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Abstract
The  colonic  mucosal  barrier  is  an  important  component  of  the  intestinal  barrier,  and  its  integrity  is  crucial  for  maintaining  digestive  tract
homeostasis and normal metabolism in the body. This study aimed to elucidate the mechanisms by which malvidin-3-O-galactoside (M3G) might
ameliorate colonic mucosal barrier function, from the perspective of physical barrier function and immune barrier function. Male C57BL/6J mice
were given dextran sulfate sodium (DSS) to establish a mice model for colitis and then administrated with or without M3G for one week. The
results showed that M3G supplementation significantly improved the disease activity index (DAI) score and colon tissue injury in mice with DSS-
induced colitis. M3G improved the colonic physical barrier function by modulating the expression of mucin2 (MUC2), claudin-1, occludin, zona
occludens 1 (ZO-1), and intestinal fatty acid binding protein (iFABP) in the colonic mucosa. Additionally, M3G also relieved the colonic immune
barrier  of  mice by increasing the level  of  secretory  immunoglobulin  A (SIgA)  in  colon tissue and the percentages  of  CD4+T (CD3+CD4+)  and
CD8+T  (CD3+CD8+)  cells  in  colon  lamina  propria  monocytes  in  mice.  Furthermore,  M3G  down-regulated  Notch  signaling  pathway-related
proteins such as Notch1,  notch intracellular  domain (NICD),  delta-like ligand 4 (DLL4),  delta-like ligand 1 (DLL1),  and hairy/enhancer of  split  1
(Hes1) of colon tissue. The present results demonstrated that M3G can improve colonic mucosal barrier function by inhibiting the Notch signaling
pathway.
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Introduction

The intestinal mucosal barrier is composed of epithelial cells
and  intercellular  connections,  which  can  effectively  regulate
the  transportation  of  large  molecules  in  the  intestinal  lumen,
and prevent microorganisms, harmful solutes, toxins, and intra-
luminal  antigens  from  entering  bodies[1].  Mucosal  barrier
factors  such  as  trefoil  factor  (TFF)  family,  diamine  oxidase
(DAO),  and  transform  growth  factor-ɑ (TGF -α)  have  protective
and  restorative  effects  on  intestinal  mucosal  integrity,  which
are  synthesized  and  secreted  by  intestinal  mucosa[2−4].  The
damage to intestinal barrier function can cause the invasion of
antigens  and  bacteria  in  the  lumen,  and  eventually  lead  to
intestinal  diseases,  including  diarrhea,  inflammatory  bowel
disease (IBD), and Crohn's disease[5−7].

The Notch signaling pathway plays a crucial role in a series of
cellular processes, including proliferation, differentiation, deve-
lopment, migration, and apoptosis. Research suggests that the
Notch signaling pathway is involved in intestinal development,
and  it  can  be  connected  to  intestinal  cell  lineage
specification[8].  Furthermore,  the  Notch signaling pathway can
regulate  intestinal  stem  cells,  CD4+T  cells,  innate  lymphoid
cells, macrophages, and intestinal microbiota, and intervene in
the  intestinal  mucosal  barriers  in  cases  of  ulcerative  colitis[9].
The activated Notch signaling pathway can suppress the goblet

cells differentiation and mucus secretion, which would result in
the  disruption  of  the  intestinal  mucosal  barrier[10].  In  addition,
the  absence  of  the  Notch  signaling  pathway  would  cause  the
dysfunction of tight junctions and adherens junctions of intesti-
nal  mucosa,  which  could  lead  to  increased  permeability  of
epithelial cells and exposure of luminal contents to the immune
system  and  inflammation[11].  Phytochemicals,  such  as  cucur-
bitacin,  honokiol  and  quercetin  have  been  reported  to  have
therapeutic  effects  on  intestinal  diseases  by  targeting  the
Notch signaling pathway[12−14].

Plant-based  diets  rich  in  phytochemicals,  such  as  phenolics,
anthocyanins,  and  vitamins,  have  been  related  to  the  preven-
tion  of  human  diseases[15].  Anthocyanins  belong  to  a  subclass
of  flavonoids,  and  are  mainly  in  the  form  of  different  antho-
cyanin  combined  with  glucose,  galactose,  and  arabinose[16].
The  physiological  action  of  anthocyanins,  such  as  antioxidant
activity,  anti-inflammation,  and  anti-obesity  effects  have  been
widely  reported[17,18].  M3G  is  found  naturally  in  plants  and  is
reported  to  be  the  most  common  anthocyanin  in  different
blueberry  varieties[19,20].  Previous  researchers  reported  that
M3G  from  blueberry  suppressed  the  growth  and  metastasis
potential  of  hepatocellular  carcinoma  cells,  modulated  gut
microbial  dysbiosis,  and  protected  TNF-α induced  inflamma-
tory  response  injury  in  vascular  endothelial  cells[21−23].  Antho-
cyanins  with  diverse  molecular  structures  and  from  different
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dietary  sources  are  bioavailable  at  diet-relevant  dosage  rates,
and  anthocyanins  from  berry  fruit  are  absorbed  and  excreted
by  both  humans  and  rats[24].  Studies  have  shown  that  antho-
cyanins have a protective effect on intestinal barrier damage by
regulating  gut  microbiota,  tight  junction  (TJ)  protein  expres-
sion,  and secretion  of  MUC2[25−27].  In  addition  to  physiological
indicators related to the intestinal barrier, the regulation of the
Notch signaling pathway was involved in this study. Therefore,
it  is  speculated  that  M3G  could  improve  the  colonic  mucosal
barrier function via the Notch signaling pathway.

To  prove  this  hypothesis,  the  effects  of  M3G  on  the  colonic
mucosal  barrier  function  were  investigated  in  DSS-induced
colitis  mice.  The  pathological  morphology  of  the  colon  tissue,
markers  of  intestinal  physical  barrier  function  and  immune
barrier  function  and  the  Notch  signaling  pathway  were  eva-
luated  to  reveal  the  mechanism  of  M3G  in  improving  colonic
mucosal  barrier  function.  The  results  are  expected  to  lay  the
foundation  for  the  utilization  of  anthocyanins  as  a  promising
natural product for improving intestinal diseases. 

Materials and methods
 

Materials
M3G  (CAS:  30113-37-2)  used  in  this  study  was  purchased

from  Xinyi  Science  and  Technology  Instrument  Business
Department, Baoji, Shanxi, China (HPLC ≥ 98%). 

Animal experiments
Five-week-old  male  C57BL/6J  mice  (Wanlei  Bio  Co.,  Ltd.,

Shenyang,  Liaoning,  China)  weighing  16−18  g  were  housed
and given AIN-93M diet (Wanlei Bio Co., Ltd., Shenyang, Liaon-
ing,  China)  feeding.  The  animal  experiment  was  carried  out
according  to  the  guidelines  of  the  Standards  for  Laboratory
Animals of China (GB 14922-94, GB 14923-94, and GB/T 14925-
94) and the Ethics Committee of Shenyang Agricultural Univer-
sity (IACUC Issue No.:  2023022401). All  animal housing and ex-
periments were conducted in strict accordance with the institu-
tional guidelines for the care and use of laboratory animals.

After acclimating to the breeding environment for one week,
the  mice  were  randomly  divided  into  two  groups:  control
group  (CG  group,  n  =  6)  and  model  group  (n  =  12).  On  days
1−7,  the  mice  of  the  model  group  were  given  2.5%  DSS  (CAS:
9011-18-1)  dissolved  in  drinking  water,  while  the  mice  of  the
CG group were given the same volume of drinking water as the
model  group.  On  days  8−14,  mice  of  the  model  group  were
randomly divided into two equal groups (n = 6): DSS group and
M3G group. The mice of the CG and DSS groups were adminis-
tered  intragastrically via drinking  water,  and  the  mice  of  the
M3G  group  were  administered  intragastrically  by  M3G  (5
mg/kg  body  weight  (BW)/d)  dissolved  in  drinking  water,  and
the liquid volume was controlled to be the same. For all groups
of mice, the body weight, food consumption, stool consistency,
and bloody stool  were measured daily  during the experiment.
On day 15, mice were sacrificed after a 12 h fast, and the colon
tissue  samples  of  the  mice  were  collected.  The  length  of  the
colon tissue was measured and recorded. 

Histopathological analysis 

Hematoxylin-eosin (HE) staining
Colon tissue was embedded with paraffin and then cut  into

sections.  After  being  dewaxed  from  paraffin,  the  tissue  was
placed  in  water,  and  stained  with  hematoxylin  and  eosin

solution.  The  stained  tissue  was  dehydrated  and  sealed  for
observation.  A  microscope  (BX53,  Olympus  Co.,  Ltd.,  Tokyo,
Japan)  was  used  to  observe  the  stained  tissue  and  photo-
graphed  using  100×  magnification.  The  damage  in  epithelial
cells of colon tissue was evaluated. 

Periodic acid-schiff (PAS) staining
The  colon  tissue  was  dewaxed  and  placed  in  water  after

being  embedded  with  paraffin,  and  then  stained  with  schiff
and  hematoxylin  solution.  The  stained  tissue  was  dehydrated
and sealed for observation. A microscope was used to observe
the  stained  tissue  and  photographed  using  100×  magnifica-
tion. The mucosal thickness and the population of goblet cells
of the colon tissue were measured and recorded. 

Real-time polymerase chain reaction (RT-PCR)
The expression of MUC2 in colon tissue was detected by RT-

PCR.  Total  RNA  was  extracted  from  colon  tissue,  and  the
concentration  was  determined  using  an  ultraviolet  spectro-
photometer (Thermo Fisher Scientific,  Waltham, MA, USA). The
single-stranded cDNA of the extracted RNA (0.1 μL) was synthe-
sized  using  a  Transcriptor  First  Strand  cDNA  Synthesis  Kit
(Roche  Co.,  Ltd.,  Basel,  Kanton  Basel,  Switzerland).  ExicylerTM
96  (Bioneer  Corporation,  Daejeon,  Korea)  was  used  to  analyze
the  fluorescence  quantitative  cDNA.  The  reaction  conditions
were  as  follows:  94  °C  for  5  min,  94  °C  for  10  s,  60  °C  for  20  s,
72 °C for 30 s, then followed by 40 cycles of 72 °C for 2 min 30 s,
40  °C  for  1  min  30  s,  and  then  melting  from  60  to  94  °C,  and
incubating  at  25  °C  for  1−2  min.  The  primer  sequences  are
shown in Table 1. 

Western blot analysis
The  whole  proteins  from  the  colon  tissue  (200  mg)  were

extracted  using  a  Whole  Cell  Lysis  Assay  kit  (BioTeke  Co.,  Ltd.,
Beijing,  China)  according  to  the  manufacturer’s  protocol.
Briefly,  colon  tissue  was  cut  into  pieces,  and  then  mixed  with
phenylmethylsulfonyl  fluorid  (PMSF),  followed  by  adding  the
protein  extraction  reagents  A  and  B  to  prepare  the  tissue
homogenate.  Protein  concentration  was  then  determined
using  a  Bradford  Kit  (BioTeke  Co.,  Ltd.,  Beijing,  China)  accord-
ing to the manufacturer’s protocol. Proteins were separated by
sodium  dodecyl  sulfate-polyacrylamide  gel  electrophoresis
(SDS-PAGE). The membranes were blocked with 5% non-fat dry
milk in TBST buffer for 1 h, followed by incubating overnight at
4  °C  with  the  appropriate  monoclonal  primary  antibody
(detailed  information  in Table  2).  Then  membranes  were
washed to remove non-bound antibodies, and then incubated
with  the  secondary  antibody  (goat  anti-rabbit  immunoglobin
G-horseradish  peroxidase  (IgG-HRP),  1:5000;  Wanlei  Bio  Co.,
Ltd.,  Shenyang,  Liaoning,  China)  at  37  °C  for  45  min.  The
enhanced  chemiluminescence  (ECL)  western  blotting  detec-
tion  reagent  (Wanlei  Bio  Co.,  Ltd.,  Shenyang,  Liaoning,  China)
was  used  to  detect  the  protein  bands,  and  then  the  protein
bands  were  visualized  by  a  Gel  Imaging  System  (Beijing  Liuyi
Biotechnology Co., Ltd., Beijing, China). 

 

Table 1.    The primer sequences used in the RT-PCR analysis.

Gene Prime Sequence (5'-3') Size (bp)

MUC2 Forward TGTGCCTGGCTCTAATA 17
Reverse AGGTGGGTTCTTCTTCA 17

β-actin Forward CTGTGCCCATCTACGAGGGCTAT 23
Reverse TTTGATGTCACGCACGATTTCC 22
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Enzyme-linked immunosorbent assay (ELISA)
The level of SIgA in colon tissue was detected by SIgA ELISA

kit  (Model  number:  EM1362,  Wuhan  Fine  Biotech  Co.,  Ltd.,
Wuhan, Hubei, China). The experiment was carried out accord-
ing to the ELISA kit instructions.
 

Flow cytometry (FCM)
CD4+T  (CD3+CD4+)  cells  and  CD8+T  (CD3+CD8+)  cells  in

colonic  lamina  propria  monocytes  (LPMC)  were  detected  by
FCM. The colonic epithelial cells were isolated by adding diges-
tive solution to the colon tissue.  After digestion,  screening,  re-
suspension  precipitation,  and  centrifugation,  the  precipitate
was collected as colonic LPMC. Labeled antibodies were added
to  the  flow  tube  and  incubated  according  to  the  instructions.
After  washing  with  phosphate  buffered  saline  (PBS),  the  cells
were  re-suspended  in  PBS  solution.  The  CD4+T  (CD3+CD4+)
cells and CD8+T (CD3+CD8+) cells were detected by flow cyto-
metric (Agilent Technologies, Inc., Santa Clara, CA, USA).
 

Statistical analysis
Data are expressed as mean ± standard deviation (SD) based

on  six  replicates.  Differences  between  two  groups  were
assessed  using  Student's t tests.  The  results  were  considered
statistically  significant  at p <  0.05.  Data  were  analyzed  using
Graph Pad Prism 8.0 (Graph Pad Software, San Diego, CA, USA)
and SPSS 17.0 (IBM Corporation, Armonk, NY, USA).
 

Results
 

Effects of M3G on the body weight gain, DAI
score, and food intake of mice with DSS-induced
colitis

The  body  weight  of  mice  was  monitored  daily  during  the
experimental  period.  As  shown in Fig.  1a,  after  being fed with
DSS for 7 d, the body weight of the mice in the DSS group was
reduced  significantly  (p <  0.01)  compared  with  that  of  the  CG
group.  While  the  body  weight  of  the  mice  in  the  M3G  group
was  increased,  and  exhibited  significantly  higher  (p <  0.01)
body weight gain compared with the DSS group. The DAI score
of the mice in the DSS group was significantly higher (p < 0.01)
than  that  of  the  CG  group,  but  M3G  supplementation  signifi-
cantly lowered (p < 0.01) the DAI score (Fig. 1b), which demon-
strates  that  the  DSS-induced  mice  colitis  model  was  estab-
lished  successfully  and  M3G  inhibited  colon  tissue  damage  in
DSS-fed mice. Compared with the CG group, the food intake of
the mice fed with DSS was significantly reduced (p < 0.01), and
M3G  supplementation  significantly  increased  (p <  0.05)  the
food intake (Fig. 1c). 

Effects of M3G on the colonic mucosal barrier
function of mice with DSS-induced colitis 

Pathological morphology changes of the colon tissue
Representative HE and PAS-stained sections of the colon are

shown in Fig. 2a & b. The morphology of colon tissue in the CG
group did not exhibit  any damage,  while  damage in epithelial
cells  and goblet  cells,  inflammatory cells  infiltration,  and sepa-
ration  of  the  muscle  layer  and  mucosal  muscle  layer  were
observed  in  the  DSS  group.  The  above  damage  to  the  tissue
was changed for the better by M3G supplementation, with only
small  levels  of  damage  in  epithelial  cells  and  goblet  cells,  in-
flammatory cell  infiltration,  and separation of  the muscle layer
and mucosal muscle layer compared to that in the CG group.

HE  score  was  calculated  to  evaluate  the  degree  of  colon
tissue damage. The HE score in the DSS group was significantly
higher (p < 0.01) than that in the CG group. Supplementation of
M3G significantly reduced (p < 0.01) the score, which decreased
by  almost  50%  of  that  in  the  DSS  group  (Fig.  2c).  The  colon
length in the DSS group was significantly lower (p < 0.01) than

 

Table 2.    Details of the primary antibodies used in the experiment.

Primary antibody Dilution ratio Manufacturer

Claudin-1 1:500 Wanlei Bio Co., Ltd.
Occludin 1:500 Wanlei Bio Co., Ltd.
ZO-1 1:500 Wanlei Bio Co., Ltd.
iFABP 1:1000 ABclonal Technology Co., Ltd.
DLL1 1:500 Wanlei Bio Co., Ltd.
DLL4 1:1000 ABclonal Technology Co., Ltd.
Notch1 1:500 Wanlei Bio Co., Ltd.
NICD 1:1000 Affinity Biosciences Co., Ltd.
Hes1 1:1000 ABclonal Technology Co., Ltd.
TFF3 1:1000 Affinity Biosciences Co., Ltd.
β-actin 1:1000 Wanlei Bio Co., Ltd.
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Fig.  1    Effect  of  M3G  on  body  weight  gain,  DAI  score,  and  food  intake  in  mice.  (a)  Body  weight  gain.  (b)  DAI  score  (Fecal  consistency:  0  =
normal,  1 = semi-formed,  2 = soft  stool,  3  = diarrhea or watery stool;  bloody stool:  0  = occult  blood negative,  1 = occult  blood positive,  2 =
visible bloody stool, 3 = massive hemorrhage; weight loss: 0 = 0%, 1 = 1%−5 %, 2 = 6%−10% ; 3 = 11%−15% reduction). (c) Food intake. Results
are expressed as the mean ± SD (n = 6). * p < 0.05 and ** p < 0.01 indicate significant differences between two groups.
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that  in  the  CG  group,  which  was  significantly  increased
(p <  0.01)  by  M3G  supplementation  (Fig.  2d).  The  mucosal
thickness  and  the  number  of  goblet  cells  of  the  colon  tissue
were  determined  by  PAS  staining.  Compared  with  the  CG
group, the mucosal thickness and the number of goblet cells of
the  colon  tissue  were  significantly  decreased  (p <  0.01)  in  the
DSS group, but those were significantly increased (p < 0.01) in
the  M3G  group  (Fig.  2e & f).  These  results  suggest  that  M3G
supplementation can decrease the pathological damage in the
colon tissue induced by DSS. 

Effects of M3G on the colonic mucosal barrier function
The  mRNA  expression  level  of  MUC2  in  the  colonic  mucosa

tissue  was  determined.  Compared  with  the  CG  group,  DSS
significantly decreased (p < 0.01) the mRNA level of MUC2, but
this  effect  was  significantly  suppressed  (p <  0.01)  by  M3G
supplementation  (Fig.  3a).  The  protein  levels  of  claudin-1,
occludin, ZO-1, iFABP, and TFF3 in the colon tissue were subse-
quently  assessed.  The  protein  expression  levels  of  claudin-1,
occludin,  and  ZO-1  in  the  DSS  group  were  significantly  lower
than  those  in  the  CG  group  (p <  0.01).  M3G  supplementation
significantly  inhibited  (p <  0.01)  the  reduction  in  the  expres-
sion  of  these  proteins  (Fig.  3b−d).  Regarding  the  protein
expression level of iFABP, it was significantly higher (p < 0.01) in

the  DSS  group  than  that  in  the  CG  group.  M3G  supplementa-
tion  significantly  decreased  (p <  0.01)  iFABP  expression  level
compared with the DSS group (Fig. 3e). The protein expression
level  of  TFF3  was  significantly  higher  (p <  0.01)  in  the  DSS
group than that in the CG group. However, M3G supplementa-
tion  significantly  intensified  (p <  0.01)  the  increase  of  TFF3
expression compared with the DSS group (Fig. 3f). These results
indicate  that  M3G  can  regulate  colonic  epithelial  barrier
function. 

Effects of M3G on the colonic immune barrier function
The content of CD4+T (CD3+CD4+) and CD8+T (CD3+CD8+)

cells  in  colonic  LPMC of  mice in  each group were detected by
FCM  as  shown  in Fig.  4 and Supplemental  Fig.  S1.  Compared
with the CG group, the percentages of CD4+T (CD3+CD4+) and
CD8+T  (CD3+CD8+)  cells  in  the  DSS  group  were  significantly
increased  (p <  0.01),  and  those  were  significantly  decreased
(p <  0.05)  after  M3G  supplementation  (Fig.  4a & b).  SIgA  was
measured  as  an  indicator  of  immune  barrier  function  in  the
colon  tissue.  The  level  of  SIgA  in  the  DSS  group  was  signifi-
cantly lower (p < 0.01) than that in the CG group. Supplemen-
tation  of  M3G  significantly  raised  (p <  0.01)  the  level  of  SIgA
(Fig.  4c).  These  results  indicate  that  M3G  can  improve  the
colonic immune dysfunction induced by DSS. 
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Fig. 2    Effect of M3G on the pathological morphology of colon tissue. (a) HE staining of colon tissue. Original magnifications: 100×. (b) PAS
staining of colon tissue. Original magnifications: 100×. (c) The damage score of colon tissue. (1) Epithelial cell damage: 0 = normal morphology;
1  =  regional  destruction  of  the  epithelial  surface;  2  =  diffuse  epithelial  destruction  and/or  mucosal  ulcers  involving  submucosa;  3  =  severe
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depletion of goblet cells. (d) The colon length. (e) The mucosal thickness of colon tissue. (f) Number of goblet cells in colon tissue. Results are
expressed as the mean ± SD (n = 6). * p < 0.05 and ** p < 0.01 indicate significant differences between two groups.
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Effects of M3G on the Notch signaling pathway in
colon tissue

Subsequently, the protein expression levels of Notch1, NICD,

DLL4,  DLL1,  and  Hes1  in  the  colon  tissue  were  measured  (Fig.

5).  DSS  significantly  up-regulated  (p <  0.01)  these  protein

expression  levels  compared  with  the  CG  group.  M3G  supple-

mentation  significantly  (p <  0.01)  down-regulated  the  protein

expression  levels  of  Notch1,  NICD,  DLL4,  DLL1,  and  Hes1  in

comparison with the DSS group. The results indicate that M3G

can inhibit the over-activation of the Notch signaling pathway.
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Associations between physiological index and the
Notch signaling pathway

To  explain  the  relationships  between  them,  the  Spearman r
correlations  between  biomarkers  and  the  Notch  signaling
pathway were analyzed,  and represented using a heatmap.  As
shown  in Fig.  6,  colon  length,  food  intake,  ZO-1,  number  of
goblet, MUC2, SIgA, claudin-1, occludin, body weight gain, and
mucosal thickness were significantly (p < 0.01 or p < 0.05) posi-
tively  correlated  with  Notch1,  NICD,  DLL4,  DLL1,  and  Hes1.
Conversely, HE score, iFABP, DAI score, CD4+T, and CD8+T were
significantly (p < 0.01) negatively correlated with Notch1, NICD,
DLL4,  DLL1 and Hes1.  In particular,  TFF3 was only significantly
(p < 0.05) positively correlated with DLL1, and Hes1. The results
indicate  that  M3G may ameliorate  the  colonic  mucosal  barrier
dysfunction via modulation of the Notch signaling pathway. 

Discussion

Within  the  last  five  years,  special  attention  is  being  paid  to
the  therapeutic  effects  of  anthocyanins.  The  recent  studies
could  give  evidence  to  prove  the  therapeutic  potential  of
anthocyanins  from  different  sources  against  various  diseases
via  in  vitro, in  vivo,  and  epidemiological  experiments[28].  The
anthocyanin supplementation has been demonstrated to have
positive  effects  on  intestinal  health[29].  The  intestinal  barrier  is

one of the crucial factors which can affect intestinal health and
normal  intestinal  barrier  function not  only  maintains  intestinal
health but  also protects  overall  health by protecting the body
from  intestine  injury,  pathogen  infection,  and  disease
occurrence[30].  The  disruption  of  intestinal  barrier  integrity  is
regarded  as  an  important  factor  leading  to  IBD,  obesity,  and
metabolic  disorders[31−33].  In  this  study,  the  effects  of  M3G  on
regulating  the  colonic  physical  barrier  function  and  colonic
immune  barrier  function  in  DSS-induced  colitis  mice  were
explored.

M3G  supplementation  reduced  the  DAI  score  and  the  HE
score of colon tissue, and restored colon length, mucosal thick-
ness, and the number of goblet cells in the colon tissue, indicat-
ing  that  M3G  can  alleviate  DSS-induced  colon  tissue  damage
and colitis symptoms in mice. The DAI score was developed as
a simplified clinical colitis activity index to assess the severity of
colitis[34].  Zhao  et  al.  have  found  that  black  rice  anthocyanin-
rich extract can significantly decrease the DAI and HE scores of
colon  tissue  in  DSS-induced  colitis  mice[35].  Intestinal  goblet
cells  are  mainly  differentiated  from  multipotential  stem  cells.
Intestinal  stem cells  were  located at  the base of  the crypt  and
distributed  in  intestinal  mucosal  epithelial  cells,  composing
around  50%  of  colon  epithelial  cells[36].  The  mucus  layer  is
formed  by  goblet  cell  secretion,  it  separates  the  intestinal
epithelium  from  the  intestinal  lumen,  thereby  preventing  the
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invasion  of  pathogenic  microorganisms  and  the  translocation
of  intestinal  microbiota[37].  The  results  suggested  that  M3G
might  repair  the  colonic  mucosa  by  increasing  the  number  of
goblet cells.

MUC2  is  the  most  abundant  mucin  secreted  by  goblet  cells
of  the  colon,  goblet  cells,  and  MUC2  play  important  roles  in
maintaining  and  protecting  the  intestinal  mucosal  barrier[38].
M3G  supplementation  restored  the  level  of  MUC2  by  nearly
double that of the DSS group. Claudin-1, occludin, and ZO-1 are
TJ proteins, which is an important component of the intestinal
physical barrier[39].  M3G supplementation mitigated the down-
regulation  of  claudin-1,  occludin,  and  ZO-1  in  DSS-induced
colitis  mice.  Wang  et  al.  have  found  that Lonicera  caerulea
polyphenols  can  increase  the  expression  levels  of  occludin  in
HFD rats[40].  Chen et al.  have found that purple-red rice antho-
cyanins  alleviated  intestinal  barrier  dysfunction  in  cyclophos-
phamide-induced  mice  by  up-regulating  the  expression  of
tight  junction  proteins[41].  iFABP  can  serve  as  a  biomarker  of
small  bowel  damage  in  coeliac  disease  and  Crohn's  disease,
and  supplementation  of  M3G  down-regulated  the  expression
level of iFABP in colon tissue[42]. It has been reported that TFF3
alleviated  the  intestinal  barrier  function  by  reducing  the
expression  of  TLR4  in  rats  with  nonalcoholic  steatohepatitis,
and supplementation of M3G increased the expression level of
TFF3 in this research[43]. Although the effect of M3G on epithe-
lial  TJ  proteins  and  other  related  proteins  were  limited,  the
beneficial  effect  of  M3G  on  the  colonic  mucosal  barrier
function was supported by histological evaluation.

The  intestinal  immune  barrier  is  composed  of  intestinal
mucosal  lymphoid  tissue  and  intestinal  plasma  cell  secreted
antibodies. Inflammatory damage in acute colitis influences the
gut  microbiota,  epithelial  barrier,  and  immune  function  in
subsequent colitis[44]. Fructose can influence colon barrier func-
tion by regulating some main physical, immune, and biological
factors in rats[45]. SIgA, CD4+T cells, and CD8+T cells play impor-
tant roles in the functioning of the human immune system. The
results  indicated  that  M3G  supplementation  can  maintain  the
colonic  immune  barrier  function  by  modulating  the  level  of
SIgA,  and  the  percentages  of  CD4+T  cells  and  CD8+T  cells  of
colon tissue.

Notch  signaling  pathways  are  important  for  the  mainte-
nance of intestinal epithelial barrier integrity, and its abnormal
activation is related to IBD and colon cancer[46]. Among the four
Notch  receptors  in  mammals,  the  most  scattered  in  the  intes-
tine is Notch1[47]. NICD is the active form of the Notch receptor,
NICD enters the nucleus,  binds to the recruitment co-activator
transcription complex, and then combines with the Hes gene to
regulate  the  fate  of  cells[48,49].  DLL1  and  DLL4  can  serve  as
ligands  for  Notch  signaling  receptors[50].  Lin  et  al.  found  that
qingbai  decoction  had  beneficial  effects  on  the  mucus  layer
and  mechanical  barrier  of  DSS-induced  colitis  by  inhibiting
Notch  signaling[51].  Supplementation  with  M3G  significantly
down-regulated  Notch1,  NICD,  DLL4,  DLL1,  and  Hes1  expres-
sion  levels  in  the  colon  tissue,  and  there  is  a  significant
correlation  between  biomarkers  and  Notch  signaling
pathway-related  proteins,  suggesting  that  M3G  might  sustain

 

Fig.  6    Heatmap of  the Spearman r correlations between biomarkers  and the Notch signaling pathway.  * p <  0.05 and ** p <  0.01 indicate
significant differences between two groups.
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the  colonic  barrier  function via inhibiting  the  Notch  signaling
pathway. 

Conclusions

The  present  results  showed  that  M3G  exerted  an  improve-
ment effect on the colonic mucosal barrier (physical barrier and
immune barrier) function in DSS-induced colitis mice. The posi-
tive impact of M3G on the colonic mucosal barrier function may
be  ascribed  to  the  modulation  of  permeability,  stability,  and
integrity of  the colonic mucosa by down-regulating the Notch
signaling  pathway.  The  results  provide  theoretical  support  for
anthocyanins  as  the  raw  materials  of  functional  products
related to intestinal health. However, this study also has limita-
tions,  such  as  lacking  intensive  research  on  the  effect  mecha-
nisms  through  cell  experiments.  Therefore,  intensive  research
and clinical tests are the future direction. 
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