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Abstract
Alzheimer's  disease  (AD)  is  a  common  neurodegenerative  disease,  which  seriously  impairs  human  health  and  life.  At  present,  scientists  have

proposed more than a dozen hypotheses about the pathogenesis of AD, including the tau propagation hypothesis. However, the exact ultimate

pathogenic  factor  of  AD  remains  unknown.  Based  on  the  current  hypotheses,  some  anti-AD  drugs  (e.g.,  donepezil  and  Ketamine)  have  been

developed and used in clinical treatment, which fall into two main categories, acetylcholinesterase inhibitors (AChEIs) and N-methyl-D-aspartate

(NMDA) receptor antagonists, the former representative drug is donepezil, and the latter representative drug is memantine. Since these drugs

have undesirable side effects, it is necessary to find safer alternatives for AD treatment. Interestingly, dietary phytochemicals have the advantages

of wide source, safety, and high biological activity, which is the natural route for screening anti-AD drugs. In this study, several representatives’

dietary  phytochemicals  with  anti-AD  effect,  including  resveratrol,  lycopene,  gallic  acid,  berberine,  ginsenoside  Rg1,  pseudoginsenoside-F11,

ginsenoside  Rh2,  artemisinin,  and  torularhodin  were  selected  from  the  published  data  over  the  last  10  years  and  their  potential  molecular

mechanisms and clinical applications reviewed in the treatment of AD.
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 Introduction

$ $

Alzheimer's  disease  (AD)  is  a  common  neurodegenerative
disease that seriously affects memory and thinking. More than
60% of dementia cases are attributed to AD. Statistics from the
World  Alzheimer  Report  2022  showed  that  more  than  55
million patients worldwide suffered from AD, and this number
is  expected to exceed 139 million by 2050[1].  Based on incom-
plete statistics, the cost of treatment and care for AD exceeded
USD  1  trillion  in  2018  and  is  expected  to  double  to  USD  2
trillion  by  2030[2].  Various  AD  remission  drugs  (e.g.,  donepezil
and  Ketamine)  are  used  in  clinical  treatment.  These  drugs  fall
into  two  main  categories,  acetylcholinesterase  inhibitors
(AChEIs)  and  N-methyl-D-aspartate  (NMDA)  receptor  antago-
nists, the former representative drug is donepezil, and the latter
representative  drug  is  memantine[3].  Without  exception,  all
these  drugs  are  neurotransmitter  regulators  with  undesirable
side  effects.  In  addition,  they  only  temporarily  improve  cogni-
tive  capability,  therefore,  safer  and  more  effective  drugs  are
needed  for  the  treatment  of  AD.  Coincidentally,  dietary
phytochemicals have shown excellent performance in treating
AD.  Curcumin  mimic  C1  provides  a  good  biological  environ-
ment  for  autophagy  and  lysosomes,  rapidly  decomposes
amyloid  precursor  protein  (APP)  and  tau  congeries,  decreases
amyloid β (Aβ)  levels,  restores  and  reverses  synaptic  dysfunc-
tion,  and  effectively  increases  the  cognitive  level[4].  Further-
more,  pterostilbene  reduced  neuronal  damage  and  inhibited
oxidative  stress[5].  It  also  alleviated  cognitive  dysfunction.
Taking  lycopene  regularly  can  reduce  neuroinflammation  and
enhance  the  ability  of  learning  and  memory[6].  Moreover,

regular  intake  of  gallic  acid  can  relieve  oxidative  stress  in  the
brain (Table 1)[7].

A daily dose of berberine also significantly improved learning
and  memory  (Table  1)[8].  Previous  studies  have  shown  that
berberine  can  play  a  neuroprotective  role  in  AD  caused  by
heavy metals[9]. In recent years, studies have demonstrated that
ginsenosides  have  protective  effects  on  AD,  including  ginse-
noside  Rb1  and  ginsenoside  Rg1[10].  Moreover,  the  number  of
publications  on  'Alzheimer's  disease  and  phytochemicals'
(Indexed  by  Web  of  Science)  has  improved  significantly  since
2012  and  has  seen  the  most  rapid  growth  over  the  past  four
years  (2018−2021)  (Fig.  1).  Together,  these  data  indicate  that
dietary  phytochemicals  have  potential  in  treating  AD.  In  this
review, we have collected representative literature from the last
10  years  from  the  Web  of  Science.  'AD  and  dietary  phytoche-
micals'  was  used as  keywords  to  search highly  cited literature,
we  found  that  curcumin,  resveratrol,  lycopene,  gallic  acid,
berberine  and  ginsenoside  are  the  most  frequently  studied.
Then, we searched the literature using 'xx and AD' as keywords
like  curcumin  and  AD.  For  each  phytochemical,  we  selected
3−5 reports with high citation rate or the latest research (in the
last  two  years).  In  the  'others'  section,  we  found  dietary
phytochemicals  related to those we identified in the first  step,
such as torularhodin, and recent substances of interest, such as
artemisinin,  and  more  cited  articles,  not  highly  cited  articles,
such  as  sesamin.  Based  on  this,  we  discussed  the  molecular
mechanisms  of  several  representative  dietary  phytochemicals
in  the  treatment  of  AD.  This  review  will  contribute  to  the
development of potentially effective AD treatment strategies.
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Table 1.    Structures of dietary phytochemicals and their potential anti-AD mechanisms.

Dietary phytochemicals Model Dosage Molecular mechanism Ref.

Curcumin

HO
O

O O
O

OH

Wistar rats Cur-PLGA-NPs
(5−20 mg/kg body
weight, 3 weeks)

Cur-PLGA-NPs causes enhances the nuclear
translocation of β-catenin, decreases GSK-3β levels,
and increases promoter activity of the TCF/LEF and
cyclin-D1.

[18]

Transgenic
APP/PS1
mice

Curcumin
(160 ppm, 6 months)

Curcumin reduces the level of neuropro-
inflammatory miR-146a, up-regulates the expression
of CFH protein, and inhibits the phenotype of M1
microglia.

[20]

Resveratrol

OH
HO

HO

ICR mice TGN-Res@SeNPs
(50 mg/kg body
weight, 16 weeks)

kappa B↓ / protein kinase↓ / Akt↓
NF-κB/ mitogen-activated protein kinase/Akt signal
pathway.

[26]

Wistar rats RSV-SeNPs (200
mg/kg body weight,
8 weeks)

RSV-SeNPs up-regulates the expression of GSK3β and
SIRT1, and down-regulates the expression of
microRNA-134, consequently increasing neurite
outgrowth.

[25]

Lycopene

Transgenic
APP/PS1 mice

Lycopene (4 mg/kg
body weight, 5 days)

LXR↑ / PI3K↑ / AKT↑
Lycopene alleviates neurovascular changes in
APP/PS1 mice by activating the LXR–PI3K–AKT
signaling pathway.

[6]

Wistar rats Lycopene
(1−4 mg/kg body
weight, 2 weeks)

Lycopene decreases NF-κB expression and
downregulates IL-1β and TNF-α production.

[28]

Gallic acid

HO

O

OH

OH
OH

Transgenic
APP/PS1 mice

Gallic acid (20 mg/kg
body weight,
6 months)

Gallic acid increases the ADAM10 proprotein
convertase furin, activates ADAM10 and directly
inhibits BACE1 activity, does not alter ADAM10 or
BACE1 transcription.

[7]

Berberine

O
O

O
O

N+

Transgenic
APP/tau/PS1
mice

Berberine
(100 mg/kg body
weight, 4 months)

Berberine ameliorates cognitive deficits, reduces the
Aβ accumulation, inhibits the apoptosis of neurons,
and promotes the formation of microvessels in the
mouse brain by enhancing brain CD31, VEGF, N-
cadherin, and Ang-1.

[8]

Ginsenoside Rg1
HOHO

HO

HO

HO

OH

OH
OH

OH

OH
O

O O

O

Sprague
dawley rat
hippocampal
neurons

Ginsenoside Rg1
(60 µM, 24 h)

CDΚ5↓ / IDE↑ / BACE1↑
Ginsenoside Rg1 significantly decreases CDK5
expression, inhibits PPARγ phosphorylation at serine
273, elevates IDE expression, downregulates BACE1
and APP expression.

[44]

Tree shrews Ginsenoside Rg1
(30 mg/kg body
weight, 8 weeks)

Bcl-2/Bax↑ / Wnt↑ / GSK-3β↓ / β-cateni↑
Rg1 increases the ratio of Bcl-2 to Bax and the
expression of neuronal markers MAP2 and NeuN Rg1
regulates oxidative stress, cell apoptosis, and
neuroinflammation by the Wnt/GSK-3β/β-catenin
signaling pathway.

[45]

Pseudoginsenoside

HO

HO

HO

HO

O

O

O

O
H

H

H
H

O

OH

OH
OH

OH

OH Wistar rats Pseudoginsenoside-
F11 (2−8 mg/kg body
weight, 4 weeks)

Calpain I↓ / CDK5↓ / GSK-3β↓
Pseudoginsenoside-F11’s decreased GSK-3β (Ser9)
phosphorylation and CDK5 activity.

[46]

Ginsenoside Rh2

HO
HO

HO
OH

OH

OHO

O

ICR mice Ginsenoside Rh2
(12.5 and 25 mg/kg,
14 days)

ERK↑ / CREB↑ / BDNF↑
Rh2 upregulates the phosphorylation of the ERK-
CREB-BDNF pathway in the hippocampus.

[47]

Artemisinin

OO
O

O O PC12 cells Artemisinin
(0−50 µM, 0−80 min)

ERK1/2↑
Artemisinin suppresses LDH release;
Artemisinin restraines the production of intracellular
ROS;
Artemisinin modulating Δψm and caspase 3/7
dependent pathway;
Artemisinin activates ERK1/2 signaling.

[48]

HO
O

Torularhod

ICR mice Torularhodin
(0.5 and 1.5 mg/kg
body weight,
4 weeks)

Nrf2↑ / NF-κB↓
Torularhodin ameliorates neuronal oxidative
damage via the activation of Nrf2 translocation,
upregulation of HO-1, and inactivation of NF-κB.

[49]
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 Pathogenesis of Alzheimer's disease

The pathological features, pathogenesis, and drug treatment
of  AD  have  been  studied  for  more  than  half  a  century  since
1963  by  Robert  Terry  and  Michael  Kidley,  who  observed
neurofibrillary  tangles  (NFTs)  using  electron  microscopy[11,12].
At  present,  more  than  a  dozen  hypotheses  about  the  patho-
genesis  of  AD,  including  the  tau  propagation  hypothesis.
Among  these  hypotheses  of  AD,  the  tau  propagation  hypo-
thesis  is  the  most  influential  (Fig.  2)[13].  However,  this  is  just  a
hypothesis,  and  causes  of  AD  are  still  being  explored.
Fortunately,  the  three  major  pathological  features  of  AD  are
known, including amyloid plaques (Aβ), tau protein tangle, and
neurofibrillary  tangle  in  AD's  brains[14].  Unfortunately,  the
accumulation of neurofibrillary tangle leads to neuron loss and
degeneration, a form of cell death. Furthermore, the continued
neuron loss and degeneration activated microglia and reactive
astrocytes  further  contribute  to  Blood  Brain  Barrier  (BBB)
leakage and neuroinflammation (Fig. 3)[15].

 Dietary phytochemicals

 Curcumin
Curcumin  (Cur)  (Table  1),  a  natural  dietary  polyphenol

isolated from turmeric, has various biological activities and has
been shown to be beneficial for many brain diseases[16]. Various

studies show that Cur is not only well documented for its anti-
carcinogenic,  antioxidant  and  anti-inflammatory  properties,
but  also  possessing  neuroprotective  and  cognitive-enhancing
properties  that  may  help  delay  or  prevent  neurodegenerative
diseases, including AD[17]. New material carriers and Cur deriva-
tives  activate  transcription  factor  EB,  promote  lysosomal  and
autophagy  activity,  attenuate  Aβ and  tau  pathology,  are  also
effective  in  preventing  memory  impairment  in  AD[4].  Cur
nanoparticles  show  neuroprotective  effects  by  increasing
neuronal  differentiation  through  activation  of  the  Wnt/β-
catenin  pathway  (Fig.  4),  which  enhances  the  brain's  self-
repairing mechanism and has great  potential  in alleviating AD
(Table 1)[18]. Interestingly, Curcumin-primed exosomes potently
ameliorate  cognitive  function  in  AD  mice  by  inhibiting
hyperphosphorylation of the tau protein through the AKT/GSK-
3 beta pathway[19]. In addition, Gong & Sun confirmed that Cur
can  significantly  reduce  the  level  of  neuropro-inflammatory
miR-146A,  and  play  a  role  in  treating  AD  (Table  1)[20].  These
studies laid a foundation for the development of Cur as a novel
drug for AD.

 Resveratrol
Resveratrol  (Res)  (Table 1),  a  natural  dietary polyphenol,  has

been  shown  to  have  pleiotropic  activity  in  numerous  clinical
trials[21].  Moussa  et  al.  found  that  Res  may  slow  cognitive
decline  by  improving  the  coordination  of  the  peripheral  and
central  immune  systems[22].  In  previous  studies,  it  has  shown
that  Res  offer  neuroprotection via modulation  of  proteolytic
mechanisms[23].  Although  the  application  of  Res  is  supported
by a  wealth  of  clinical  data,  the  development  of  Res  is  limited
by its  poor  stability  and bioavailability[24].  With this  new deve-
lopment,  new  composite  material  is  at  a  breakthrough  point.
Res-selenium  nanoparticles,  a  new  material,  not  only  reduce
neuroinflammation  and  neurotoxicity,  but  also  maximize  the
therapeutic  potential  of  Res  for  AD  (Fig.  4 and Table  1)[25].
Moreover, Res-selenium-peptide nanocomposites, a novel com-
posite  material  decorated  with  a  TGN  peptide  (blood-brain
barrier  transport  peptide),  significantly  alleviated  neuroinfla-
mmation by improving delivery efficiency (Table 1)[26].

 Lycopene
Lycopene  (Lyc)  (Table  1)  is  a  fat-soluble  carotenoid.  As  a

potent  antioxidant,  its  antioxidant  far  exceeds  vitamin  E  and
carotene[27]. Regular Lyc intake can reduce memory damage in
the  brain  (Table  1)[28].  Fang  et  al.  have  confirmed  that  Lyc

300

200

100

N
um

be
r o

f p
ub

lic
at

io
n 

(W
O

S)

0
2012

56 65 69 74
105

135
159

221
237 242

180

2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 
Fig.  1    The  number  of  publications  on  'Alzheimer's  disease  and
dietary phytochemicals'  (indexed by Web of  Science)  significantly
increased  since  2012  and  the  breakout  increase  occurred  in  the
last four years (2018−2021).
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Fig.  2    Hypothesis  of  tau  propagation.  The  tau  proteins  are  usually  hyperphosphorylated  by  binding  to  amino  residues,  typically  Ser202,
Thr205,  Ser396,  and  Ser404.  Then  these  monomers  aggregate  to  form  tau  protein  tangles,  a  complex  oligomer,  that  eventually  form
neurofibrillary tangles, resulting in cell death. Drawing on https://app.biorender.com/.
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prevents Aβ-induced damage by reducing the expression of β-
secretase. Moreover, in vitro experiments have shown that Lyc
can  alleviate  oxidative  stress  by  inhibiting  the  expression  of
BACE[29].  Lyc is  effective in reducing neuroinflammation (Fig.  5
and Table  1)[6,30],  and  also  significantly  reduces  oxidative
stress[31].  In  addition,  Lyc  can  improve  cognitive  and  motor
impairments by increasing dopamine levels[32].

 Gallic acid
Gallic  acid  (GA)  (Table  1),  also  known  as  benzoic  acid,  is  a

dual α/β-secretase modulator[33]. Mori et al. have demonstrated
that  GA  alleviates  neuro-inflammation  and  stabilizes  oxidative
stress[6].  We  can  see  that  dietary  GA  supplementation  can
effectively  alleviate  oxidative  stress  induced  AD,  preserve  the
healthy  state  of  the  hippocampus  to  against  environmental
neurotoxins[34].  Furthermore, GA reacts with gallic catechins to
get Epigallocatechin-3-Gallate (EGCG). Payne et al. have shown
that  EGCG  treats  AD  by  inhibiting  neuroinflammation,  aging,
protein  aggregation,  and  autophagy[35].  In  addition,  Araújo  et
al.  have  designed  a  new  drug-carrying  molecules,  a  dendritic
macromolecule based on GA-terminated. The special structure
further  enhancing  the  ability  of  GA  to  destroy  Aβ fibers  to
protect the nervous system in AD[36].

 Berberine
Berberine  (BBR)  (Table  1),  an  alkaloid,  has  neuroprotective

effects[37].  Zhang  et  al.  have  shown  that  BBR  has  a  neuropro-
tective  effect  in  AD[38].  Živančević et  al.  have  confirmed  that
BBR  antagonizes  genes  affected  by  mutual  for  AD  and  metal
toxicity[39].  In  addition,  it  has  been  shown  that  BBR  improved
cognitive  deficits,  inhibited  neuronal  apoptosis,  and  further
promoted  micro-vessel  formation  (Table  1)[7]. In  vitro studies
confirmed the efficacy of  BBR against  AD by showing reduced

proinflammatory cytokine production[40]. Inevitably, the bioavai-
lability  of  BBR  is  also  not  high.  El-Enin  et  al.  have  designed  a
new  material,  BER-CTS-NLCs  (BBR-laden  nanostructured  lipid
carriers  overlaid  with  chitosan).  It  effectively  transmits  to  the
brain via intranasal  pathways[41].  In  the  same  vein,  lactoferrin-
modified  berberine  nanoliposomes  is  also  a  breakthrough,  it
inhibits  hippocampus  apoptosis  and  enhances  the  neuro-
protective effects of berberine nanoliposomes in AD[42].

 Ginsenoside
Ginsenoside,  a  tetracyclic  triterpenoid  compound,  have

many  different  monomers,  have  been  certified  to  relieve  AD
through  antioxidant  and  anti-inflammatory  effects[43].  Ginse-
noside Rg1 (Rg1),  one of the monomers, has shown neuropro-
tective effects in in vitro studies (Table 1)[44]. In addition, in vivo
studies  have confirmed the antioxidant  and anti-inflammatory
effects  of  Rg1  (Fig.  3 & Table  1)[45].  Rg1  has  neuroprotective
effects  against  AD.  Pseudoginsenoside-F11  (PF11)  and
Ginsenoside Rh2 (Rh2) have the same efficacy (Table 1). In vivo
studies  have  confirmed  that  PF-11  improves  learning  and
memory  deficits  in  AD  (Table  1)[46].  Thus,  the  therapeutic
potential  of  PF11  in  managing  AD  is  excellent.  Rh2  has  also
shown excellent antioxidant action in vivo (Table 1)[47].

 Others
Other  dietary  phytochemicals  also  have  excellent  therapeu-

tic  potential  in  managing  AD,  including  artemisinin  and
torularhodin. In  vitro studies  have  shown  that  artemisinin
alleviated AD by its antioxidant action (Table 1)[48]. Moreover, in
vivo studies  have  shown  that  torularhodin  can  effectively
improve  neuroinflammation  and  cognitive  dysfunction  by
inhibiting oxidative  stress,  thereby preventing AD (Table  1)[49].
Sesamin  protects  the  nervous  system  through  antioxidant

Alzheimer's patient

Amyloid β plaque
Tau protein tangle

Neurofibrillary tangle

Amyloid β
plaque

Neurofibrillary
tangle

Neuron loss and degeneration

Activated microglia

Reactive
astrocytes

BBB leakage and
neuroinflammation

A B

C

 
Fig.  3    (A)  Three  main  pathological  features  of  Alzheimer's  disease  (AD),  amyloid  beta  plaques  (Aβ),  tau  protein  tangle  and  neurofibrillary
tangle in the brains of AD patients. (B) The accumulation of neurofibrillary tangle leads to neuronal loss and degeneration, a form of cell death.
(C) The continued neuronal loss and degeneration activates microglia and reactive astrocytes, which further contributes to blood brain barrier
(BBB) leakage and neuroinflammation. Drawing on https://app.biorender.com/.
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action,  is  a  potential  dietary  phytochemical  in  treating  AD[50].
Many  dietary  phytochemicals  have  been  reported  to  have
significant  effects  on  the  prevention  and  treatment  of  AD.
However,  additional  research  is  needed  to  turn  these  natural
compounds into novel drugs.

 Clinical application

Research into dietary phytochemicals will eventually have to
revert  to  clinical  applications.  Cur  has  been  subject  to  nume-
rous patents and clinical  trials,  but none of  them have yielded
conclusive  results[51].  The  instability  and  low  bioavailability  of
Cur limit its clinical application. Nanocarriers have the potential
to  solve both challenges[52].  Res  has  two major  disadvantages:
low  bioavailability  and  low  solubility in  vivo,  which  prevents

patent treatment[23,53,54]. For Lyc and GA, research on AD is still
in its infancy, thus, currently most clinical studies focus on other
diseases,  such  as  chronic  periodontitis[55],  prostate  cancer[56],
osteoporosis[57],  Type  2  diabetes[58],  and  acne  vulgaris[59].
Although  clinical  research  on  BBR  for  AD  is  also  in  its  infancy,
schizophrenia[60] and  cardiovascular  disease[61] are  still  closely
related  to  AD.  For  ginsenoside,  ginsenoside  H  dripping  pill
(GH),  a  novel  Rh2  product,  is  in  a  phase  2  clinical  study[62].
However,  the  trial  is  focused  on  its  anticancer  effect,  not  its
anti-AD  effect.  For  artemisinin,  it  is  a  miracle  cure  for  malaria,
and  triple  artemisinin-based  combination  therapies  are  en-
rolled in a new randomized clinical trial[63]. Similarly, artemisinin
is  known  for  its  antimalarial  effect,  not  its  anti-AD  effect.
Furthermore,  research  for  torularhodin  is  still  experimental.
Thus,  the  commercial  potential  of  torularhodin  is  still
unexplored[64].

 Conclusion and perspectives

AD is a common disease, and scientists all over the world are
trying  to  find  ways  to  prevent  and  treat  AD.  Dietary  phyto-
chemicals  are  safe  and  have  low  toxicity,  which  have  been
reported  to  exhibit  preventive  and  therapeutic  effects  on  AD,
such  as  curcumin,  resveratrol,  lycopene,  gallic  acid,  berberine,
ginsenoside  Rg1,  pseudoginsenoside-F11,  ginsenoside  Rh2,
artemisinin,  and  torularhodin.  Many  underlying  mechanisms
have  been  identified,  including  reducing  Aβ deposition  and
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Fig. 4    Schematic model of the role of dietary phytochemicals in
neurogenesis  through  activation  of  the  Wnt/ β-catenin  signaling
pathway. Pink arrows: Curcumin interacts with Wif-1 and Dkk-1 to
increase  Wnt  levels  and  activate  the  Wnt  pathway.  Wnt  interacts
with  frizzled  receptors  to  down-regulate  low-density  lipoprotein
(LRP-5/6)  expression  and  trigger  cytoplasmic  disheveled  (Dvl).
Then  it  breaks  the  Axin/APC/GS  K-3β homeostasis  and  down-
regulates  the  expression  of  GSK-3β.  This  sequence  of  reactions
ultimately  up-regulates  cytoplasmic β-catenin  expression  and
transfers  it  from  the  cytoplasm  to  the  nucleus.  After  cellular
internalization  curcumin  directly  upregulates  cytoplasmic β-
catenin  levels.  In  the  nucleus,  TCF/LEF  and  cyclin  d1  promoter
activity  were  enhanced.  Green  arrows:  Rg1  activates  Wnt/GSK-
3β/β-Catenin  signaling  pathway  by  inhibiting  the  activation  of
GSK-3β and phosphorylation of β-Catenin. Wnt signaling pathways
are critical in the pathogenesis of the AD. Blue arrows: RSV-SeNPs
upregulate the expression of GSK3β, Sirtuin-1 (SIRT1) and decrease
that of microRNA-134, consequently increasing neurite outgrowth.
Drawing on https://app.biorender.com/.
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Fig.  5    Lycopene  inhibits  the  down-regulation  of  TLR4  (Toll-like
receptors  4)  by  Aβ,  which  further  affects  MyD88  (Myeloid
differentiation  primary  response  gene  88)  and  TRAF6,  thereby
activating  the  NF-κB  pathway.  On  the  other  hand,  lycopene
directly  inhibits  Aβ induced  neuronal  damage,  as  shown  by
decreased  levels  of  serum  inflammatory  cytokines  and  increased
expression  of  the  p65  subunit  and  TLR4.  Drawing  on
https://app.biorender.com/.
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inhibiting  tau  hyperphosphorylation  to  rescue  synaptic  dys-
function,  thereby  improving  mitochondrial  activity,  anti-
apoptosis,  anti-oxidation  and  anti-inflammatory.  In  future
studies, we should focus on evaluating the alleviating effects of
natural  compounds  in  human  AD,  and  come  up  with  better
ways develop these natural compounds into new drugs faster,
to  treat  the  increasing  number  of  AD  patients.  Therefore,  to
develop  new  drugs  from  dietary  phytochemicals  as  quickly  as
possible, clinical trials are essential. Unignorably, safety is still of
key importance,  although natural  compounds are usually safe,
research must  be performed to  find the safest  pharmaceutical
and  intake  concentration.  Finally,  dietary  phytochemicals  can
be  developed  into  novel  drugs  for  the  prevention  and
treatment of AD, and into food health products.
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