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Abstract
Dicer-like (DCL) and Argonaute (AGO) proteins play a crucial role in plant epigenetics. However, the evolutionary origins and roles of these gene families in
plant adaptation, stress response, and development remain unclear. This study explores the origin and functional evolution of DCLs and AGOs across 36
plant species spanning diverse taxonomic groups. Member identification, phylogenetic analysis, evolutionary trajectory analysis, and functional divergence
analysis  were  conducted.  The  results  show  that  the  DCL  and  AGO  originated  in  Rhodophytes  and  underwent  two  major  expansions:  during  algal
terrestrialization and the transition from lower to higher plants. In seed plants, DCLs diversified into four classes following two whole-genome duplication
(WGD)  events,  whereas  AGOs  diversified  into  seven  classes  through  two  WGD  events  and  one  tandem  duplication  event.  Expression  analyses  in
Physcomitrium  patens, Zea  mays, Arabidopsis  thaliana,  and Fragaria  vesca revealed  high  expression  of  these  gene  families  in  reproductive  tissues,  with
notably lower expression in pollen. Additionally, the expression of these genes exhibits different responses to various environmental stresses in A. thaliana
and Z. mays,  highlighting their important roles in adaptation to environmental fluctuations. The present research reveals the functional diversification of
DCLs and AGOs and their crucial roles in facilitating terrestrial adaptation and rapid land colonization.
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Introduction

Epigenetics refers to heritable changes in gene expression that do
not  alter  the  DNA  sequence  but  affect  gene  activity,  such  as  DNA
methylation, histone modifications, and non-coding RNAs. In plants,
the  dicer-like  (DCL)  and  argonaute  (AGO)  gene  families  not  only
participate in  non-coding RNA production and function but  also in
RNA-directed DNA methylation (RdDM)[1−3]. RNA interference (RNAi)
is a critical biological process that involves both post-transcriptional
gene silencing (PTGS) and transcriptional gene silencing (TGS) medi-
ated by small RNAs. This process begins with the generation of small
RNAs,  which  are  then incorporated into  the  RNA-induced silencing
complex  (RISC).  The  generation  of  mature  small  RNAs  (sRNAs)  is
primarily facilitated by DCL proteins, whereas the AGO proteins play
a  pivotal  role  as  carriers,  guiding  sRNAs  to  recognize  and  base-
pair  with  target  mRNA  sequences,  ultimately  regulating  gene
expression[2]. Beyond transcriptional and post-transcriptional silenc-
ing, DNA methylation represents another critical regulatory mecha-
nism  in  various  plant  growth  and  developmental  processes[1,3].
RdDM,  often  referred  to  as  the  canonical  RdDM  pathway,  is  a
widespread epigenetic regulatory mechanism in plants. Both canon-
ical  and  non-canonical  RdDM  pathways  heavily  rely  on  the  func-
tions of DCLs and AGOs[4].

DCLs  function  as  molecular  factories  for  processing  plants  small
RNAs  (sRNAs),  serving  highly  conserved  roles  across  plant  biology.
These  proteins  typically  contain  several  domains,  including  DExD,
Helicase-C,  DUF283,  PAZ,  RNase  III,  and  dsRNA-binding,  all  belong-
ing  to  the  ribonuclease  III  family[5].  The Arabidopsis  thaliana (A.
thaliana)  genome  contains  four DCL genes,  designated  as DCL1
through DCL4, each playing a unique role in RNA silencing and plant
physiological responses. For example, DCL1 is primarily responsible
for  the  biogenesis  of  microRNAs,  indirectly  affecting  normal  plant

development  and  environmental  adaptation[6].  DCL2  mainly
produces small interfering RNAs (siRNAs), which are crucial for plant
defense  mechanisms  and  developmental  processes[7−9].  DCL3  is
predominantly  involved  in  the  synthesis  of  24-nucleotide  siRNAs
and  is  essential  for  the  RdDM  pathway,  maintenance  of  genomic
stability,  regulation  of  gene  expression,  and  responses  to  environ-
mental  stimuli[10,11].  DCL4  produces  21-nucleotide  siRNAs,  which
play  key  roles  in  post-transcriptional  gene  silencing,  especially  in
antiviral  defense  mechanisms[12].  Additionally, DCL5 (previously
known  as DCL3b)  is  found  in  monocots;  it  enhances  the  activity  of
DCL3 and plays a specialized role in reproductive processes[13].

In plants, the AGO family genes interact with sRNAs to form RISC,
which  act  as  specific  regulators  of  gene  expression  across  various
biological  processes.  AGO  proteins  modulate  gene  expression
through several mechanisms including transcript cleavage, suppres-
sion  of  PTGS,  and  influencing  DNA  methylation  through  RdDM,
along with other specialized functions[14,15]. The AGO family exhibits
significant evolutionary diversity and can be categorized into three
main  phylogenetic  groups: AGO1/5/10, AGO2/3/7,  and
AGO4/6/8/9[16,17]. AGO1 is  a  widely  expressed  member  that  plays  a
central  role  in  multiple  sRNA-mediated  silencing  pathways,  espe-
cially  those associated with PTGS[18,19].  The function of AGO5 is  less
well  understood  but  it  is  thought  to  be  involved  in  gene  silencing
during viral infections[20,21]. AGO10 selectively binds to 21-nt siRNAs
and  is  involved  in  transcriptional  gene  silencing  pathways[22,23].
AGO2 is  recognized  for  its  role  in  defense  against  viruses,  it  also
binds to 21-nt siRNAs to participate in PTGS[24−26]. AGO3 and AGO7,
despite  being  phylogenetically  close  to AGO2,  display  functional
divergence—AGO3 binds to 24-nt siRNAs and primarily participates
in RdDM to maintain genomic and transposon stability[27],  whereas
AGO7 interacts  with  miR390  to  trigger  the  production  of  trans-
acting siRNAs from TAS3 transcripts[28]. AGO4,  a core component of
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the  RdDM  pathway,  guides  24-nt  siRNAs  to  DNA  sites  to  promote
DNA  methylation,  thereby  silencing  their  target  genes[1]. AGO6
shares  functional  similarities  with AGO4,  often  acting  as  its  func-
tional  complement.  Additionally, AGO9 has  been  shown  to  also
participate  in  RdDM[29−31].  The  specific  roles  of AGO8 and  its  asso-
ciated  siRNAs  remain  unclear.  However, AGO8,  along  with  its
paralogs AGO4, AGO6,  and AGO9,  is  crucial  for  early  megaspore
formation[30,32].

Although extensive research has detailed the evolution and func-
tion of DCLs and AGOs in plants, most studies have focused on their
classification and diversity, with less attention given to their poten-
tial  functional  divergence  during  evolution[33,34].  In  the  present
study,  the distribution,  evolution,  and expansion of DCLs and AGOs
were  examined  across  a  wide  range  of  species.  By  constructing
phylogenetic  trees,  their  possible  evolutionary  trajectories  within
angiosperms  were  inferred.  Their  expression  profiles  were  further
analyzed in  various  tissues  and under  different  stress  conditions  to
explore the potential functions of these two gene families. The find-
ings  significantly  advance  the  understanding  of  the  functional
evolution  of DCLs and AGOs in  angiosperms,  and  offer  valuable
insights that could inform future breeding strategies aimed at deve-
loping improved plant varieties. 

Results
 

Identification of DCL and AGO family members in
plants

To  investigate  the  origins  and  evolutionary  histories  of DCL and
AGO genes  in  plants,  this  study  used  Arabidopsis DCL and AGO
genes as seed sequences. BLAST software was employed to identify
homologous  sequences  in  36  plant  species,  spanning  groups  such
as  rhodophytes,  chlorophytes,  charophytes,  bryophytes,  ferns,
gymnosperms,  basal  angiosperms,  monocots,  and  eudicots.  Addi-
tional validation with InterProScan confirmed the presence of requi-
site  domains  in  the  identified  sequences.  This  screening  process
resulted  in  the  identification  of  113 DCLs and  334 AGOs across  the
36 species.

To  delineate  the  evolutionary  relationships  among  the DCL and
AGO genes,  phylogenetic  trees  were  constructed  using  the  maxi-
mum likelihood method. The phylogenetic analysis of DCLs revealed
two  main  branches,  which  can  be  further  divided  into  four  clades
(Fig.  1a).  This  tree  suggests  that  the DCL genes  originated  in
rhodophytes  and  remained  relatively  stable  in  chlorophytes  and
charophytes.  Notably,  a  significant  expansion  of DCLs occurred  in
bryophytes, marked by the emergence of the DCL1, DCL3, and DCL4
clades,  with  seed  plants  exhibiting  widespread  representation
across  all  four  clades.  The AGO gene  family  tree  consists  of  three
main  branches  and  seven  clades  (Fig.  1b),  with  phylogenetic
evidence  indicating  that  the  ancestors  of  the  AGO4/6/8/9  and
AGO2/3/7  groups  were  present  in  algae.  These  genes  underwent
further expansion in bryophytes and ferns and fully evolved in seed
plants.  Taken  together,  these  results  highlight  a  largely  consistent
evolutionary  history  for DCLs and AGOs,  suggesting  synchronous
evolution  among  these  gene  families.  Additionally,  the  identifica-
tion of DCL and AGO members were expanded using transcriptome-
based gene annotations from the 1KP database,  which covers  over
1,000  plant  species  (Supplementary  Figs  S1 & S2).  The  results  from
this  broader  analysis  are  consistent  with  those  derived  from  the
initial  36  species.  Based  on  sequence  homology  and  phylogenetic
insights,  the  origins  and  evolutionary  trajectories  of  the DCL and
AGO gene families across various plant lineages have been inferred,
providing a comprehensive overview of their development through
evolutionary history.

Multiple  sequence  alignments  of  sRNA-related  functional
domains  in  DCLs  and  AGOs  were  performed.  Overall,  the  RNase  III
domains  of  DCLs  in  all  four  branches  are  highly  conserved  at  both
the  C- and  N-termini.  Additionally,  there  are  variations  among  the
RNase III domains between different branches, with those in higher
plants  being more conserved (Supplementary  Fig.  S3).  This  conser-
vation  may  reflect  adaptations  to  diverse  environmental  pressures
through more sophisticated RNA regulatory mechanisms, leading to
the  synthesis  of  a  wider  variety  of  sRNAs.  Furthermore,  we  aligned
the  MID  and  PAZ  domains  of  AGOs  across  different  branches.
Members  of  the  AGO2/3/7  and  AGO4/6/8/9  branches  have  largely
lost the MID domain, and those that retain it show less conservation.
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Fig. 1    Phylogenetic trees of the (a) DCL, and (b) AGO gene families across 36 plant species. Branches are color-coded to denote different plant groups:
black for rhodophytes, yellow for chlorophytes, red for charophytes, green for ferns and bryophytes, and blue for seed plants.
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In  contrast,  the  AGO1/5/10  branch  retains  a  highly  conserved  MID
domain  (Supplementary  Fig.  S4).  Similarly,  the  PAZ  domain  shows
significant  differences  among  branches,  with  high  conservation  in
the  AGO1/5/10  branch,  including  in  lower  plants,  while  the  other
two  branches  exhibit  lower  conservation  (Supplementary  Fig.  S5).
Highly  conserved  MID  and  PAZ  domains  are  typically  associated
with  fundamental  miRNA  processing,  whereas  less  conserved
domains  may  relate  to  specific  functional  requirements  and  adap-
tive changes.

In  plants,  the  copy  number  of DCL genes  does  not  appreciably
vary across different evolutionary branches (Fig. 2), ranging from 25
to  40  across  the  four  groups  and predominantly  existing as  single-
copy genes throughout plant evolution. The primary factor influenc-
ing  this  gene  copy  number  variation  among  different  plants  is
attributed  to  whole-genome  duplication  (WGD)  events  during
specific  evolutionary  processes.  By  contrast,  the  copy  number  of
AGO genes  exhibit  considerable  variation  across  branches.  Specifi-
cally,  the  major  clades  of AGO4/6/8/9, AGO2/3/7,  and AGO1/5/10
contain  95,  93,  and 173 genes,  respectively  (Fig.  2).  The  number  of
AGO genes notably exceeds that of DCL genes and shows diversifi-
cation  into  more  clades,  suggesting  that  the AGO genes  are  more
frequently  retained  during  duplication  events.  Additionally, AGO4
and AGO6, which encode key enzymes in plant methylation through

siRNA  processing  were  analyzed  separately  (Fig.  2).  Results  show
that AGO4 is  prevalent  in  basal  angiosperms,  whereas AGO6 is
restricted  to  monocots  and  dicots.  Based  on  these  findings,  it  is
hypothesized  that  the  evolution  of AGO4 and AGO6 may  be  linked
to significant shifts in reproductive strategies and the development
of  floral  organs  during  the  transition  from  gymnosperms  to
angiosperms. Given the unique and critical roles of AGO4 and AGO6
in methylation processes, the expansion and loss of these genes was
investigated within the AGO4/6/8/9 clade across 36 species (Fig.  3).
Phylogenetic analysis reveals that these genes exist as single copies
in algae, ferns, gymnosperms, and basal angiosperms. Following the
ε duplication  event,  both AGO4 and AGO6 were  retained  in
embryophytes.  Unlike AGO6,  which  did  not  undergo  significant
expansion  after  its  formation, AGO4 experienced  multiple  duplica-
tion events.  In  the Brassicaceae,  the α and β duplication events  led
to  the  emergence of AGO8 and AGO9.  Similarly,  duplication events
in crops such as potatoes, tomatoes, and monocots also contributed
to the expansion of AGO4. 

Phylogenetic and collinearity network analysis of the
DCLs and AGOs

To elucidate the evolutionary differences between DCLs and AGOs
in  plants,  a  collinearity  network  analysis  was  conducted  on  18

 

 
Fig. 2    Phylogenetic distribution and gene copy number analysis of DCL and AGO gene families across 36 plant species. The phylogenetic tree on the left
represents the evolutionary relationships of species investigated, with branches colored to represent different groups. The heatmap on the right displays
gene copy numbers for each clade of gene family across the species, with higher numbers represented by darker shades. The total counts for each clade
across all species are provided at the bottom of the heatmap.
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plants,  including  both  monocots  and  dicots,  based  on  their  phylo-
genetic  relationships.  The  analysis  identified  542  syntenic  gene
pairs, grouping the DCL genes into four clusters that represent four
distinct evolutionary trajectories. Additionally, four WGD events and
three  tandem  duplication  pairs  were  detected  in  apple,  soybean,
and  tomato,  suggesting  lineage-specific  expansions  of  the DCLs
during  evolution  (Fig.  4a).  Therefore,  we  integrated  both  phylo-
genetic  and  collinearity  data  were  integrated  (Fig.  4b)  and  the

evolutionary  history  of DCL genes  was  reconstructed.  It  is  pro-
posed that  two ancestral DCL genes  existed before  the emergence
of  seed  plants,  which  subsequently  underwent  two  WGD  events.
This  process  resulted  in  the  loss  of  three  branches,  leaving  four
extant DCL groups.

In the AGO gene family, 1,090 syntenic gene pairs were identified
and  subsequently  clustered  into  seven  groups  (Fig.  4c).  Notably,
AGO4, AGO8,  and AGO9 formed  a  cluster,  demonstrating  their

 

 
Fig. 3    Phylogeny of the AGO4/6/8/9 clade within the AGO gene family. Different colored branches represent distinct plant groups. The symbols ε, α, and
β represent  the  epsilon  angiosperm-wide  WGD  event,  the  alpha  duplication  event,  and  the  beta  duplication  event,  respectively.  Red  stars  along  the
branches indicate specific whole-genome duplication events.
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evolutionary  homology.  A  similar  homologous  relationship  is
observed between AGO2 and AGO3.  Additionally,  43 syntenic  gene
pairs  resulting  from  intraspecific  duplications  across  various AGO
groups  were  found.  Moreover,  23  tandem  duplication  pairs  were
identified,  they  distributed  across  the  syntenic  gene  clusters  of
AGO1, AGO4/8/9, AGO5,  and AGO6,  with  most  tandem  duplications
occurring within AGO2/3.  Based on these findings, it is inferred that
the AGO family  originated  from  three  ancestral  genes  before  the
emergence of seed plants, with clusters retained through two WGD
events.  Furthermore, AGO2 and AGO3 appear  to  have  arisen  from
tandem duplications (Fig. 4d). 

Expression patterns of DCLs and AGOs in key green
plants

To  explore  the  functional  differences  between DCLs and AGOs
throughout  plant  evolution,  expression  patterns  were  analyzed
using publicly available data from various tissues of P. patens, Z. may,
A. thaliana,  and F.  vesca.  Among these species, F.  vesca exhibits the
highest  number  of DCL members,  totaling  six.  The  expression
profiles  of  various  tissues  were  largely  consistent  across  the  four
species,  with DCLs showing high expression in reproductive tissues
(Fig.  5a, Supplementary  Fig.  S6a).  In F.  vesca,  the DCL2 and DCL3
branches  each  contain  two  gene  members,  however,  in  each
branch, only one gene exhibits high expression. This contrasts with
Z.  mays,  where  the  expression  patterns  of  the  two DCL3 members
are  similar.  In P.  patens, DCL3 is  more  prominently  expressed  in

vegetative  tissues,  whereas  in A.  thaliana, Z.  may,  and F.  vesca,  it
shows  high  expression  in  reproductive  tissues.  For  the AGOs,  the
overall expression profiles are similar to those of the DCLs, with high
expression in reproductive tissues (Fig. 5b, Supplementary Fig. S6b).
The AGO4/6/8/9 groups  demonstrate  functional  complementation
in reproductive tissues in ancestral species, whereas in A. thaliana, Z.
mays, and F. vesca, AGOs are ubiquitously expressed in all reproduc-
tive tissues. In P. patens, AGO1 group members are highly expressed
only  in  reproductive  tissues  in P.  patens,  however,  they  maintain
high  expression  levels  across  all  tissues  in A.  thaliana and F.  vesca.
Interestingly,  despite  their  overall  low  expression  levels  in  pollen
both DCLs and AGOs from various groups remain active in reproduc-
tive organs in A. thaliana and F. vesca.

The expression of DCLs and AGOs in response to various stresses
in A. thaliana and Z. may were further analyzed. The results indicate
that A.  thaliana DCLs respond  to  all  stressors  except  irradiation,
whereas Z.  may  DCLs primarily  respond  to  heat,  salt,  drought,  and
nutrient  deficiency  (Fig.  6a).  The  stress  responses  of AGOs vary
across  different  groups (Fig.  6b).  For  example,  in A.  thaliana, AGO6,
AGO7,  and AGO10 are involved in most stress pathways.  In Z. mays,
AGO6, AGO4/8/9, AGO2/3,  and AGO10 participate  in  multiple  stress
responses.  In  both A.  thaliana and Z.  mays, AGO5 exhibits  minimal
responsiveness to stress, whereas AGO4 responds to similar stresses,
including  heat,  salt,  drought,  cold,  shade,  and  nutrient  deficiency.
This  comprehensive  analysis  underscores  the  specificity  and

 

a b
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Fig. 4    Phylogenetic analysis and synteny identification of the DCL and AGO genes. (a), (c) Phylogenetic and syntenic relationships of the DCLs and AGOs.
The  blue  and  green  lines  indicate  gene  pairs  resulting  from  WGD  and  tandem  duplication  in  the DCLs and AGOs,  respectively.  (b,  d)  Schematic
representation of the proposed evolutionary histories of the DCL and AGO gene families. The dashed lines indicate gene loss. Blue stars mark either the
ancient seed plant-wide or angiosperm-wide genome duplication events. Red stars represent tandem duplication events of genes.
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variability  of DCL and AGO responses  to  environmental  stresses,
highlighting  their  essential  adaptive  functions  in  plant  stress
physiology. 

Discussion

As  plants  transitioned  from  aquatic  to  terrestrial  environments,
they encountered more variable habitats and increased exposure to
air. This shift prompted the expansion of numerous gene families to
adapt to these diverse environmental challenges[35−37].  The present
findings  align  with  previous  studies,  revealing  that DCLs are
predominantly  classified  into  four  groups,  with DCL2 being  exclu-
sive  to  seed  plants  (Fig.  1a).  The  origin  of DCLs was  traced  back  to
rhodophytes,  detecting  homologs  in Chondrus  crispus and
Porphyridium purpureum,  a finding supported by data from the 1KP
database  (Supplementary  Fig.  S1).  Similarly,  the  present  analysis
suggests that AGOs also originated from rhodophytes,  demonstrat-
ing  the  conservation  of  the  RNAi  pathway  across  plant  species.
Contrary to Li et al., who reported a single ancestral lineage for AGO,
the  present  study  identifies  ancestral  positions  for AGO4/6/8/9 and
AGO2/3/7 in Porphyridium purpureum[16]. Furthermore, a clear differ-
entiation  of AGOs into  two  distinct  groups  in  rhodophytes,  chloro-
phytes,  and  charophytes  was  observed  (Fig.  1b).  The  expansion  of
the AGO family from charophytes to bryophytes likely represents an
evolutionary  adaptation  crucial  for  terrestrial  colonization[38,39].
Furthermore, these findings underscore the significant role of epige-
netics in the terrestrial adaptation of plants.

DCLs exhibit  a  single  ancestral  branch  in  all  algae,  however,
their  expansion  during  the  transition  from  aquatic  to  terrestrial
environments  coincides  with  that  of  the AGOs.  This  expansion

continuous  as  lower  plants  evolved  into  higher  plants,  leading  to
the  present  diversification  of  these  gene  families.  As  key  compo-
nents  of  the  RNAi  mechanism, DCLs,  and AGOs are  crucial  for  the
generation and function of miRNA. Specific miRNAs in algae that are
conserved in seed plants, such as miR167, miR172, miR395, miR414,
miR418,  and  miR419,  are  missing  in  mosses  and  ferns[40−43].  These
miRNAs are essential for flower development, stress resistance, and
root  development  in  higher  plants[44,45].  Their  absence  in  mosses
and ferns highlights differences in the miRNA-mediated gene silenc-
ing pathways between lower and higher plants and underscores the
adaptive changes during plant evolution, reflecting species-specific
survival  strategies  and  developmental  needs  in  diverse  environ-
ments.  Further analysis  of  the evolutionary trajectories of DCLs and
AGOs in  seed  plants  revealed  that DCLs underwent  two  rounds  of
WGDs in land plants without a significant increase in their numbers
(Figs 2 & 4). By contrast, AGOs experienced two WGD events and one
tandem  duplication  (Fig.  4),  and  maintained  specific  expansions
within different species (Fig. 3). These findings reveal distinct evolu-
tionary paths of these gene families and their crucial roles in adapt-
ing  RNAi  mechanisms  for  plant  survival  and  development  across
diverse ecological settings.

WGD  and  various  forms  of  gene  duplication  are  the  primary
mechanisms  that  drive  the  expansion  of  gene  families.  The  reten-
tion of duplicated genes throughout evolution has facilitated better
adaptation  in  plant  growth  and  development[46−48].  Extensive
research has established the functions of DCLs and AGOs. This study
discovers  that  most DCL and AGO genes  in P.  patens are  highly
expressed  in  meristematic  tissues,  a  pattern  that  is  conserved  in
A.  thaliana, Z.  mays,  and F.  vesca (Fig.  5 & Supplementary  Fig.  S3).
This expression profile is likely attributed to active DNA methylation
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Fig.  5    Expression profiles  of DCLs and AGOs in  different  tissues of A.  thaliana, Z.  may,  and P.  patens.  (a)  Comparative expression profiles  of DCL gene
family members. (b) Comparative expression profiles of AGO gene family members. Dashed lines demarcate distinct clades, with the heatmap displaying
relative expression levels from low (blue) to high (red).
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and  RNAi  regulation  within  these  tissues[10,49,50], underscoring  the
intricate  genetic  regulation  essential  for  plant  development.  Addi-
tionally, DCL3 and DCL4 in P. patens show high expression in vegeta-
tive  and  meristematic  tissues,  respectively,  suggesting  the  speci-
alization  of  their  functions  (Figs  5 & Supplementary  Fig.  S3).  In
Arabidopsis, F.  vesca,  and Z.  mays,  the DCL2/3/4 genes  are  highly
expressed  in  various  tissues  and  response  to  stress  (Fig.  6).  The
sRNAs they produce vary, indicating that diverse types of sRNAs are
extensively involved in the life cycles of plants. This diversity enables
plants  to  adapt  to  environmental  fluctuations  and  supports  their
growth  and  development[51−53].  Additionally,  DCL  serves  as  the
factory for manufacturing and producing miRNAs. Its tissue-specific
expression,  along  with  upregulated  expression  under  stress  condi-
tions,  is  closely  associated  with  the  miRNAs  it  produces.  For  exam-
ple, the miRNA156/SPL module can participate in root development
and vegetative growth while also enhancing the plant's tolerance to
abiotic stress. miR169 targets different members of the NF-YA gene
family,  which  is  involved  in  multiple  developmental  processes
and  stress  responses.  Moreover,  miR159,  miR397,  and  miR393
possess diverse functions in plant growth, development,  and stress

tolerance[44,45].  By  contrast,  the  functions  of  the AGO4/6/8/9 clade
have  remained  largely  unchanged  throughout  evolution,  with  no
special  functions  emerging  from  their  expansion  in Z.  may and A.
thaliana (Figs  5, 6,  & Supplementary  Fig.  S3).  Previous studies  have
demonstrated  functional  complementarity  among  AGO4/6/8/9
proteins[10,54,55],  which is  essential  for  maintaining critical  biological
processes  under  varying  conditions. AGO2/3/7 appear  to  be
predominantly involved in stress responses (Fig.  6),  consistent with
findings of previous studies[56,57]. In A. thaliana, F. vesca, and Z. mays,
AGO1/5/10 exhibit  significant  functional  divergence.  Specifically,  in
A.  thaliana, AGO1 and AGO5 exist  as  single-copy  genes.  However,
AGO5 has largely lost its regulatory functions in tissue development
and stress response, whereas AGO1 retains all these functions (Figs 5
& 6).  In Z.  mays,  although  there  is  a  significant  expansion  of
members  within  the AGO1/5/10 group,  their  functions  remain
largely similar to those observed in P.  patens.  These results suggest
that  subfunctionalization  and  neofunctionalization  are  two  po-
tential  evolutionary  outcomes  of  gene  duplication[58],  and  also
demonstrate  the  role  of  epigenetic  regulation  in  directing  species-
specific evolutionary trajectories in plants. 

 

a

b

 
Fig.  6    Expression of  the DCLs and AGOs under different stress conditions in A.  thaliana and Z.  mays.  (a)  Comparative expression profiles of DCL gene
family  members.  (b)  Comparative  expression  profiles  of AGO gene  family  members.  Dashed  lines  denote  distinct  clades,  with  the  heatmap  displaying
relative expression levels from low (blue) to high (red).

Evolution and functional divergence of plant DCLs and AGOs
 

Su et al. Epigenetics Insights 2024, 17: e003   Page 7 of 9



Materials and methods
 

Identification of DCLs and AGOs
Genomic  data  for  36  plant  species  used  in  this  study  were

obtained from databases such as Phytozome (Supplementary Table
S1).  Gene  screening  and  alignment  of  the  1KP  transcriptome  data
were conducted using the ONEKP online platform (https://db.cngb.
org/onekp).  Protein sequences of the four DCLs and ten AGOs from
A.  thaliana served  as  query  sequences  for  BLASTP  analysis  against
the  proteomic  data  of  the  remaining  35  plant  genomes,  using  an
e-value  threshold  of  1e-20.  The  resulting  sequences  were  then
analyzed  using  InterProScan  to  identify  and  annotate  conserved
domains  using  the  Pfam,  PANTHER,  and  SMART  databases[59].  Only
sequences  that  contained  domains  consistent  with  those  found  in
A. thaliana were selected for constructing a phylogenetic tree using
FastTree.  Branches  exhibiting  abnormal  lengths  were  manually
removed  to  ensure  the  accuracy  of  the  inferred  phylogenetic
relationships[60]. 

Phylogenetic tree construction and collinearity
analysis

First,  multiple  sequence  alignment  of  all  DCL  and  AGO  protein
sequences  was  performed  using  MAFFT.  Gap  positions  were  then
removed from the aligned sequences using Phyutility  with a cutoff
parameter  of  0.5.  Next,  ProtTest  was  used  to  predict  the  best-fit
substitution  models  for  constructing  the  DCL  and  AGO  phyloge-
netic trees. The DCL and AGO trees were constructed using IQ-TREE
with the JTT + F + R6 and LG + I  + G + F models,  respectively, with
1000 Bootstrap replicates[61]. For genes indexed in the 1KP database,
phylogenetic  trees  were  constructed  using  FastTree.  Additionally,
collinearity  blocks  were  identified  by  comparing coding sequences
across species using the Python version of MCScan[62]. 

Expression analysis of DCL and AGO genes
Expression data for different tissues of P. patens and F. vesca were

obtained from the  Physcomitrium eFP Browser  and the  Strawberry
eFP  Browser,  respectively  (http://bar.utoronto.ca).  For A.  thaliana
and Z.  mays,  tissue-specific  and  stress-induced  expression  profiles
were  downloaded  from https://plantrnadb.com.  Detailed  data
sources are provided in Supplementary Table S2. The expression of
DCL and AGO genes  across  these  species  was  visualized  using
TBtools[63]. 
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