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Abstract
To swiftly and noninvasively assess the freshness of bighead carp heads within simulated cold chain environments, an excitation-emission matrix
fluorescence  spectroscopy  coupled  with  a  long  short-term  memory  network  (EEM-LSTM)  model  was  developed.  Through  the  parallel  factor
algorithm based on analysis  of  residuals,  diagnosis  of  core consistency,  and split-half  evaluation,  three key fluorescent  components  from fish
fillets were extracted, with the most significant components linked to tryptophan and NADH, both indicative of fish freshness. The EEM-LSTM
model  exhibited  coherent  trends  in  freshness  indicators  and  demonstrated  exceptional  predictive  capabilities  for  four  freshness  indicators
simultaneously, achieving R2 values exceeding 0.8840 in simulated cold chain situations. Relative errors in the supermarket direct sales cold chain
were less than 10%, surpassing those of the long-distance transport cold chain. Hence, the EEM-LSTM model stands validated for predicting fish
freshness in simulated cold chains, holding promise for real-world aquatic product freshness forecasting within cold chain scenarios.
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Introduction

Bighead carp (Aristichthys nobilis) is a primary freshwater fish
in the aquaculture industry with a low price, large catch quan-
tity,  and  short  growth  cycle[1].  According  to  the  2022  Fishery
Statistical  Yearbook of  China,  the total  output of  bighead carp
reached 3.177 million tons in 2021, ranking third among fresh-
water aquaculture species. The head of bighead carp accounts
for  approximately  one-third  or  even  one-half  of  the  body
length,  and  the  delicacies  made  from  it,  such  as  chopped
pepper fish head and blanched silver carp, are popular among
consumers.  However,  due  to  the  inherent  high  protein  and
moisture content of fish, post-mortem microbial growth occurs
rapidly, resulting in accelerated deterioration[1]. Shi et al. devel-
oped  an  EEM-BPNN  model  to  predict  the  TAC,  TBARS,  TVB-N,
and K value of  bighead carp heads in  the storage periodiod[2].
Recently,  the  Chinese  government  has  been  increasingly
focused  on  the  protection  of  food  in  the  cold  chain,  which  is
beneficial for not only reducing the losses of producers but also
strengthening consumer confidence in food safety[3]. Tempera-
ture fluctuations are however almost inevitable during process-
ing, transport services, and retailing, which is not conducive to
the  total  quality  and  freshness  of  bighead  carp  heads.
Therefore, the fish industry must assess how different tempera-

tures throughout the food chain influence the freshness of fish.
Nondestructive  spectroscopy  including  infrared  spec-

troscopy,  hyperspectral  imaging  spectroscopy,  Raman  spec-
troscopy, and fluorescence spectroscopy has been successfully
used to determine the freshness of fish with the advantages of
high  specificity,  convenience,  rapidity,  non-destruction,  and
non-invasion.  Compared  with  near-infrared  spectroscopy,
Raman spectroscopy,  and hyperspectral  imaging,  the intensity
of  the  fluorophores  in  fluorescence  spectroscopy  represents
the  amount  of  fluorescent  substances,  so  it  can  accurately
quantify  the  given  fluorescent  substances.  Excitation-emission
matrix  (EEM)  spectroscopy,  a  novel  fluorescence  spectroscopy
technique has been gradually used in the field of food because
of its ability to detect trace substances and enable the dialecti-
cal  differentiation  of  various  fluorescent  substances[4].  The
features  of  EEM  spectra,  including  the  average  position  of  the
fluorescence  maximum  and  the  span  of  emission  and  excita-
tion wavelengths of fluorescent substances have been success-
fully  applied  to  evaluate  the  freshness  of  aquatic  products[5].
Studies  have  demonstrated  the  potential  of  EEM  to  character-
ize  fluorophores  in  aquatic  products[6],  including  the  determi-
nation of niacinamide adenine dinucleotide (NAD and NADH)[7],
amino acid, and uric acid content[8], which can be used to track

ARTICLE
 

© The Author(s)
www.maxapress.com/fia

www.maxapress.com

mailto:shice001@163.com
https://doi.org/10.48130/fia-0024-0037
https://doi.org/10.48130/fia-0024-0037
https://doi.org/10.48130/fia-0024-0037
https://doi.org/10.48130/fia-0024-0037
https://doi.org/10.48130/fia-0024-0037
mailto:shice001@163.com
https://doi.org/10.48130/fia-0024-0037
https://doi.org/10.48130/fia-0024-0037
https://doi.org/10.48130/fia-0024-0037
https://doi.org/10.48130/fia-0024-0037
https://doi.org/10.48130/fia-0024-0037
http://www.maxapress.com/fia
http://www.maxapress.com


the  changes  in  fish  freshness  after  death.  These  results  indi-
cated  that  EEM  has  attracted  attention  in  the  field  of  aquatic
products  and  has  an  increasing  number  of  applications  for
indication, characterization, and prediction.

An  artificial  neural  network,  such  as  the  backpropagation
neural  network  (BP-NN),  radial  basis  function  neural  network
(RBF-NN),  and  LSTM  network  are  nonlinear  mathematical
models consisting of a considerable amount of interconnected
neurons  that  can  match  the  intricate  connections  between
input layer and output layer data through its learning ability[9].
BP-NN is the most commonly used artificial neural network, but
due to its fixed learning rate, it often has unfavorable self-learn-
ing and multi-output capabilities[10]. The RBF-NN is an architec-
ture  based  on  a  feed-forward  network  with  one  hidden  layer
that is much better in terms of learning speed and stability than
BP-NN  but  more  prone  to  underfitting  phenomenon[11].  The
LSTM network has a unique recurrent network structure associ-
ated  using  a  suitable  gradient-based  optimization  algorithm
and can be used to solve complex algorithms and artificial tasks
with  extended  time  delays  that  previous  cyclic  network  algo-
rithms have not addressed. Therefore, the LSTM network results
in  more  successful  running  and  faster  learning  than  real-time
cyclic  learning,  time  backpropagation,  Elman  networks,  and
neural  sequence  chunking[12],  and  has  been  used  to  forecast
short-term  metro  ridership[13],  coal  stock[14],  the  remaining
useful  life  of  lithium-ion  batteries[15],  and  the  stock  market[16].
However,  the  application of  the  LSTM network  in  aquatic  pro-
duct  freshness  prediction  has  rarely  been  reported.  Further-
more,  the  prediction  of  food  freshness  presents  significant
challenges due to the influence of intrinsic and environmental
factors,  whereas  the  LSTM  network  has  certain  advantages  in
exploring the correlations among these variables.

Therefore,  the  current  study  aims  to  not  only  probe  the
correlation between fluorescence components and fish quality
during  storage  of  bighead  carp  heads  but  also  establish  the
LSTM network combined with fluorescent substances obtained
from  EEM  data  through  parallel  factor  algorithm  to  simul-
taneously  and  precisely  predict  TVB-N,  TBARS,  K,  and  TVC
values  in  simulated  cold  chains,  which  is  beneficial  for  further
developing portable fluorescent devices. 

Materials and methods
 

Sample preparation
Live bighead carp were obtained from the Beijing Wholesale

Market  of  Aquatic  Products  (Beijing,  China)  and  transported
directly  to  the  laboratory  in  oxygenated  water.  They  were
humanely  slaughtered  after  being  rendered  unconscious  by  a
blow  to  the  head  with  wooden  sticks.  The  heads  were  sepa-
rated from the fresh bighead carp by cutting vertically with the
dorsal fin as the cutting point, and the scales, gills, and internal
organs  were  removed.  After  being  washed  under  running
water  and  drained,  bighead  carp  heads  were  placed  into
polyethylene  valve  bags  (35  cm  ×  45  cm).  The  entire  bighead
carp  treatment  process  followed  the  Regulations  released  by
the  State  Council  of  China  in  1988  and  the  Guidelines  for  the
Treatment  of  Experimental  Animals  published  by  the  Ministry
of Science and Technology of China in 2006.

This project was divided into two parts: the isothermal exper-
iment and the nonisothermal experiment for the measurement
of K values, TVB-N, TVC, and TBARS along with the scanning of

the  excitation-emission  matrix  fluorescence  spectrum  of  fish
fillets,  respectively.  In  the isothermal  experiment,  the heads of
bighead carp were placed in low-temperature incubators set at
16  ±  0.5  °C,  12  ±  0.5  °C,  8  ±  0.5  °C,  4  ±  0.5  °C,  and  0  ±  0.5  °C
respectively.  Regarding  the  analysis,  the  sampling  procedure
was  as  follows:  eight  samples  were  randomly  chosen  every  3
days for those stored at 0 ± 0.5 °C, every 2 days for those at 4 ±
0.5 °C, and every 1 day for those stored at 16 ± 0.5 °C, 12 ± 0.5
°C,  and  8  ±  0.5  °C  respectively.  For  the  nonisothermal  experi-
ment,  two  simulated  cold  chains  were  considered  namely  the
supermarket direct sales (SDS) cold chain and the long-distance
transport (LDT) cold chain. The bighead carp heads were stored
in  refrigerators  for  the  SDS  cold  chain  using  the  temperature
schedule outlined below: the first stage for simulating the stor-
age process: 0 ± 0.5 °C for 3 d, the second phase for simulating
the  transport  process:  4  ±  0.5  °C  for  1  d,  the  third  phase  for
simulating  the  transport  process:  12  ±  0.5  °C  for  1  d,  and  the
fourth phase for simulating the sale process: 4 ± 0.5 °C for 1 d.
The LDT cold chain was mainly simulated with alternating stor-
age  and  transport  processes  using  the  temperature  schedule
outlined  below:  the  first  stage  for  simulating  the  storage
process 0 ± 0.5 °C for 3 d, the second phase for simulating the
transport process: 12 ± 0.5 °C for 1 d, the third phase for simu-
lating the storage process:  4  ± 0.5 °C for  1  d,  the fourth phase
for simulating the transport process: 16 ± 0.5 °C for 1 d, and the
fifth  phase  for  simulating  the  sale  process:  4  ±  0.5  °C  for  1  d.
Eight  samples  were  picked  at  random  for  evaluation  at  the
specified time intervals. 

Chemical analysis 

Total volatile base nitrogen (TVB-N)
The  TVB-N  was  determined  through  semi-micro  steam  dis-

tillation using some adjustments[2]. Three grams of minced fish
was appended to 30 mL distilled water, stirred, and shaken in a
constant-temperature  oscillator  for  30  min.  After  centrifuga-
tion,  5  mL  supernatant  and  5  mL  MgO  suspension  (10  g·L−1)
were distilled in a Kjeldahl apparatus (KDY-9820, Beijing, China).
The  distillate  was  gathered  in  a  conical  bottle  with  boric  acid
and  mixed  indicator  (g·L−1:  methyl  red  solution  2;  methylene
blue solution 1) and titrated with 0.01 M hydrochloric acid. 

Thiobarbituric acid (TBARS)
The TBARS value was measured as described by Boutheina et

al.[17] with certain adjustments. The minced samples (2 g) were
added  to  16  mL,  trichloroacetic  acid  solution  (5%  weight/
volume)  along  with  100 μL  of  butylated  hydroxytoluene
(2 g·L−1), and homogenized for 1 min. After centrifugation, 5 mL
supernatant  was  blended  with  1  mL  thiobarbituric  acid  solu-
tion (0.01 M) and incubated in a boiling water bath for 40 min.
The  mixture  was  brought  down  to  room  temperature,  and  its
absorbance was measured at  532 nm with an ultraviolet  spec-
trophotometer  (UV2600A,  Shanghai,  China).  The  TBARS  value
was  computed  by  multiplying  the  optical  density  measure-
ments  by  multiplying  by  10.2  obtained  from  a  standard  curve
established with 1, 1, 3, and 3-tetraethoxy-propane. 

K value
The K  value  is  characterized as  the  proportion  of  non-phos-

phorylated  ATP  metabolites  to  the  overall  products  resulting
from ATP breakdown[6]. The K value was measured according to
the  manufacturers  instructions  for  Freshness  Assessment
Device (QS-3201, Sendai, Japan). A total of 0.2 g of minced fish
was  extracted  with  reagent  A  and  then  centrifuged.  To  adjust
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the pH to neutral, 200 μL of supernatant was added to reagents
B and C followed by centrifugation. Three microliters of super-
natant  droplets  were  absorbed on the soaked filter  paper  and
examined  through  electrophoresis  at  800  v  for  5  min.  After
drying  in  a  drying  oven  and  imaging  under  an  ultraviolet
lamp,  The  Spot  Analyzer  application  (QS-Solution,  Tokyo,
Japan)  was  utilized  for  automatic  image  analysis  and  the  K
value was calculated. 

Total viable counts (TVC)
The TVC value was measured following the Chinese National

Standard  Method  GB  4789.2-2022  with  some  alterations.  Fish
tissues  (5  g)  were  blended  with  45  mL  sterile  sodium  chloride
solution  (0.9%).  After  a  tenfold  serial  dilution  of  the  homo-
genized solution was carried out, 1 mL diluted liquid was added
to  a  3M™  Petrifilm™  Aerobic  Count  Plate  (3M  Company,  USA)
and incubated in a biochemical  incubator maintained at  30 °C
for  72 ± 2 h.  Between 30 and 300 colonies were calculated on
the tablets, expressed as log CFU/g. 

Excitation-emission matrix fluorescence
spectroscopy

Fluorescence fingerprints of each fish fillet, with a fillet size of
approximately 4 cm × 3 cm × 1 cm (length × width × thickness),
were  obtained  using  a  fluorescence  spectrometer  (FS5,
Edinburgh,  UK).  Each  fish  fillet  was  placed  on  a  bracket  in  the
SC-10  solid  sample  bin  for  scanning.  The  relevant  instrument
parameters  were  adjusted  as  described  by  Shi  et  al.[2] with
some modifications. The EEM spectra were gathered the range
of excitation wavelengths between 250 and 580 nm (a span of
5 nm) and the range of emission wavelengths between 260 and
600  nm  (a  span  of  5  nm),  and  with  a  rate  of  scanning  of
100  nm·s−1,  an  excitation  and  emission  bandwidth  of  3  nm,  a
dwell time of 3 ms, and a xenon Lamp source without ozone. To
avoid  interference  from  the  external  environment,  the  black
case  housing  the  instrument  was  not  opened  during  sample
scanning. Each EEM consisted of 67 excitation (columns) and 69
emission (rows)  wavelength data,  with  dimensions  of  67  ×  69.
The  excitation-emission  matrices  were  displayed  as  contour
maps,  of  which  the  vertical  axis  represented  the  excitation
wavelength,  the  horizontal  axis  represented  the  emission
wavelength,  and  the  contour  line  represented  the  fluorescent
signal strength. 

Parallel factor analysis
After scattering the original EEM data, the characteristic fluo-

rescent components of the fish could be extracted by PARAFAC
analysis.  The  PARAFAC  model  was  decomposed  into  three
matrices  (A,  B,  and  C),  which  was  an  improvement  upon  the
Tucker3  model[18],  as  shown  in  Eqn  (1). xijk is  the  fluorescence
signal  of  the  k-th  sample  corresponding  to  the  i-th  excitation
wavelength along with the j-th emission wavelength. Ain, Bjn, ckn
are  the  elements  related  to  the  matrices  A,  B,  and  C,  respec-
tively. eijjk is  an  element  of  the  residual  matrix.  The  minimum
factor  N of  the trilinear  decomposition refers  to the most  suit-
able number of components in the sample.

xi jk =
∑N

n=1 ainb jnckn+ ei j jk i = 1,2, ..., I; j = 1,2, .., J;k = 1,2, ..,K (1)

When  PARAPAC  was  used  to  solve  the  excitation-emission
matrix data, the minimum factor N of a trilinear decomposition
was  required.  Three  methods,  including  residual  analysis,  core
reliability  diagnostic,  and  half-split  assessment,  were  used  to
determine  N.  Residual  analysis  is  an  effective  method  for

comparing  different  component  models  and  uses  the  sum  of
squared error, obtained by the alternating least squares regres-
sion  method,  to  evaluate  the  most  authentic  three-dimen-
sional  fluorescence  spectra[19,20].  The  core  consistency  diag-
nostic  (CORCONDIA)  originated  from  the  single-component
model  to  assess  the  degree  of  superdiagonality[21].  Half-split
assessment  is  employed  to  confirm  the  reliability  of  the
PARAFAC  model  by  creating  and  comparing  various  models
after dividing data sets in two different ways[22]. 

LSTM network algorithm
In this  study,  the LSTM network algorithm was employed to

create  predictive  models  that  connect  (i)  the  fluorescent
component derived from bighead carp head fillets under diffe-
rent  storage  conditions,  and  (ii)  the  measurements  of  TVB-N,
TBARS,  K  value,  and  TVC.  The  construction  of  the  freshness
prediction model and the determination of related parameters
were as follows.

The LSTM network could update the current state according
to the past state combined with the input data and identify the
relationship  between  the  front  and  back  dimensions  with  too
many input sequences[23]. The unit consisted of a cell, an input
gate, an output gate, and a forget mechanism. The forget gate
played an important role in the LSTM network model by allow-
ing  the  deletion  and  forgetting  of  unnecessary  information  to
avoid  the  influence  of  outdated  information  on  the  input  of
current  data  and  improve  the  computing  power  of  the
model.[24]

ct ∈ RD

ht ∈ RD

The  LTSM  network  presents  a  novel  internal  state  ( )
for  linear  loop  transmission,  and  outputs  information  to  the
hidden  layer's  external  state  of  the  hidden  layer  ( )  for
nonlinear operation. The specific formula is as follows:

ct = ft ⊙ ct−1+ it ⊙ c̃t (2)

ht = ot ⊙ tanh(ct) (3)
ft ∈ [0,1]D it ∈ [0,1]D ot ∈ [0,1]D

⊙
c̃t ∈ RD

The  three  gates, , ,  and ,  are
the  paths  for  controlling  information  transmission.  is  the
product  of  the  vector  element.  is  obtained  by  the
nonlinear function candidate status.

c̃t = tanh(Wcxt +Ucht−1+bc) (4)

∗ ∈ {i, f ,o, c}
where, ct-1 represents  the  current  memory  unit, W*, U*, b*

represents  the  learning  network  parameters  ( ), xt is
the  input  at  present,  and ht−1 is  the  external  state  at  the  pre-
ceding time.

At  each  instance  t, ct logs  the  past  information  until  the
present time. The forget gate ft determines ct−1 at the previous
time and thus  how much data  should be forgotten.  The input
gate it determines ct, and thus how much data should be saved.
The  output  gate ot controls  the  amount  of  information ct

should  transmit  to  the  external  state ht at  the  current  time[25].
The computation formulas for the three gates are listed below:

it = σ(Wixt +Uiht−1+bi) (5)

ft = σ(W f xt +Uiht−1+b f ) (6)

io = σ(Woxt +Uoht−1+bo) (7)
where, σ is a logistic function, and its output interval is (0,1).
The LSTM cycle unit can be succinctly described as follows:
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c̃t

ot

it
ft

 =


tanh
σ
σ
σ


(
W

[
xt

ht−1

]
+b

)
(8)

ct = ft ⊙ ct−1+ it ⊙ c̃t (9)

ht = ot ⊙ tanh(ct) (10)

The  root  squared  error  (RMSE),  average  absolute  deviation
(MAE),  average absolute percentage deviation (MAPE),  relative
error  (RE),  and  mean  relative  error  (MRE)  are  usually  used  to
evaluate  the  modeling  performance.  The  calculation  formulas
are as follows:

RMSE =

√
1
n
∑n

i=1 (Cmea−Cpre)2 (11)

MAE =

∑n
i=1

∣∣∣Cmea−Cpre

∣∣∣
n

(12)

MAPE =
1
n
∑n

i=1

∣∣∣∣∣∣Cpre−Cmea

Cpre

∣∣∣∣∣∣ (13)

RE (%) =

∣∣∣∣∣∣Cpre−Cmea

Cpre

∣∣∣∣∣∣×100% (14)

MRE (%) =
1
n
∑n

i=1

∣∣∣∣∣ypre− ymea

ymea

∣∣∣∣∣×100% (15)
 

Data analysis
The excitation-emission matrix  data  were acquired by using

the fluorescence spectrometer (FS5, Edinburgh, UK). Excel 2010
by  Microsoft  Corporation  (Redmond,  WA,  USA)  was  employed

for  calculating  and  analyzing  freshness  indicators  data  statis-
tics.  The  PARAFAC  and  LSTM  algorithms  were  utilized  for
data  handling  by  MATLAB  2020b  (MathWorks,  Natick,
Massachusetts,  USA),  and  mapping  was  performed  by  Origin-
Lab 2018 (OriginLab, Northampton, MA, USA). 

Results and discussion
 

Chemical analysis of bighead carp head
The  TVB-N  figure  indicates  the  degradation  of  proteins  and

other  N-containing  substances  due  to  microorganisms  and
other  factors[26].  The TVB-N figure of  fish samples preserved at
0, 4, 8, 12, and 16 °C rose with extended storage duration, and
the  increasing  rate  of  this  value  of  samples  stored  at  16  °C
surpassed  the  levels  observed  at  other  temperatures  (Fig.  1a).
The  TVB-N  value  of  bighead  carp  heads  kept  at  0  °C  on  the
18th day, 4 °C on the 12th day, 8 °C on the 6th day, 12 °C on the
5th day,  and  16  °C  on  the  3rd day,  exceeded  20  mg/100  g,
which  was  considered  to  indicate  fish  spoilage[2] .  In  the  SDS
and  LTD  cold  chains,  the  TVB-N  value  rose  with  the  prolonga-
tion of  storage days.  The TVB-N value improved from 10.73 to
11.67  mg/100  g  in  the  third  stage  of  the  SDS  cold  chain  and
then  increased  to  12.83  mg/100  g  at  the  end  of  the  SDS  cold
chain,  which  did  not  indicate  fish  spoilage.  The  TVB-N  value
improved  from  14.35  to  16.10  mg/100  g,  higher  than  that
stored at 4 °C on the 6th day,  in the fourth stage (16 °C) of  the
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Fig. 1    Changes of (a) TVB-N, (b) TBARS, (c) K value, and (d) TVC of bighead carp under isothermal conditions (0, 4, 8, 12, and 16 °C) and the
simulated  cold  chains  (SDS  and  LDT  cold  chains).  Note:  SDS  represents  the  supermarket  direct  sales  cold  chain;  LDT  represents  the  long
distance transport cold chain.
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LDT cold chain.  The TVB-N value was up to 20.18 mg/100 g in
the  5th phase  of  the  LDT  cold  chain,  which  was  considered  to
indicate  fish  spoilage.  The  accumulating  rate  of  the  TVB-N
value  may  be  affected  by  the  range  and  number  of  tempera-
ture fluctuations[27].

The  TBARS  value  is  frequently  utilized  as  an  indicator  of
fat  oxidation  levels.  The  initial  TBARS  measurement  was
0.19  mg·kg−1 and  the  TBARS  values  for  all  samples  remained
below  0.60  mg·kg−1 (Fig.  1b).  The  TBARS  values  of  samples
stored at 0, 4, 8, 12, and 16 °C rose with extended storage time.
The increasing rate of the TBARS value of samples preserved at
higher temperatures was substantially less than that of samples
stored at lower temperatures. The TBARS value improved from
0.28  to  0.36  mg·kg−1 in  the  third  stage  of  the  SDS  cold  chain,
and the increasing rate of TBARS value in this stage was signifi-
cantly greater than that in the other stages. The improving rate
of  the  TBARS  value  significantly  improved  in  the  second  and
fifth  stages  of  the  LDT  cold  chain.  The  pace  of  lipid  oxidation
accelerated as the range of temperature fluctuations increased,
which was similar to the research of Gayer et al.[28].

The K value is  used to determine the freshness index of  fish
regarding  the  decomposition  products  of  adenosine  triphos-
phate.  The freshness of  fish could be divided into three levels:
a  K  value  of  <  20%  represents  extreme  freshness,  a  K  value
of  20%−60%  represents  sub-class  freshness,  and  a  K  value  of
> 60% represents initial decomposition. The initial K value was
9.46%, which was akin to the initial K value documented by Shi
et al.[2]. The K value stored at 16, 12, 8, 4, and 0 °C increased and
the rate of increase for the K value samples stored at 16 °C was
the  highest  (Fig.  1c).  The  K  value  reached  42.7%  in  the  fourth
stage of the SDS cold chain. The K value rapidly increased from
35.5% to 52.3% in  the fourth stage of  the LDT cold chain,  and
the increasing rate of K value was similar to that of the samples
stored  at  16  °C.  Then  the  K  value  reached  61.3%,  which  was
considered to indicate fish spoilage in the fifth stage of the LDT
cold  chain.  The  decomposition  ability  of  enzymes  was  acce-
lerated with increasing temperature fluctuation, leading to the
increase of K values.

Fish is a nutrient-rich substrate, providing a good living envi-
ronment  for  the  growth  and  reproduction  of  microorganisms.
The TVC value of bighead carp heads during storage exceeded
7.00 log10 CFU/g,  which was considered an unacceptable level
for fish[13]. The TVC value kept at 0, 4, 8, 12, and 16 °C increased
during  storage(Fig.  1d).  The  increasing  rate  of  the  TVC  value
decreased  during  the  post-storage  period,  mainly  due  to  the
limited nutrients and living space for microorganisms. The TVC
value significantly increased from 5.42 log10 CFU/g to 6.65 log10

CFU/g in  the  third  stage of  the  SDS cold  chain.  The  TVC value
rapidly  increased from 5.32 log10 CFU/g to 6.62 log10 CFU/g in
the  second  stage  of  the  LDT  cold  chain,  at  which  point  the
increasing rate was higher than that in the second stage of the
SDS cold chain. The increasing rate of the TVC value was acce-
lerated with  increasing fluctuating temperature,  which agreed
with the results of Wang et al.[29]. 

EEM analysis of bighead carp heads
After  the  preprocessing  of  the  original  excitation-emission

matrix  data  to  remove Raman scattering and Rayleigh scatter-
ing,  the  optimum  number  of  components  in  fish  fillets  was
determined.  The  fluorescence  components  were  then
extracted through the PARAFAC method using the tool.

In  this  study,  PARAFAC analysis  in  conjunction with residual
analysis,  core  consistency  diagnostic,  and  half-split  analysis
methods  were  used  to  comprehensively  estimate  the  optimal
quantity  of  components.  By  contrasting  the  2−4  component
models  (Fig.  2a),  the  sum  of  squared  error  changed  obviously
from  the  2- to  3-component  model,  whereas  the  sum  of
squared  error  showed  little  change  from  the  3- to  4-compo-
nent  model,  indicating  that  3  components  were  sufficient  for
these  data[30].  When  the  component  was  3,  the  core  consis-
tency value was 99.11%, When the component was 4, the core
consistency value dropped to −8.18% (Fig. 2b). A core consen-
sus  of  more  than  90%  can  be  interpreted  as  'very  trilinear',
while a core consensus value of less than 50% indicates a pro-
blem  with  the  model.  When  the  optimum  number  of  compo-
nents  is  exceeded,  the  core  consistency  value  decreases
sharply[19], indicating that three components were sufficient for
these data. Half-split analysis was used to further verify the reli-
ability  of  the  3-component  model,  the  results  of  which  nearly
perfectly  corresponded  between  the  excitation  and  emission
loadings  of  the  three  parts  in  two  split-half  data  sets  of  fish
fillets  (Fig.  2c).  Therefore,  the  3-component  model  had  the
best-fitting effect.

According to  the  results  of  PARAFAC analysis,  three  fluores-
cent  components  of  fish  fillets  were  extracted,  corresponding
to  Peak  A  (λEx/λEm:  300  nm/335  nm),  Peak  B  (λEx/λEm:  290
nm/320 nm), and Peak C (λEx/λEm: 340 nm/460 nm), as shown
in Fig.  3.  Karoui  et  al.[31] found  that  the  maximum  fluorescent
signal  intensity  (λEx/λEm:  290  nm/326  nm)  of  fresh  cod  fillets
and  the  maximum  fluorescent  signal  intensity  (λEx/λEm:
290  nm/330  nm)  of  frozen-thawed  cod  fillets  could  be
attributed  to  tryptophan.  Peak  A  and  Peak  B  could  also  be
attributed  to  tryptophan  according  to  the  maximum  fluores-
cence  intensity  and  the  excitation  and  emission  wavelength
range.  The fluorescence peak movement between Peak A and
Peak B was assigned to a displacement of the tryptophan of the
samples to a more hydrophilic environment and the difference
in  fluorescence  properties  of  the  samples  may  also  be  related
to  the  denaturation  of  proteins  during  the  preservation  of
bighead  carp  heads[31].  Peak  C  could  be  attributed  to  NADH,
which was consistent with the results reported by Wu et al.[32]. 

Changes in the fluorescent components of
bighead carp heads

Based on the span of wavelengths of the fluorescence peaks
and the position of  the maximum fluorescence intensity,  Peak
A  and  Peak  B  could  be  attributed  to  tryptophan.  Therefore,
Peak AB was used to represent Peak A and Peak B. In Fig. 4, two
fluorescence peaks (Peak AB and Peak C) were presented in the
contour  maps  of  fish  fillets  stored  at  different  times  and
temperatures. The fluorescence intensity of Peak AB was signifi-
cantly  higher  than  that  of  Peak  C  of  bighead  carp  heads
throughout  the  preservation  period  (except  for  keeping  at
16  °C  on  the  first  day).  The  fluorescence  intensity  of  Peak  AB
gradually  rose  with  prolonged  storage  time  under  isothermal
conditions  and  the  simulated  cold  chains,  which  followed  the
conclusions drawn by Shi et al.[2].  The fluorescence intensity of
tryptophan  was  enhanced  with  the  increasing  pH  of  bighead
carp heads in the final  phase of storage due to the increase in
electron density and the deprotonation of the amino group in
the  benzene  ring[33,34].  Fluorescent  signal  intensity  of  Peak  C
gradually  improved  with  increasing  storage  time,  which  is
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consistent  with  the  results  of  Hassoun  &  Karoui[35].  The  high
NADH  content  resulted  in  the  reduction  of  NAD  to  NADH
during storage of  bighead carp  heads  due to  the  reduction in
the  enzyme  activity  of  NADH  after  fish  death[30].  The  fluo-
rescence intensity of  Peak C decreased at  16 °C on the 3rd day
(Fig.  4p),  which  could  be  attributed  to  the  phenomenon  of
fluorescence quenching induced by elevated temperature[36].

The increase in temperature accelerated the deterioration of
the  quality  of  bighead  carp  heads  and  affected  the  change  in
the fluorescence intensity of the fluorescence peaks under vari-
ous  storage conditions,  which was analogous to  the changing
trend pertaining to the freshness indicators of the bighead carp
heads  under  various  storage  conditions.  Therefore,  fluores-
cence  peaks  have  great  potential  in  tracing  the  freshness
changes of aquatic products, and fluorescence matrix of excita-
tion  and  emission  spectroscopy  technology  may  be  used  as  a
monitoring tool for the rapid assessment of fish freshness. 

Freshness indicator prediction of bighead carp
heads in simulated cold chains based on LSTM
network and EEM spectroscopy

According to the results of the PARAFAC analysis, three types
of fluorescent components could be extracted and determined
for  the  construction  of  freshness  prediction  of  the  LSTM
network  model.  The  model  that  emerged  was  organized  into

three  distinct  layers:  an  input  layer,  a  concealed  layer,  and  an
output  layer.  The  input  layer  was  composed  of  storage  time
(day),  storage  temperature  (°C),  and  trait  fluorescent  parts  of
EEMs  extracted  through  PARAFAC  analysis.  The  output  layer
consisted of TVB-N, TBARS, K, and TVC values. To verify the suit-
ability of this simulation of the actual cold chain, experimental
data  collected  at  0,  4,  8,  12,  and  16  °C  were  utilized  as  the
coaching  subset,  and  gathered  experimental  data  in  the  SDS
and  LDT  cold  chains  were  utilized  as  the  validation  subsets.
RMSE and losses continued to decrease rapidly after 200 itera-
tions within 7 s and were stable after the 140th cycle during the
training  progress,  which  demonstrated  that  the  EEM-LSTM
network  model  could  well  predict  the  freshness  of  bighead
carp heads after multiple training cycles.

The  R2,  RMSE,  MAE,  and  MAPE  values  for  the  effectiveness
evaluation  of  the  EEM-LSTM  model  are  given  in Table  1.  For
predicting changes in the TVB-N, TBARS, K, and TVC values, the
EEM-LSTM  model  had  RMSE  values  of  0.8887,  0.0214,  2.1773,
and  0.2740,  respectively,  R2 values  of  0.8840,  0.9581,  0.9801,
and 0.9224, MRE values of 4.25%, 6.60%, 7.50%, and 3.72%. The
MAE  values  were  all  below  1.9282,  and  the  MAPE  values  were
all below 0.750. The EEM-LSTM freshness prediction model had
high R2 values and low RMSE and MAE values, which indicated
that  the  EEM-LSTM  network  model  had  good  predictive
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performance.  The  prediction  of  the  K  value  resulted  in  an  R2

value of 0.9801, which was higher than that of the other indica-
tors, while the prediction of the K value resulted in the highest
RMSE, MAE, and MAPE values, probably because the number of
K value was much larger. The study showed that the MAE, MSE,
RMSE,  and  MAPE  values  indicate  the  quality  of  the  regression
only relative to other types of regression performance and not
in an absolute manner, in contrast to the R2 value[37]. Therefore,
the  EEM-LSTM  model  showed  the  best  performance  fitting
effectiveness for the K value. When integrating LSTM with opti-
mized  EEM,  it  is  possible  to  predict  the  freshness  of  bighead
carp  under  non-isothermal  storage  parameters.  As  a

non-damaging  detection  technique,  fluorescence  spectro-
scopy  combined  using  deep  learning  models  can  monitor  the
freshness  of  bighead carp in  real-time but  there is  still  a  lot  of
research space.  Future research can investigate the use of  this
method for predicting the freshness of other fish. In addition, It
would  be  valuable  to  investigate  whether  extreme  environ-
mental  conditions  (such  as  high  or  freezing  temperatures)
impact  the  accuracy  of  the  model's  predictions  for  bighead
carp freshness.

For the SDS cold chain, the proportional errors in the TBARS,
TVB-N,  K,  and  TVC  values  were  below  8%,  9%,  10%,  and  9%,
respectively.  For  the LDT cold chain,  the proportional  errors  in
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TVB-N value,  TBARS value,  K  value,  and TVC value  were  below
11%,  12%,  17%,  and  12%,  respectively  (Fig.  5).  The  relative
errors of the LDT cold chain were higher than those of the SDS
cold chain, which could be related to the frequency of tempera-
ture  fluctuations  and  the  range  of  temperature  fluctuations.
Overall,  the  findings  indicate  a  high  level  of  agreement
between the measured values and the predicted values of  the

EEM-LSTM  model.  The  EEM-LSTM  network  model  reported  in
this  study  could  simultaneously  predict  four  indicators,  in
contrast  with  the  network  models  reported  in  other  studies[9],
indicating  that  the  EEM-LSTM  network  model  can  effectively
predict the change rules of indicators in simulated cold chains. 

Conclusions

In  this  study,  excitation-emission  matrix  fluorescence  spec-
tra  of  fish  fillets  under  isothermal  and  simulated  cold  chains
were  analyzed  to  study  the  relationship  between  fluorescent
components  and  fish  freshness.  An  EEM-LSTM  network  model
was then established to concurrently predict the TBARS, TVB-N,
K,  and TVC values.  By employing residual analysis,  core consis-
tency  diagnostic,  and  half-split  analysis  of  the  PARAFAC  algo-
rithm,  three  crucial  fluorescent  components  were  successfully
extracted. The fluorescence intensity of the fluorescent compo-
nents of samples kept at different temperatures increased and
consistently  linked  to  the  time-temperature  history,  which
could be used to indicate the freshness of the heads of bighead
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Table  1.    Performance  evaluation  of  four  freshness  indexes  of  bighead
carp  head  predicted  based  on  EEM-LSTM  freshness  prediction  model  of
fish flesh in the SDS and LDT cold chains.

Indicators R2 RMSE MAE MAPE MRE (%)

TVB-N 0.8840 0.8887 0.6241 0.0425 4.25
TBARS 0.9581 0.0214 0.0188 0.0660 6.60
K value 0.9801 2.1773 1.9282 0.0750 7.50
TVC 0.9224 0.2740 0.2233 0.0372 3.72

R2,  coefficient of  determination;  RMSE,  root mean square error;  MAE,  mean
absolute error;  MAPE,  mean absolute percentage error;  MRE,  mean relative
error.
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carp.  The  EEM-LSTM  freshness  prediction  model  effectively
forecasted the condition of bighead carp heads, showing high
predictive  accuracy  with  a  high  R2 value  and  low  MSRE  value,
and closely aligned with the increasing trends of all four fresh-
ness indicators, which were influenced by temperature fluctua-
tions  in  simulated  cold  chains,  including  both  the  range  and
frequency  of  fluctuations.  The  relative  errors  of  the  four  fresh-
ness indexes predicted by the EEM-LSTM model were less than
10% and 17% in the SDS and LDT cold chains, respectively, and
the  total  average  relative  error  was  less  than  7.50%.  The  EEM-
LSTM  network  model  could  predict  the  freshness  of  bighead
carp  heads  more  intelligibly  and  quickly,  and  it  was  demon-
strated  that  excitation-emission  matrix  fluorescence  spec-
troscopy  had  a  certain  potential  in  the  freshness  detection  of
bighead  carp  heads,  which  provided  a  theoretical  foundation
for  the  freshness  prediction  of  aquatic  products  in  actual  cold
chain scenarios. 
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