,
reducing  dimensionality,  and  enhancing  computational  effi-
ciency  by  creating  new  composite  features.  Lastly,  the  Leaf-
wise  decision  tree  growth  strategy  selects  the  leaf  node  with
the  highest  potential  for  split  gain,  which  helps  prevent  over-
fitting and minimizes model loss. 

Random forest
Random  forest  (RF)  is  an  ensemble  learning  model  that

constructs multiple decision trees during training[40].  Each tree
in  the  ensemble  is  learned  from  a  different  part  of  the  data,
leading  to  diverse  classifications.  The  final  classification  is
achieved  by  a  majority  vote  of  the  individual  tree  predictions,
as illustrated in Fig.  5.  To boost model robustness,  each tree is
trained on a bootstrap sample of the data, with one-third of the
data held out as Out-Of-Bag (OOB) samples for internal valida-
tion and to prevent overfitting.

RF  excels  at  handling  large,  multivariate  datasets,  making  it
suitable  to  model  the  high-dimensional,  nonlinear  aspects  of
forest  fires[41].  Meteorological,  topographic,  vegetation,  and
human  activity  facts  significantly  influence  the  occurrence  of
forest  fires,  and  RF's  ability  to  handle  such  complexities
contributes to its effectiveness in this domain. 

Support vector machines
As a supervised learning algorithm, Support Vector Machine

(SVM)  can  classify  data  either  linearly  or  non-linearly[42].  As
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depicted  in Fig.  6,  The  main  goal  of  SVM  is  to  find  the  best
hyperplane in  n-dimensional  space that  can separate  the data
into different categories, like 'fire' and 'no fire'.

ωT x+b = 0 (10)
ω = {ω1,ω2...,ωn}where,  is  the  normal  vector  to  the  decision

plane and b is the intercept term.
Separating  the  categories  of  fire  and  no  fire  based  on  the

principle of maximum margin is equivalent to solving a convex
optimization problem, as calculated by：

max
ω,b

2
∥ω∥ , s.t.yi(ωT xi+b) ⩾ 1, i = 1,2, ...,m (11)

2
∥ω∥where,  is the classification interval.

To handle nonlinear classification problems, Vapnik[42] intro-
duced  a  nonlinear  kernel  function  that  maps  the  data  into  a
higher  dimensional  space,  facilitating  the  discovery  of  hyper-
planes.

K(xi, x j) = ϕ(xi)Tϕ(x j) (12)

The  Radial  Basis  Function  (RBF)  is  a  widely-used  nonlinear
kernel  function,  and  performs  better  in  danger  assessment[43].
In  this  study,  RBF  is  used  to  develop  the  SVM  model,  as  illus-
trated by:

K(xi, x j) = e−γ∥xi−x j∥2 (13)
 

Model performance evaluation
Accuracy, precision, recall,  F1 score, and AUC are key perfor-

mance  metrics  commonly  used  in  machine  learning  to  assess
the effectiveness  of  a  model.  Generally,  higher  values  of  these
five  indicators  suggest  superior  model  performance.  The
formulas for these metrics are as follows:

Accuracy =
T P+T N

T P+FP+T N +FN
(14)

Recall =
T P

T P+FN
(15)

Precision =
T P

T P+FP
(16)

F1 = 2× Precision×Recall
Precision+Recall

(17)

where, true positives (TP) mean the model correctly finds positive
cases;  false  negatives  (FN)  means  it  misses  positive  cases;
conversely,  false  positives  (FP)  means  it  wrongly  says  negatives
are  positives,  while  true  negatives  (TN)  means  it  correctly
identifies negatives.

The AUC of the receiver operating characteristic (ROC) curve
is a definitive metric for model evaluation. The ROC curve plots
the true positive rate (sensitivity) against the false positive rate
(1−specificity),  across  various  threshold  settings.  In  the  term
'1−specificity',  specificity  is  the  rate  at  which  the  model
correctly identifies true negatives. 

SHAP model
Machine learning models often achieve high prediction accu-

racy,  yet  they  can  lack  interpretability  regarding  how  input
features  contribute  to  the  calculation  outcomes.  To  address
this,  the  SHAP  (SHapley  Additive  exPlanation)  framework  was
introduced  to  provide  insights  into  the  workings  of  machine
learning models concerning their output results.

SHAP is grounded in cooperative game theory and measures
each feature's contribution to the prediction by calculating the
Shapley  value[44,45].  The  Shapley  value  for  a  feature,  in  the
context  of  a  given  model  and  input  sample  is  defined  as  the
average  of  that  feature's  marginal  contributions  across  all

 

Fig. 5    Schematic diagram of the RF.

 

Fig. 6    Schematic diagram of the SVM.
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possible combinations in the dataset. For a given model (f) and
input sample (x), the Shapley value of feature i is defined as:

φi( f , x) =
∑

S⊆N{i}

|S |!(|N | − |S | −1)!
|N |! ( fx(S ∪{i})− fx(S )) (18)

|S | |N|
fx(S ∪{i})− fx(S )

where, N is the set of all features; S denotes any subset that does
not  contain  features i;  is  the  size  of  the  set S;  is  the  total
number  of  all  features;  is  the  cumulative  con-
tribution  of  the  features,  and i denotes  the  cumulative  contri-
bution value of the features.

The SHAP model builds an explanatory model g(x) instead of
the machine learning model f(x), as expressed by:

g(x) = φ0+
∑p

j=1
φ j (19)

φ0

φ j

where, p is the number of features;  is the predicted mean value
of all training samples;  is the contribution of the input feature
j to  the  predicted  value,  i.e.,  the  SHAP  value  of  the  feature.
Bigger SHAP values mean the feature has a bigger impact on the
model's prediction. 

Results and discussion
 

Multicollinearity analysis: selection of forest fire
drivers

Before modeling,  it  is  essential  to check for  multicollinearity
among all  factors using SPSS 17 software to ensure the results
are accurate and reliable. A VIF greater than 10 indicates strong
covariance among factors, whereas a VIF less than 10 suggests
no  significant  covariance[46].  The  analysis  clarified  high  VIF
values for daily average temperature, daily maximum tempera-
ture, daily minimum temperature, daily average ground surface
temperature, and daily maximum ground surface temperature.
By  removing  the  daily  maximum  temperature,  daily  minimum
temperature,  and  daily  average  ground  surface  temperature,
the VIF values were reduced to below 10 for the remaining vari-
ables.  This  reduction  is  due  to  the  elimination  of  factors  that
were highly correlated with the daily average temperature and
daily  maximum  ground  surface  temperature,  which  in  turn
decreased the overall covariance in the model. The factors that
were ultimately selected are presented in Table 1. 

Construction of the fire danger model
Models including TPE-LightGBM, TPE-RF, TPE-SVM, GP-Light-

GBM, GP-RF, and GP-SVM were developed and evaluated using
metrics such as Accuracy, Precision, Recall, F1 scores, and AUC.
The performance results  are  detailed in Table  2 and visualized
in Fig.  7.  The  optimal  hyperparameter  combinations  for  these
models are listed in Supplementart Table S2.

In  terms  of  overall  performance  valuation  metrics,  the  TPE
optimization outperforms the GP optimization. Specifically, TPE
improves  the  accuracy,  precision,  recall,  and  F1  score  of  the
LightGBM  algorithm  by  1.6%,  2.5%,  1.2%,  and  1.9%,  respec-
tively.  For  the  RF  algorithm,  these  metrics  are  improved  by
0.9%, 1.6%, 0.3%, and 1%, respectively. For the SVM algorithm,
these  metrics  are  improved  by  0.7%,  0.7%,  1%,  and  0.8%,
respectively. Among the TPE-optimized models,  TPE-LightGBM
demonstrates  the  best  predictive  performance  with  the  high-
est  values  in  all  evaluated metrics,  followed closely  by  TPE-RF.
The ROC curve analysis indicates that TPE-optimized LightGBM
achieves the highest AUC score of  0.962,  with TPE-RF at  0.958,
GP-LightGBM  at  0.953,  GP-RF  at  0.951,  TPE-SVM  at  0.930,  and
GP-SVM at 0.927.

In  summary,  both TPE-LightGBM and TPE-RF models  exhibit
strong  potential  and  commendable  performance,  with  TPE-
LightGBM  providing  the  optimal  fit.  TPE  surpasses  GP  in

 

Table 1.    Results of the multicollinearity analysis.

No. Factor VIF value before
eliminating factor

VIF value after
eliminating factor

1 Da_AVGTEM 142.109 3.859
2 Da_MINTEM 51.681 −
3 Da_MAXTEM 30.345 −
4 Da_PRE 1.245 1.242
5 Da_AVGRH 3.440 2.220
6 Da_AVGWIN 2.609 2.420
7 Da_MAXWIN 2.603 2.536
8 Da_AVGPRS 3.999 3.855
9 SSD 3.424 2.577
10 Da_AVGGST 40.164 −
11 Da_MAXGST 11.016 4.639
12 Elevation 3.902 3.876
13 Slope 1.000 1.304
14 Aspect 1.001 1.001
15 TWI 1.040 1.190
16 Dis_to_railway 1.450 1.400
17 Dis_to_road 1.382 1.390
18 Dis_to_sett 1.458 1.459
19 Den_pop 4.882 4.871
20 GDP 3.811 3.806
21 Forest 1.104 1.108

 

Table 2.    Performance metrics for model evaluation.

Model
parameters

TPE-
LightGBM

TPE-
RF

TPE-
SVM

GP-
LightGBM

GP-
RF

GP-
SVM

TP 5779 5727 5570 5705 5709 5505
TN 8695 8633 8254 8505 8511 8213
FP 917 979 1358 1105 1101 1399
FN 633 685 842 707 703 907
ACC (%) 90.3 89.6 86.3 88.7 88.7 85.6
Precision (%) 86.3 85.4 80.4 83.8 83.8 79.7
Recall (%) 90.1 89.3 86.8 88.9 89.0 85.9
F1 (%) 88.2 87.3 83.5 86.3 86.3 82.7

 

Fig.  7    ROC  curve  and  AUC  of  LightGBM,  RF,  and  SVM  models,
with parameter  optimization performed using Bayesian optimiza-
tion techniques: GP and TPE.
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probabilistic proxy models for several  reasons:  (1)  TPE is adept
at managing large-scale datasets, which is characteristic of this
study, by efficiently searching through the probability distribu-
tions of  p(x|y)  and p(y)[47].  (2)  The optimization strategy of  TPE
effectively  identifies  hyperparameter  combinations  that  meet
the targeted accuracy levels.  It  generates diverse density func-
tions  based  on  historical  observations  and  refines  these
through  iterative  feedback,  offering  informed  suggestions  for
subsequent  configurations[48].  (3)  The  inverse  factorization  of
p(x|y)  in  TPE  may  offer  greater  precision  than  that  in  GP.  TPE
introduces  some  uncertainty  during  the  exploration  process,
and this uncertainty helps to better search for the globally opti-
mal solution and explore new possibilities[38]. 

Forest fire danger map
Forest  fire  danger  mapping  was  conducted,  after  using  the

TPE  probabilistic  proxy  model  to  optimize  the  hyperparame-
ters  and fitting models  for  each factor.  After  model  validation,
probability values were assigned to each pixel within the study
area,  yielding forest  fire  danger  maps for  Sichuan and Yunnan
Provinces.  The  danger  of  forest  fires  is  categorized  into  five
levels,  corresponding  to  the  following  probability  ranges:
0−0.2,  0.2−0.4,  0.4−0.6,  0.6−0.8,  and  0.8−1.  These  levels  are
designated as I, II, III, IV, and V-level danger zones[4,20,49], respec-
tively, as detailed in Table 3.

As shown in Fig. 8, the three maps hold a similar distribution
of forest fire danger in space, with fires predominantly happen-
ing  in  the  south-central  and  central  parts  of  Sichuan  Province
and the northwestern and southern parts  of  Yunnan Province.
However,  the three maps exhibit variations in the area ratio of
each  danger  level  relative  to  the  entire  region,  as  detailed  in
Fig.  9.  the  TPE-LightGBM  model  assigns  danger  zones  as
follows:  I  and  II-level  danger  zones  represent  62.58%  and
13.76% of  the area,  respectively.  The III,  IV,  and V-level  danger
zones  account  for  10.08%,  8.25%,  and  5.33%,  respectively.  In
contrast,  the  TPE-RF  model  allocates  54.51%  and  18.94%  to  I
and  II-level  danger  zones,  with  III,  IV,  and  V-level  zones  at
13.18%,  10.33%,  and  3.04%,  respectively.  The  TPE-SVM  model
shows I and II-level danger zones at 54.52% and 19.14%, with III,
IV,  and  V-level  zones  comprising  14.68%,  9.70%,  and  2.00%,
respectively.  Notably,  the  I  and  V-level  danger  zones  have  the
highest  proportion  across  all  models,  while  II,  III,  and  IV-level
danger zones have the lowest.

The results  of  TPE-LightGBM model,  as  seen in Figs 8 and 9,
indicate  a  pronounced  spatial  distribution.  In  detail,  the  area
occupancy  ratio  shows  a  high-low  bipolar  distribution,  which
helps  to  classify  areas  as  highly  likely  to  occur  fire  and  areas
with  virtually  no  fire.  In  addition,  the  TPE-LightGBM  model
exhibits  strong  predictive  capabilities,  as  clarified  by  the  four
Performance metrics  in Table 2 and the AUC in Fig.  7.  Accord-
ingly, the TPE-LightGBM model is a highly reliable tool for forest
fire prediction in Sichuan and Yunnan Provinces. 

Interpretive analysis based on the SHAP model
The  TPE-LightGBM  model,  as  stated  in  Section  3.3,  exhibits

the  best  performance  among  the  developed  models.  Accord-
ingly,  the SHAP interpretation provided in  this  section focuses
exclusively on the TPE-LightGBM model. Figure 10a presents a
SHAP  scatterplot  that  illustrates  the  impact  of  various  factors
on  the  model's  output.  Each  dot  on  the  scatterplot  corre-
sponds  to  a  SHAP  value  for  a  specific  factor  and  sample.  The
SHAP values are plotted on the x-axis, where values above and
below zero indicate a positive and negative contribution to the
model  output,  respectively.  The y-axis  represents  the  different
factors,  and  the  color  gradient  from  red  to  blue  signifies  the
magnitude of  the value of  each factor,  with red and blue indi-
cating high and low values,  respectively. Figure 10b features a
SHAP bar chart that serves as a summary for ranking the impor-
tance  of  factors.  It  represents  the  average  absolute  value  of
SHAP  for  each  factor,  which  helps  determine  their  relative
impact  on  the  model's  output.  The  SHAP  analysis  reveals  that
the  most  influential  factors  affecting  the  model  output  are,  in
descending  order  of  impact:  daily  average  relative  humidity,
sunshine hours,  elevation, daily average air  pressure, and daily
maximum ground surface temperature. 

Importance of meteorology factors
Figure  10 illustrates  the  correlation  among  factors  such  as

daily  average  relative  humidity,  sunshine  hours,  daily  average
air pressure, daily maximum ground surface temperature, daily
average temperature,  daily  precipitation,  daily  maximum wind
speed,  and  daily  average  wind  speed.  These  factors  can
promote  the  forest  fire  occurrence  by  reducing  the  moisture
content  in  combustibles,  effectively  drying  out  fuels  and
increasing  their  flammability[50].  Contrary  to  the  common
assumption  that  higher  temperatures  exacerbate  fire  danger,
the  SHAP  values  unexpectedly  indicate  that  lower  daily  aver-
age temperatures correlate with an increased danger of  forest
fires.  This  contradiction  could  be  attributed  to  the  rise  in
human  activities  in  the  study  area  as  the  daily  temperature
drops.

While extreme weather is acknowledged to precipitate forest
fires,  particularly  in  Sichuan  and  Yunnan  Provinces,  human
activities are identified as the predominant cause. Chen & Di[51]

reported  that  about  90%  of  forest  fire  events  in  China  are
attributable to human activities. Similarly, Ying et al.[52] asserted
that in Yunnan Province, human activities are the chief contrib-
utors  to  forest  fires.  Wang  et  al.[53],  through  spatial  analysis  of
fire  sources,  concluded  that  in  Sichuan  Province,  human  acti-
vities  cause  most  forest  fires,  with  natural  factors  being  less
frequent culprits. 

Importance of topography factors
Elevation significantly influences the output of the model.  It

determines  the  temperature,  with  higher  altitudes  typically
experiencing  lower  temperatures.  Additionally,  high-altitude
areas  are  often devoid of  human presence,  which reduces  the
likelihood  of  forest  fires.  Consequently,  as  elevation  increases,
the  SHAP  values  decrease,  exerting  a  negative  effect  on  the
model.  The  contributions  of  vegetation  type  and  slope  aspect
to  the  model  are  relatively  minor.  Many  high  and  low  value
feature  points  are  intermingled  because  these  factors  are
categorical variables, and their encoded values represent cate-
gories  rather  than  magnitudes  of  influence.  The  SHAP  scatter
plot  indicates  that  the  TWI  does  not  make  a  significant

 

Table 3.    Criteria for the classification of forest fire danger levels.

No. Forest fire occurrence
probability

Fire danger
level Description of fire

1 0−0.2 I Virtually no fire
2 0.2−0.4 II Unlikely to occur
3 0.4−0.6 III Possible to occur
4 0.6−0.8 IV Prone to occur
5 0.8−1 V Highly likely to occur
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contribution  to  the  fire  occurrence,  aligning  with  the  findings
of Eskandari et al.[27]. 

Importance of human activity factors
As  the  values  of  GDP  and  the  distance  to  the  nearest  road

increase,  their  influences  on the model  are  positive  and nega-
tive, respectively. This can reflect the growth in socioeconomic
activities  in  Sichuan  and  Yunnan  provinces  since  2000,  where
the enhancement of human activity causes more forest fires.

The contribution of the model is directly proportional to the
distance from the nearest railway. The closer to the railway, the
less likely a fire is  to occur.  This is  due to the rapid progress in
infrastructure  and  the  modernization  of  the  railway  system,
which  has  led  to  strict  safety  regulations  such  as  the  prohi-
bition  of  open  flames  in  enclosed  train  carriages.  These

regulations have significantly reduced the danger of fires caused
by  improper  handling  of  cigarette  butts  or  other  flammable
materials, effectively lowering the possibility of fire occurrence.

A  higher  population  density  and  a  shorter  distance  to  the
nearest  residential  area  positively  influences  the  model[16].
However,  this  study  reveals  an  opposite  trend,  as  the  popula-
tion  in  the  research  area  is  highly  concentrated  in  urbanized,
highly  developed  towns  with  low  forest  coverage,  where  the
likelihood of forest fires is relatively low. 

Conclusions

This  study utilizes  forest  fire  data  from Sichuan and Yunnan
provinces  for  the  period  of  2000  to  2019  as  the  research

 

Fig. 8    Forest fire danger maps for the three models.
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sample, conducting a spatiotemporal analysis of forest fires and
selecting  18  forest  fire  factors.  On  this  foundation,  three
machine  learning  models  are  optimized  by  the  GP  and  TPE
probability proxy models within the Bayesian framework, yield-
ing TPE-LightGBM, TPE-RF,  TPE-SVM, GP-LightGBM, GP-RF,  and
GP-SVM.  Model  performance  is  validated  using  evaluation
metrics,  with  the  optimal  model  being  selected.  Forest  fire
danger  maps  for  Sichuan  and  Yunnan  provinces  are  created.
Finally,  the  model  is  interpreted  using  the  SHAP  method.  The
major conclusions include:

(1)  Temporally,  there  is  significant  variation  in  the  annual
number of forest fires from 2000 to 2019, with a highly uneven
distribution  and  an  overall  decline  in  forest  fires  after  2010.  In
terms  of  monthly  variations,  forest  fires  are  predominantly
concentrated  between  January  and  May.  Spatially,  forest  fires
during 2000−2019 exhibit  a  clustered distribution,  primarily  in

the  central  and  southern  parts  of  Sichuan  Province  and  the
northwestern and southern parts of Yunnan Province.

(2) In the multicollinearity analysis, three factors, i.e. the daily
maximum temperature, daily minimum temperature, and daily
average ground surface temperature were excluded, leading to
the  selection  of  18  forest  fire  driving  factors,  including  daily
average temperature and daily average relative humidity.

(3)  Models  optimized  with  TPE  hold  higher  predictive
accuracy  than  those  optimized  with  GP,  for  TPE  can  handle
large-scale  datasets  more  effectively.  In  addition,  TPE  utilizes
historical  observations  to  generate  density  functions  that
provide  new  hyperparameter  configuration  suggestions  to
achieve the desired accuracy.

(4)  Utilizing the TPE-optimized model,  the forest  fire  danger
map reveals similar spatial distributions across the three maps.
The  forest  fire  danger  map  generated  by  TPE-LightGBM

 

Fig. 9    Classification of forest fire danger levels.
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effectively delineates fire danger areas into levels I and V, with a
clearer  distinction between areas  prone to  fires  and those  not
prone to fires.

(5)  A  global  explanatory  analysis  of  the  TPE-LightGBM
model  provides  a  ranking  of  feature  importance,  identifying
daily  average  relative  humidity,  sunshine  hours,  elevation,  the
daily  average air  pressure,  and daily  maximum ground surface
temperature as the most significant factors.

The  vegetation  factors  examined  in  this  study  were  limited
to  classifying  the  types  of  vegetation.  However,  additional
factors, such as the water content of forest fuels, should also be
taken  into  account  within  the  model.  Moreover,  while  this
study  primarily  concentrates  on  forest  fires  that  occur  under
natural  conditions,  it  is  important  to recognize that  some fires
are  the  result  of  human  activities,  including  slash-and-burn
practices, burning paper at graves, smoking, and arson, among
others. In future research, we will aim to incorporate a broader
range  of  human  factors  to  improve  the  accuracy  and  applica-
bility of model. 
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