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Abstract
Alternaria alternata and Botrytis cinerea are among the primary fungal pathogens of fruits, causing black spot and gray mold disease, respectively.
They  cause  serious  losses  in  yield  as  well  as  affect  fruit  quality.  Controlling  fruit  postharvest  diseases  largely  relies  on  the  use  of  chemical
fungicides. However, the overuse of fungicides makes the produce unsafe due to their residual effects on the environment and human health.
Therefore, significant advancements are necessary to investigate and find sustainable ways to prevent postharvest disease of fruits and minimize
postharvest losses. This review summarizes the recent developments in the application of biological control and other sustainable approaches in
managing  fruit  postharvest  diseases,  with  an  emphasis  on A.  alternata and B.  cinerea,  respectively.  Furthermore,  several  action  mechanisms,
challenges,  and  prospects  for  the  application  of  biological  control  agents  (BCAs)  are  also  discussed.  Biological  control  application  has  been
proven to successfully reduce postharvest disease of fruits caused by A. alternata and B. cinerea. In recent years, it has gradually changed from
being primarily an independent field to a more crucial part of integrated pest management. Due to their characteristics that are safe, eco-friendly,
and non-toxic,  several  BCAs have also been developed and commercialized.  Therefore,  biological  control  has the potential  to be a promising
approach to replace the use of chemical fungicides in controlling postharvest disease of fruits.
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 Introduction

Fungal  infections  pose  a  major  challenge  within  the  food
supply, leading to substantial postharvest losses. The Food and
Agriculture Organization (FAO) data estimated that the amount
of food wasted worldwide on farms, in transportation, storage,
wholesale,  and  processing,  reached  13.2%  in  2021.  This  is
comparable  to  earlier  estimations  from  the  time  reporting
started,  which were 13.3% in  2020 and 13% in  2016[1].  Factors
such  as  rough  handling,  postharvest  metabolism  and  disease,
inadequate  transportation,  improper  storage,  and  distribution
are reported to be responsible for this waste[2].

It is worth noting that fungal pathogens are one of the most
severe  causes  of  the  deterioration  and  considerable  posthar-
vest  losses  in  fruits  and  vegetables.  In  addition,  certain  fungi
may  cause  harm  by  releasing  mycotoxin[3].  Mycotoxins  pro-
duced by specific fungal genera and species are low molecular
weight  compounds  that  affect  nearly  25%  of  food  and  feed
crop  output  worldwide[4],  and  are  extremely  harmful  to
humans  and  animals[5].  For  example,  freshly  picked  fruits  and
their  derivatives  are  contaminated  with  a  highly  toxic  myco-
toxin  such  as  patulin  (PAT),  mostly  produced  by  pathogens
including Aspergillus spp., Penicillium spp.,  and Byssochlamys
spp.  When  the  fruits  are  infected  by  the  pathogen,  decay

occurs  together  with  the  production  of  PAT[6].  Furthermore,
other  mycotoxins  such  as  Aflatoxin  (AF)  and  fumonisin  (FUM)
are  among  the  priority  mycotoxins  to  control  in  foods.  These
toxins  contaminated  breast  milk  and  complementary  foods  in
Nigeria,  increasing  infant  mycotoxin  exposure.  AFs  are  classi-
fied as class 1 human liver carcinogens, while the prevalence of
birth abnormalities and esophageal cancer have been linked to
FUM consumption[7].

Black  spot  caused  by Alternaria  alternata is  among  post-
harvest  diseases  that  occur  naturally  in  fruits,  vegetables,  and
cereals,  which  has  gained  global  attention  due  to  its  high
occurrence  in  fruits  and  their  derived  products.  Furthermore,
Alternaria spp. produce mycotoxins widely known as Alternaria
toxins.  These  toxins  were  detected  in  tomatoes  and  their
products[8],  cherries[9],  apples[10],  and jujube juice[11]. Alternaria
toxins  have  been  considered  one  of  the  most  serious  risk
factors  for  human  health  as  they  may  cause  esophageal
cancer[12].  These phenomena deserve global attention to mini-
mize and eliminate the potential dietary risks as well as ensure
public health[13].  Apart from A.  alternata,  Botrytis  cinerea is  also
globally  recognized  as  a  necrotrophic  fungus  responsible  for
gray  mold  disease  in  hundreds  of  host  plants,  which  can
produce  toxins  and  reactive  oxygen  species  (ROS)  to  kill  the
host cells[14]. In addition, it has a wide host range, several attack
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mechanisms,  high  genetic  diversity,  and  adaptable  phases  to
withstand harsh environments, making it difficult to control[15].

Control of fruit postharvest disease was generally performed
by  the  treatment  of  fungicides  such  as  2-amino-pyrimidine,
benzimidazoles,  carboxanilides,  phosphorothiolates,  morpho-
lines,  dicarboximides,  phenylamides,  and sterol  demethylation
inhibitors  (DMIs)[16].  Synthetic  and organic fungicides together
hold  a  majority  share  in  the  European Union market  for  pesti-
cides,  making  up  over  60%  of  total  sales[17].  However,  their
application  is  vital  in  determining  their  environmental
effects[18].  For  instance,  the  overall  soil  microbial  activity
decreased  when  difenoconazole  was  applied  at  a  rate  of  500
mg  kg−1 DW  soil,  which  negatively  impacted  soil  enzymes,  as
shown  by  the  respiratory  quotient[19].  The  predominant  and
extensively  employed  group  of  organic  sulfur  fungicides,
known as Ethylenebisdithiocarbamate (EBDC),  has been linked
to  eye  and  upper  respiratory  tract  inflammation[20].  Further-
more, there is a widespread prevalence of pathogen resistance
to  fungicides[16].  The  fungus B.  cinerea was  found  to  be  cross-
resistance to dicarboximides[21]. Similarly, resistance to thiaben-
dazole  was  evident  in  70%  of Penicillium  expansum isolates
from  grapes,  pears,  and  apples[3].  This  resistance  emerges  as
initially, rare mutants survive and spread during treatment with
fungicide.  It  involves various mechanisms,  typically  by altering
the fungicide's primary target in the fungal pathogen[16]. These
phenomena  have  led  to  the  restriction  of  fungicide  utilization
in  fruit  postharvest  disease  control[22],  grown  public  concern
over the sustainable approaches in postharvest disease control,
and  encouraged  more  research  to  develop  low-cost  and  effi-
cient strategies to replace the use of chemical fungicides[3].

Several  sustainable  strategies  in  fruit  postharvest  manage-
ment have been successfully applied against fungal pathogens
as alternatives to chemical fungicides. The utilization of biologi-
cal control agents (BCAs) is considered a promising alternative
to  fungicides  and  has  been  globally  increasing  and  gaining
more attention due to their ability to suppress fruit postharvest
diseases caused by pathogenic fungi[23].  Colonization of cherry
tomatoes by the yeast Wickerhamomyces anomalus resulted in
the  inhibition  of B.  cinerea[24] and A.  alternata growth,  respec-
tively through the prevention of spore germination, decreased
germination  tube  length,  and  an  increase  in  defense-related
enzyme activities and defense-related genes involved in several
metabolisms[25].  Similarly, Pichia  fermentans and Lodderomyces
elongisporus have been shown to effectively reduce Aspergillus
parasiticus growth and AFs contamination in the marinade and
its products[26]. The application of (E)-2-hexenal, a plant-volatile
organic  compound  with  high  bioactivity,  significantly
suppressed  the  gray  mold  incidence  in  strawberries  by  con-
suming glutathione of B. cinerea. When B. cinerea was exposed
to  higher  concentrations  of  (E)-2-hexenal,  the  fungal  capacity
for survival and reproduction was irreversibly lost[27]. The trends
in the application of BCAs experienced significant growth from
approximately  USD  2.1  billion  in  2011  to  USD  4  billion  in
2017[28].  Furthermore,  at  50  universities  in  the  United  States,
biological  control  education  was  added  to  integrated  pest
management  and  sustainable  agricultural  courses  and  work-
shops.  With  this  development,  biological  control  has  progres-
sively  evolved  from  being  essentially  an  autonomous  field  to
become  a  more  integral  component  of  integrated  pest  mana-
gement over the last 24 years[29].

This  review  aims  to  summarize  the  recent  developments  in
the  application  of  biological  control  and  other  sustainable

approaches  in  managing  fruit  postharvest  diseases,  with  an
emphasis  on A.  alternata and B.  cinerea,  respectively.  Further-
more, several action mechanisms, challenges, and prospects of
the application of BCAs will also be discussed.

 Postharvest disease caused by A. alternata
The  fungus Alternaria is  widely  distributed  and  comprises

pathogenic, endophytic, and saprobic species that are linked to
a broad range of substrates[30]. It is also globally recognized for
it's  capacity  to  generate  a  broad  range  of  secondary  meta-
bolites,  such  as  mycotoxins  that  can  contaminate  foods  and
different  phytotoxins  linked  to  plant  disease,  both  host-  and
non-host-specific[31].  This plant pathogen is capable of causing
postharvest spoiling of several  crops,  such as tomatoes,  straw-
berries,  apples,  melon,  pears,  and  citrus[5],  and  is  reported  to
infect over 400 host plants[32].

Alternaria  alternata is  considered  one  of  the  most  devastat-
ing  fungi  infecting  soybean  foliar,  causing  leaf  spot  and  leaf
blight diseases[33].  This global fungal genus is also a key player
in  the  grapevine  microbiome  and  has  been  identified  as
producing  a  wide  range  of  secondary  metabolites,  which  are
especially  important  in  terms  of  crop  protection  and  food
safety[34].  The  fungus A.  alternata causes  black  spot  as  well  as
brown  spot  in  citrus  mainly  through  exploiting  the  surface
lesions  caused  by  sunburn,  bruising,  or  fruit  cracking[35].  In
tomatoes, A.  alternata diseases  are  marked by  the appearance
of  early  fruit  blight,  stem,  and  canker.  In  extreme  situations,
these  diseases  result  in  full  plant  defoliation  by  reducing  the
photosynthetic surface of the leaves[36]. Although A. alternata is
a necrotrophic pathogen, it can also infect seeds and influence
the  following  generation  if  the  plant  sustains  significant
damage[36].  Furthermore, A.  alternata is  responsible  for  latent
infections  in  winter  jujubes[37].  Through  horizontally  transfer-
ring a whole pathogenicity chromosome, A. alternata was able
to generate the host-specific toxin AAL and infect tomatoes[38].
Plant  and  animal  cells  exposed  to Alternaria toxins  undergo
apoptotic  morphology as  a  result  of  the death process[39].  The
toxins  produced  by A.  alternata are  responsible  for  their
pathogenicity on tomatoes, inhibiting the sphingolipid biosyn-
thesis in  vitro and  toxic  for  certain  plant  species. A.  alternata
conidia  germinate  rapidly  in  damp  environments  and  start  to
release toxins before penetrating the tissue[40].  In addition, the
toxigenic  fungus A.  alternata causes  brown  rot  in  apples  and
has  been associated with  food poisoning since it  can produce
mycotoxins  such  as  altenuene  (ALT),  the  benzopyrene  deriva-
tives alternariol (AOH), the perylene derivative altertoxin (ATX),
the tenuazonic acid (TeA), alternariol monomethyl ether (AME),
and  tentoxin  (TEN)  during  infection[10].  The  main Alternaria
toxins, including their chemical names, molecular weights, CAS
numbers and hazard identifications are compiled in Table 1 as
reported  in  the  scientific  literature[41,42].  Various  techniques
have  been  applied  to  determine  and  confirm  the  identity  of
Alternaria toxins,  including  high-performance  thin-layer  chro-
matography  (HPTLC),  thin-layer  chromatography  (TLC),  gas
chromatography  (GC),  and  more  often  liquid  chromatography
(LC),  primarily  with  ultraviolet  (UV)  detection,  atmospheric
pressure  chemical  ionization  (APCI),  LC-mass  spectroscopy
(MS),  and  LC-MS/MS[41].  Although  the Alternaria toxins  cause
serious issues,  none of  the Alternaria toxins found in food and
feed  are  subject  to  specific  national  or  international
restrictions[43].
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 Postharvest disease caused by B. cinerea
Recent  scientific  research  has  identified  approximately  35

species  within  the  genus Botrytis,  with B.  cinerea emerging  as  the
best-known  and  most  thoroughly  investigated[44]. Botrytis  cinerea
is  a  necrotrophic  plant  disease  with  a  broad  host  range  that  seri-
ously destroys crops worldwide. It has three stages of the infection
process:  an  early  stage  marked  by  the  development  of  local
necrotic  lesions,  an  intermediate  stage  when  the  lesions  start  to
spread  more  quickly,  and  a  final  stage  marked  by  continuous
lesion  spreading[45].  This  fungal  pathogen  is  responsible  for  gray
mold  disease  and  is  considered  one  of  the  most  devastating
pathogens  in  agro-economic  crops  such  as  tomatoes,  grapes,
kiwifruits,  strawberries,  apples,  pears,  lettuces,  and  ornamental
crops, and also on hundreds of dicotyledonous plant species[46].  It
can  produce  plant  cell  wall  degrading  enzymes,  toxins,  and  an
array  of  cell  death-inducing  proteins.  Furthermore,  it  also  modu-
lates  the  plant-regulated  cell  death  machinery,  leading  to  local
host  cell  collapse[47].  The  fungus  could  infect  plant  organs  in  the
fruit,  seeds,  stems,  leaves,  and  flowers  in  any  period  of  develop-
ment[48].  After  the establishment of  fungal  hyphae, B.  cinerea may
remain inactive for an extended period, making the infected fruits
symptomless  until  the  fungus  is  reactivated  by  ripening  or  an
appropriate  environment[49].  These  latent  infections  go  unde-
tected during packaging and transportation until reaching distant
markets,  where the rots  may then be revealed,  ultimately  leading
to significant economic losses[49].  In strawberries,  gray mold has a
significant  latency  period  to  manifest  symptoms  following  infec-
tion  and  remains  latent  until  the  fruit  reaches  ripeness[50].  Flower
residue  colonization  by B.  cinerea is  thought  to  be  a  major  infec-
tion mechanism in grapes. When the environment is conducive to
the development of the disease, the pathogen could persist in the
cluster and initiate new infections of the berries[51]. Once B. cinerea
inoculum  survives  on  floral  residues,  it  can  cause  infections  on
tissue lesions triggered by biotic (powdery mildew infections, fruit
flies,  and  grape  moths)  or  abiotic  (hail,  wind,  or  striking  amid
berries) damage[51]. In the early stages of kiwifruit disease, the fruit
does  not  rapidly  decay.  Rather,  the  virus  grows  again  when  the
fruit matures, either in cold storage or throughout shelf life[52].

 Biological control as an alternative to chemical
fungicides: application and mechanisms

The  reduction  of  postharvest  losses,  as  well  as  the  need  for
sustainable disease control has grown as a result of tighter regula-
tions on chemical fungicides. While fungicides are still the primary
means of managing postharvest diseases of fruits and vegetables,
more studies have been conducted to identify sustainable alterna-
tives  due  to  the  negative  impacts  of  fungicides  on  human  health
and the environment, as well as the prevalence of pathogen resis-
tance[28]. Sustainable postharvest disease management is provided
via  biological  control,  partly  due  to  the  emergence  of  parasitoid
and  predator  resistance.  Biological  control  is  the  use  of  natural
microorganisms,  such  as  yeast  and  bacteria,  as  antagonists  in
controlling pests, diseases, or weeds through an ecological interac-
tion[53].  This  ecosystem service,  valued at  billions of  dollars  yearly,
has been regarded as a promising alternative because of its cheap
cost and long-term effectiveness[54].

Several yeasts have been reported to be successfully applied as
BCA against postharvest pathogens[28]. Metschnikowia pulcherrima
strain  MACH1  effectively  inhibited A.  alternata and B.  cinerea
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growth in apples via iron depletion[55]. Furthermore, by enhanc-
ing  the  enzymatic  system  for  ROS  scavenging  in  cherry  toma-
toes, Pichia  caribbica was  able  to  greatly  reduce the  incidence
of black spot and sustain the elevated levels of essential antiox-
idant  compounds  while  simultaneously  reducing  the  genera-
tion of O2‾·, H2O2, and malondialdehyde (MDA)[56]. The antago-
nistic  yeast W.  anomalus, isolated  from  the  soil  in  a  fruit
orchard, significantly controlled postharvest gray mold disease
of  kiwifruits  caused  by B.  cinerea through  preventing  fungal
pathogen  growth in  vitro, quickly  colonizing  kiwifruit  wounds
and  surfaces,  adhesion  to  fungal  mycelia's  surface,  potent
biofilm-forming  capacity,  and  production  of  volatile  organic
compounds  (VOCs)  with  antifungal  properties[57].  Its  high-
throughput sequencing analysis showed that W. anomalus has
a  major  impact  on  the  fungal  community  and  has  a  favorable
effect  on  the  structure  of  the  kiwifruit  epiphytic  and  endo-
phytic  communities[58].  Chitin,  extracted  from  yeast  cells,  is  a
successful  method  for  triggering  resistance  against  gray  mold
decay  in  tomatoes  caused  by B.  cinerea.  Its  application  also
leads to an increase in the accumulation of ROS and deposition
of callose[59]. In addition to this evidence, several BCA products
such  as  Candifruit,  Aspire,  BOTRY-Zen,  and  BoniProtect  have
also been developed and commercialized, which thus have the
potential to make a significant contribution to the biocontrol of
fruit postharvest diseases[60].

Furthermore, to offer a broad range, persistence, and higher
levels  of  yeast  concentration against  fungal  diseases,  a  variety
of  natural  substances,  in  conjunction  with  antagonists,  have
been recently identified to improve the BCA effects[60].  Several
natural  compounds  and  their  remarkable  effects  as  enhancers
have  been  applied  together  with  antagonists  against  posthar-
vest diseases in fruits and vegetables[61].  Generally,  these com-
bined  treatments  serve  a  sustainable  strategy  that  is  highly
effective  and  safe  for  controlling  fruit  postharvest  diseases,  in
which  disease  control  at  the  commercial  level  (97%–99%)  can
be  achieved  through  these  combined  methods[61].  Rhamno-
lipids,  a  surfactant  produced  by Pseudomonas  aeruginosa,  was
more effective in degrading A. alternata disease in cherry toma-
toes  when  combining  with Rhodotorula  glutinis compared  to
their single treatment. Furthermore, the activities of phenylala-
nine ammonialyase (PAL), polyphenoloxidase (PPO), and perox-
idase (POD) in cherry tomatoes were significantly stimulated by
the combination treatments,  which were  higher  than those  of
the single treatments[62]. Similarly, the control effects of Crypto-
coccus  laurentii in  suppressing  gray  and  blue  mold  disease  in
pears  were  significantly  higher  after  combining  with  calcium
chloride  (CaCl2)[63].  Other  substances  such  as  ascorbic  acid
(AA)[64], chitosan[65], methyl jasmonate (MeJa)[66], phytic acid[67],
sodium bicarbonate (SBC)[68], and sodium carboxymethyl cellu-
lose  (CMC-Na)[69] have  also  been  successfully  applied  as
enhancer  to  boost  the  effectiveness  of  antagonistic  yeasts
against fungal pathogens (Table 2).

Understanding  the  mechanisms  of  postharvest  BCAs  is  a
foundation  for  product  development  and  registration.  In
general,  research  on  biocontrol  yeasts  mainly  includes  four
major  modes  of  action:  (1)  antibiotic  production;  (2)  competi-
tion for nutrients and space; (3) direct parasitism; and (4) induc-
tion of host resistance[70].  The fungal infection mechanism and
resistance  mechanisms  of  fruits  against  fungal  pathogens  are
shown in Fig. 1.

 Antibiotic production
Antibiotics  are  a  widely  recognized  mechanism  for  the

biocontrol  activity  of  microorganisms  on  fruit  wounds,  leaf
surfaces, and rhizosphere[71]. For example, Pseudomonas aerugi-
nosa could produce the glycolipid antibiotic rhamnolipid B that
has  the  ability  to  inhibit  postharvest  disease  of  fruits  and
suppress  the  development  of  pathogen  infection  on  leaf
surfaces[72].  However,  although  the  microorganisms  that  can
produce  antibiotics  have  the  potential  to  be  BCAs  for  the
postharvest  disease  of  fruits,  due  to  their  high  risks  and  poor
safety,  the  development  focused  on  antagonistic  microorgan-
isms that do not produce antibiotics is  becoming more neces-
sary[73].

 Competition for nutrients and space
It  is  interesting  to  note  that  the  presence  of  antagonistic

BCAs  can  have  an  impact  on  the  postharvest  disease  of  fruits.
This is because microorganisms are constantly competing with
each other and the host for resources like nutrients and space.
The  combination  treatment  of  rhamnolipids  and R.  glutinis
inhibited the spore germination of A. alternata in cherry toma-
toes  through  destructing  microbial  cell  membranes,  reducing
spore  movement,  and  leading  to  spore  collapse[62].  Further-
more,  through the  use  of  scanning electron microscopy (SEM)
and  transmission  electron  microscopy  (TEM),  it  has  been
observed  that  recombinant  yeast  GS115/CEC  possessed  the
ability to degrade the DNA and RNA of A. alternata fungal cells.
This  yeast  strain  induced  the  expression  of  pathogenesis-
related  proteins,  thereby  effectively  reducing  postharvest
decay in cherry tomatoes[74].

 Direct parasitism
There  is  limited  information  concerning  BCAs  that  directly

attack  and  parasitize  fungal  pathogens  in  the  postharvest
area[71].  However,  the  yeast  cells  of Pichia  guilliermondii and
Debaryomyces  hansenii were  found  to  strongly  attach  to B.
cinerea hyphae. When  the  yeast  cells  detached  the B.  cinerea
hyphae, the hyphal surface showed signs of deterioration, and
the attachment points showed evidence of partial B. cinerea cell
wall  breakdown. The  partial  degradation  of  the  cell  wall  of B.
cinerea by P.  guilliermondii was related to its  persistent  attach-
ment  to  hyphal  walls  in  relation  to  its  production  of β-1,3-
glucanase[75].

 

Table 2.    Various combination treatments that have been successfully applied in fruit postharvest disease control.

Treatment Target pathogens Target crops Ref.

Ascorbic acid + Pichia caribbica Penicillium expansum Apples [64]
Chitosan + Pichia anomala Grapes [65]
Methyl jasmonate + Meyerozyma guilliermondii Apples [66]
Phytic acid + Rhodotorula mucilaginosa Botrytis cinerea Strawberries [67]
Sodium bicarbonate + Kloeckera apiculate/Metschnikowia fructicola Cherry fruits [68]
Sodium carboxymethyl cellulose + Rhodosporidium paludigenum Alternaria alternata Jujubes [69]
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 Induction of host resistance
The  antagonistic  yeasts  can  interact  with  the  host  tissue,

particularly  the  wounds,  and  thereby  enhance  the  process  of
cicatrization.  It  is  confirmed  that  applying  these  antagonists
before  pathogen  infection  increases  their  effectiveness.
Furthermore,  through  elicitors  that  are  either  produced  or  a
component of  their  cell  wall,  yeast cells  may trigger resistance
processes  in  fruit  skin[70]. Candida  saitoana applied  to  apple
wounds induced the activity of chitinase and structural barriers
that develop along the walls of the host cell,  like papillae[76].  A
similar case was also found in apple wounds, in which Aureoba-
sidium pullulans affected a transient increase in chitinase, β-1,3-
glucanase, and peroxidase activities[77].

 Other alternative methods to chemical
fungicides

 Natural compounds and essential oils (EOs)
Different secondary metabolites produced by plants, includ-

ing  fruits,  leaves,  flowers,  buds,  stems,  seeds,  barks,  and  roots
have  biocidal  properties  that  are  suitable  for  making  EOs  and
can  act  as  fungal  inhibitors[78].  EOs  are  natural  antimicrobials
extracted  from  plants  that  potentially  fight  a  variety  of  food-
borne  diseases  and  spoilage  microorganisms[79].  Various  EOs,
including winter savory, peppermint, oregano, eucalyptus, and
wintergreen, as well as their key components such as limonene
and  carvacrol,  have  shown  promising  antimicrobial,  antioxi-
dant,  insecticidal,  and herbicidal  properties for the agricultural
and  food  sector[80].  In  addition  to  their  biodegradable  charac-
teristics,  EOs  are  also  able  to  limit  the  development  of  pest

resistance and have little effect on non-targeted species[81]. The
efficacy of Melaleuca alternifolia EOs against postharvest fungal
pathogens has been confirmed in multiple pathogenic systems,
including A.  alternata in  tomatoes, B.  cinerea and Rhizopus
stolonifera in  strawberries, Stemphylium spp.  in  onions,  and
Monilinia  fructicola in  peaches[82].  EOs  from Origanum  vulgare
and  their  major  components  (thymol  and  carvacrol)  strongly
decreased B. cinerea mycelial growth and spore germination in
vitro, as well as postharvest decay in cherry tomatoes[83].

 Modified atmosphere packaging (MAP)
MAP  is  reported  can  extend  the  shelf  life  of  agricultural

goods  by  preventing  anaerobiosis  activities[84].  Through  pack-
age  respiration,  MAP  utilizes  materials  with  a  particular  gas
permeability  to  regulate  changes  in  oxygen levels.  As  a  result,
MAP can sufficiently prevent fresh products from respiring[85]. It
has  been  reported  that  the  application  of  MAP  with  medium
CO2 levels  (nearly  3  kPa)  and  O2 levels  of  at  least  12  kPa,  RH
below 90 % could extend the overall  quality of red ripe cherry
tomatoes and suppress the decay incidence in the fruits caused
by A. alternata and B. cinerea, respectively[86].

 Edible coating
Edible  films/coatings  are  biodegradable  polymer  thin  layers

widely  used  in  food  packaging  that  have  gained  a  lot  of
attention  due  to  their  benefits  such  as  being  edible,  safe,
biodegradable,  fresh  food  preservers,  preventing  spoilage,
prolonging the shelf life,  and maintaining food qualities,  espe-
cially  during  transit  and  distribution[87].  Gelatin-based  edible
coatings,  including  ethanolic  propolis  (PEE)  extract  from
beehives  in  the  Monte  area  of  Argentina  demonstrated
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Fig. 1    Fungal infection mechanism and resistance mechanisms of fruits against fungal pathogens after treatment with BCAs.
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exceptional  antifungal  activity  against  fungal  diseases  of A.
alternata and B.  cinerea in  raspberries[88].  Similarly, A.  alternata
and B.  cinerea in  vitro colony  development  was  reduced  by
pectin-based  edible  coatings  encapsulating  carvacrol/2-
hydroxypropyl-β-cyclodextrin  inclusion  complex,  ultimately
proving  the  application  of  edible  coatings  to  be  a  sustainable
and  environmentally  beneficial  method  of  food  packaging,  as
well as a valuable way to extend fruit shelf life[89].

 Heat treatments
As sessile organisms, plants cannot escape from stress situa-

tions, including heat stress, chilling injury, fungal infection, and
deterioration.  They  expend  significant  energy  on  adjusting
their metabolism to shield themselves from heat-related harm,
acclimation  activities,  or  acquired  thermotolerance[90].  Heat
stress,  for  example,  changes  the  enzymatic  reaction  efficiency
in  the  plant  cell  and  impairs  the  stability  of  many  proteins,  as
well  as  membranes,  RNA  species,  and  the  structure  of  the
cytoskeleton,  leading  to  metabolic  imbalance[91].  Heat  water
treatment,  which  involves  raising  the  temperature  from  40  to
60  °C,  is  considered  the  most  straightforward  and  affordable
way  to  protect  postharvest  quality  against  fungal  pathogens
and various postharvest storage issues. This method is possible
to use without registration requirements and is entirely safe for
both humans and the environment  (free  of  residue and favor-
able  to  the  environment)[92].  By  strengthening  their  resilience
to  a  variety  of  environmental  stressors,  heat  treatments  can
promote  host  resistance,  impede  pathogen  growth,  and
improve the effectiveness of BCAs[93].

 Cold storage
Cold chain logistics for fruit and vegetables is the term for a

supply  chain  system  that  maintains  products  at  the  proper
temperature  from  the  point  of  picking,  processing,  storing,
shipping,  and  customer  sales  to  guarantee  product  quality  as
well  as  safety  and  minimize  losses.  This  technique  has  been
globally  used  to  prevent  the  development  of  ethylene,
preserve  the  quality  of  the  harvested  fruit,  and  increase  the
fruit's shelf life[94]. The application of ozone during cold storage
successfully delayed and concurrently reduced the postharvest
disease in kiwifruits caused by B. cinerea[95].

 UV irradiation
UV  irradiation,  classified  into  three  groups  including  UV-A

(long  wavelength  320–400  nm);  UV-B  (medium  wavelength
280–320  nm);  and  UV-C  (short  wavelength  200–280  nm),  is  a
common  method  frequently  applied  for  radiation  sterilization
to  lower  the  bacteria  burden  in  food  and  avoid  unfavorable
physicochemical changes[96]. UV-C irradiation displayed a fungi-
cidal  potentiality  in  inhibiting  fruit  rot  disease  as  well  as
improving  the  quality  of  mangosteen[97] and  procrastinating
the physiological  changes in bell  peppers[96].  Furthermore,  the
physiological  basis  of  this  UV  successfully  reduced  the  petal
specking of B. cinerea in Freesia hybrida L.[98].

 Challenges, limitations, and future
perspectives

Growing  concerns  about  the  chemical  fungicide  effects  on
the environment and human health have led to an increase in
the use of alternative methods to control postharvest diseases.
Biological  control  is  one  type  of  approach  that  employs  mi-
crobes  or  natural  antagonists  to  manage  postharvest  diseases
and  pests.  While  this  approach  has  demonstrated  potential  in

certain cases, its implementation frequently requires a substan-
tial  commitment of resources such as time and cost.  One such
requirement,  the  BCAs  must  be  deposited  and  preserved  in  a
respectable culture collection facility that meets the quality and
safety requirements set forth by the Organization for Economic
Co-operation and Development (OECD) for biological resource
centers (BRCs). This calls for the creation of collection centers in
developing  countries  as  well  as  access  to  a  suitable  collection
center[28].  Furthermore,  biological  control  dataset  analyses
usually  cover  large taxonomy groups of  organisms,  such as  all
hymenopteran  parasitoids  or  all  insect  natural  enemies.
However, the diversity of ecological situations and interactions
taken into consideration rise along with the taxonomic breadth
examined to the point that certain patterns could become too
intricate to identify[99].  The primary challenge to the release of
novel products onto the market has been registration. Despite
these challenges and limitations, scientists and researchers are
still innovating and creating new alternative techniques. Future
research and innovation will probably lead to the development
of  more  efficient  and  long-lasting  techniques.  In  addition  to
several  BCAs  that  have been successfully  commercialized,  due
to  lower-risk  procedures  for  these  materials,  EOs  have  also
received  approval  for  use  in  the  US  more  than  in  other
countries[100].  Ultimately,  several  variables,  such  as  the  type  of
diseases,  the  surrounding  conditions,  and  the  available
resources, will determine the success of alternative approaches.
However,  with  a  growing  interest  in  developing  and  imple-
menting  alternative  approaches,  the  prospect  for  establishing
ecologically  sustainable  pest  management  strategies  in  the
future  will  be  promising  to  find  sustainable  ways  to  control
postharvest  diseases  of  fruit  as  well  as  minimize  postharvest
losses.

 Conclusions

Alternaria and Botrytis species  are  among  the  primary
pathogenic  fungi  in  fruits  and  vegetables  that  harm  humans
and  create  food  safety  issues.  In  recent  years,  various  sustain-
able  approaches  have  been  studied  for  their  efficacy  and
advantages. Due to their characteristics that have been proven
safe,  eco-friendly,  and  non-toxic,  the  application  of  BCAs  is
recommended by scientists and global commercial companies
to reduce the use of chemical fungicides. Biological control has
also  gradually  changed  from  being  primarily  an  independent
field  to  a  more  crucial  part  of  integrated  pest  management.
Furthermore,  to  offer  a  broad  range,  persistence,  and  higher
levels of BCA concentration against fungal diseases, a variety of
natural  substances,  in  conjunction  with  antagonists,  have  also
been  recently  identified  to  improve  the  BCA  effects  against
fungal  pathogens.  This  combination of  sustainable methods is
expected  to  achieve  disease  control  at  the  commercial  level.
Several  BCA  products  have  been  developed  and  commercial-
ized, which thus have the potential to make a significant contri-
bution  to  the  biocontrol  of  fruit  postharvest  diseases  and  can
be a promising approach to replace the use of chemical fungi-
cides  in  controlling  postharvest  disease  of  fruits.  Ultimately,
although the pest control  market is  still  dominated by the use
of chemical fungicides, given the increasing interest in creating
and utilizing alternative methods,  the future is  apparent  to be
favorable for the establishment of ecologically sustainable pest
management  systems  to  control  the  postharvest  disease  of
fruits and minimize postharvest losses.
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