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Abstract
Gut microbiota-associated metabolites can be synthesized endogenously or derived from dietary nutrients and host compounds. Among them,

alkaloids, terpenes, and flavones originating from edible and medicinal foods have attracted remarkable interest recently and play crucial roles in

metabolic diseases. The efficacy of these metabolites is susceptible to dietary intervention, especially after food processing. Therefore, this review

comprehensively summarizes the different sources of common gut microbial metabolites, including microbial self-synthesis, biodegradation of

exogenous substances (mainly dietary nutrients), and participation in host metabolism. In addition, the latest studies on novel metabolites such

as alkaloids, terpenoids, and flavonoids are discussed, and their action mechanisms on metabolic diseases are elaborated. How food processing

impacts  dietary  nutrients  and  their  metabolites  is  carefully  examined,  as  well  as  their  effects  on  disease  modification.  These  insights  could

contribute  to  a  deeper  understanding  of  the  mechanisms  by  which  diet  efficacy  helps  prevent  metabolic  diseases,  particularly  through  gut

microbial metabolites.
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Introduction

The  microbial  community  in  the  gut  significantly  impacts
various  physiological  processes,  including  food  metabolism,
vitamin synthesis, gut mucosal barrier integrity, immunomodu-
lation,  and  pathogen  defense[1].  Disruptions  in  the  gut  micro-
biota  are  associated  with  various  metabolic  diseases,  such  as
obesity,  diabetes,  anxiety,  and  depression[2,3].  Microbial
metabolites  are  synthesized de  novo by  bacteria  or  formed
through  bioconversion  of  foreign  substances  (mainly  dietary
nutrients)  or  host-derived  compounds[4].  Emerging  evidence
highlights  the  involvement  of  gut  microbiota  in  host  physiol-
ogy and metabolic pathways, largely through the production of
diverse  metabolites[5].  Consequently,  these  gut  microbiota-
associated  metabolites  are  pivotal  in  unraveling  the  mecha-
nisms that govern host health.

A  significant  challenge  in  studying  the  health  effects  of
microbes is differentiating metabolites produced by the micro-
biota and those generated in human tissues or directly derived
from dietary sources. Metagenomic analysis, which catalogs the
genes  present  in  the  microbial  environment,  aids  in  providing
mechanistic  insights  into  the  metabolic  changes  linked  to
disease[6].  Metabolomic  analysis  explores  which  compounds
may  mediate  the  relationship  between  microbial  activity  and
host  disease,  offering  the  possibility  of  interpreting  various
metabolite  sources[7].  The  gut  microbiota  can  convert  certain

compounds into active metabolites with improved bioavailabil-
ity  and  therapeutic  properties  than  their  original  forms[8−10].
Representative compounds transformed by the gut microbiota
include  alkaloids,  flavonoids,  and  terpenoids[11,12].  These  natu-
rally  occurring active ingredients  are widely  present in  various
foods  and,  even  at  low  levels,  can  significantly  contribute  to
anti-inflammatory,  antioxidant,  and  lipid-lowering  effects,
which can help improve metabolic diseases[13]. Further clarifica-
tion  of  these  novel  metabolite  types  and  their  action  mecha-
nisms  is  crucial  for  understanding  how  the  gut  microbiota
mediates dietary bioactivity.

Dietary nutrients, frequently altered during food processing,
are a primary factor influencing gut microbial-related metabo-
lites. Throughout processing, dietary nutrients undergo various
changes,  affecting  microbial  metabolism  in  different  ways[14].
This  review  summarizes  three  distinct  sources  of  microbial
metabolites  and  describes  the  regulatory  roles  of  representa-
tive  microbial  metabolites  from  each  category  in  host  disease
states.  Moreover,  it  details  the  roles  of  three  novel  bacterial
metabolites—alkaloids, terpenoids, and flavonoids—in specific
aspects  of  human health,  as  well  as  their  interactions with the
gut  microbiota.  The  aim  is  to  clarify  the  mechanisms  involved
and  enhance  understanding  of  how  specific  bacterial  species
and  metabolites  influence  human  health.  Additionally,  how
food  processing  influences  the  nutritional  makeup  of  the  diet
and  its  potential  effects  on  disease  management  are
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highlighted,  which  is  essential  for  assessing  the  relationship
between diet and health. 

Types of gut microbiota-involved metabolites

Metabolites involved in gut microbiota are crucial mediators
of  their  efficacies[15].  These  metabolites  can  broadly  be  classi-
fied into three categories:  (i)  those synthesized de novo by gut
microbes;  (ii)  those  produced  by  gut  microbes  directly  from
dietary  components;  and  (iii)  those  produced  by  the  host  and
subsequently  modified  by  gut  microbes[13].  Some  of  these
metabolites  may  have  multiple  sources,  and  here  representa-
tive  examples  of  these  metabolites  in  most  cases  are  summa-
rized and discussed (Fig. 1). 

Synthesized de novo by gut microbes
Research  indicates  that  the  gut  microbiota  can  synthesize

vitamin  K  and  the  majority  of  water-soluble  B  vitamins  like
biotin, riboflavin, thiamine, folates, pantothenic acid, and nico-
tinic  acid[16].  For  instance,  cobalamin  (vitamin  B12)  is  exclu-
sively produced by microbes, specifically anaerobic bacteria[17].
Genomic analysis combined with in vivo and in vitro metabolic
experiments confirmed that Cetobacterium  somerae CS2105-BJ
is  capable  of de  novo vitamin  B12  synthesis.  It  contains  essen-
tial  genes  (hemL, cbiT/cobD,  and cobC)  that  play  a  role  in  vari-
ous  stages  of  B12  biosynthesis,  which  are  responsible  for  the
synthesis  of  uroporphyrinogen  III,  adenosylmethylcobalamin,
and lower ligand,  respectively[18,19].  In  situations where dietary
vitamin B2 was depleted in a mouse model, the gut microbiota
provided  short-term  compensation[20].  Certain  vitamins,  like  B
vitamins,  which  serve  as  precursors  to  essential  metabolic
cofactors, can be synthesized by specific gut bacteria known as
prototrophic  bacteria.  However,  they  must  also  be  obtained
from  other  bacterial  species  (auxotrophic  bacteria)  and  from
the  host’s  diet[21].  This  highlights  that  microbial  synthesis  of
specific metabolites may depend on environmental conditions
and the availability  of  exogenous sources,  necessitating multi-
bacterial  cooperation.  Additionally,  amino  acids  and  fatty
acids  can  be  synthesized de  novo by  gut  microbes.  Research
has  demonstrated  ruminal  bacteria  such  as Selenomonas
ruminantium, Streptococcus  bovis,  and Prevotella  bryantii

engage in amino acid synthesis under physiological conditions,
particularly  enriching  glutamic  acid  and  aspartate  in  the  pres-
ence of  peptides[22].  Bacteroidetes are known symbionts capa-
ble  of  sphingolipid  production.  For  example, Bacteroides
thetaiotaomicron can  initiate  biological  sphingolipid  synthesis
via serine palmitoyl transferase[23]. 

Metabolism of dietary components by gut
microbes

Microbial  dietary  metabolites  include short-chain fatty  acids
(SCFAs),  trimethylamine  oxide  (TMAO),  and  indole  and  its
derivatives. SCFAs, primarily derived from dietary fiber fermen-
tation,  are  a  major  focus.  For  example,  resistant  starch  type  3
from potatoes promotes the production of propionic and acetic
acids by Bifidobacterium, Ruminococcus, Bacteroides, and Copro-
coccus[24].  Pectin,  rich  in  rhamnogalacturonan-I,  significantly
promotes  the  proliferation  of Bifidobacterium, Faecalibaculum,
and Lactobacilli in  C57BL/6J  mice,  and  it  is  metabolized  to
SCFAs[25].  Dietary  inulin  supports  SCFA-producing  Ruminococ-
caceae and Lachnospiraceae,  increasing fecal  SCFA concentra-
tions[26].  Specifically, Bifidobacterium produce  lactate  and
acetate, Bacteroides generate  propionate  and  acetate,  and
Butyrivibrio and Fusobacterium produce  butyrate  as  their
primary  metabolites[27].  Other  bacteria  that  produce  SCFAs
include Anaerostipes, Anaerotruncus, Bacteroides, Coprococcus,
Clostridium, Dialister, Eubacterium, Faecalibacterium, Lactobacil-
lus  paracasei, Odoribacter, Parabacteroides, and
Ruminococcus[28−32].

Tryptophan  metabolites,  particularly  indoles,  such  as  3-
indolepropionic  acid,  indoleacetic  acid,  indole  acrylate,
indoleacrylic acid, indole-3-carbaldehyde, and tryptamine, form
another  extensively  studied  group  of  dietary  metabolites[33].
For  instance,  3-indolepropionic  acid  is  biosynthesized  from
tryptophan  by Clostridium  sporogenes[34].  Commensal
Peptostreptococcus metabolizes  tryptophan  into  indoleacrylic
acid[35],  while Bifidobacterium  longum CCFM1029  produces
indole-3-carbaldehyde[36].  Putrescine,  derived  from  arginine
through a hybrid pathway involving Escherichia coli and Entero-
coccus  faecalis,  is  another  notable  metabolite. Bifidobacterium
spp.  that  produce  acidic  compounds  accelerate  putrescine
production[37].

 

Fig. 1    Types of microbial metabolites derived from various sources (created with BioRender.com).
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Choline  metabolites  are  classic  nitrogenous  dietary
compounds.  The  synthesis  of  TMAO  increases  following  the
consumption of a diet high in phosphatidylcholine and L-carni-
tine[38].  Gut  microbiota,  like Citrobacter  freundii,  are  capable  of
transforming into trimethylamine (TMA), which is then oxidized
to TMAO[9]. Research has indicated that trigonelline can reduce
TMAO levels  by  inhibiting the  activity  of C.  freundii and flavin-
containing monooxygenase 3 in mice. In vitro experiments also
showed that the addition of fenuelline to choline-rich medium
could  significantly  inhibit  the  production  of C.  freundii and
reduce TMA and MAO production[9,39].  In another study involv-
ing obese hypertensive individuals, Lactobacillus plantarum was
found  to  decarboxylate  ornithine  to  produce  putrescine[40].
Spermidine  production  is  facilitated  by  some  gut  microbiota,
such  as E.  coli and Bacteroides,  utilizing  carboxyspermidine
decarboxylase  and  spermidine  synthase[41,42].  Additionally,
inosine, as a purine nucleotide metabolite, may be produced by
Lactobacillus during  the  fermentation  of  barley  leaves[43].  In
general, there are a wide variety of microbial metabolites from
dietary sources, and the efficacy of many substances, including
SCFAs  and  indole  derivatives,  have  been  extensively  studied
with their relevant mechanism identified. Whether new dietary
metabolites  with  good  efficacy  beyond  these  substances  can
be identified needs further exploration. 

Host metabolism followed with gut microbe
modifications

The liver serves as the primary organ to regulate cholesterol
homeostasis,  controlling  both  cholesterol  intake  and de  novo
synthesis.  Endogenous  cholesterol  synthesis  is  mainly  regu-
lated  by  the  SCAP-SREBP-HMGCR  pathway[44,45].  In  addition,  a
microbial  enzyme  called  ismA  has  been  identified  previously
that  can  convert  cholesterol  into  coprostanol,  a  lipid  that  is
excreted from the body rather  than being absorbed[46].  Yao et
al.[47]identified  a  gene  encoding  the  sulfotransferase  (BtSULT,
BT0416), which is widely found in Bacteroides and mediates the
sulfation of cholesterol.

Bile  acids  (BAs),  which  are  synthesized  in  the  liver  from
cholesterol  under  the  action  of  cholesterol- 7α-hydroxylase
(CYP7A1), and are conjugated with taurine or glycine, undergo
modifications  by  gut  microbiota  to  produce  secondary  BA
metabolites[43,48,49].  Pruss  et  al.[50] used  stable  isotope  tracers
along  with  bacterial  and  host  genes  to  uncover  a  common
metabolic  pathway  of  hippuric  acid  production  by  host
microorganisms.  They  confirmed  that Clostridium  sporogenes
reduced  phenylalanine  into  phenylpropionic  acid[50-51].  The
third type of metabolite, which is metabolized by the host and
subsequently  modified  by  microorganisms,  has  not  been
detailedly  explained  in  most  studies.  This  complexity  likely
arises from the intricate interactions between the host and gut
microbiota,  which  makes  it  challenging  to  distinctly  delineate
their respective roles in metabolite modification. 

Natural product-derived gut microbial
metabolites in metabolic diseases

Metabolic  diseases,  such as  diabetes,  atherosclerosis,  hyper-
tension, and obesity, are often linked with dysregulation of gut
microbial  metabolites[9].  Natural  products-derived metabolites,
including  alkaloids,  terpenoids,  and  flavonoids,  undergo
substantial  modification  by  gut  microbiota,  affecting  their

pharmacological  effects  and  roles  in  metabolic  diseases[52].
These  compounds  typically  exhibit  low  absorption  rates  in
intestinum tenue and are further broken down by microbiota in
the  colon  into  microbial  metabolites,  which  have  been
confirmed  to  play  a  significant  role  in  regulating  metabolic
diseases[52].  The  following  section  will  specifically  explore  the
interaction  between  these  diet-derived  metabolites  and  gut
microbiota, as well as their functions in metabolic diseases (Fig. 2). 

Alkaloids
Gut  microbiota  are  essential  for  the  absorption  of  alkaloids,

such  as Staphylococcus  aureus, Enterococcus  faecalis, and Ente-
rococcus  faecium,  and  they  possess  nitrate  reductase  enzymes
that metabolize alkaloids[53,54].  Previous studies have indicated
that  the  cytochrome  CYP450  family,  including  CYP2D6,
CYP1A2,  CYP51,  and  CYP7A1,  plays  a  significant  role  in  the
metabolic  transformation  of  alkaloids[55−57],  including  O-
demethylation  and  hydroxylation[55 ].  Alkaloids  can  influence
the body’s  ecological  physiology by regulating gut microbiota
and  their  metabolic  products.  Supplementation  with  alkaloids
increases  the  abundance  of Bacteroides, Parabacteroides[58],
Ruminococcus[59], Blautia[60], Faecalibaculum, Allobaculum[61],
Clostridiales, and Lactobacillus[62],  which are  shown to produce
SCFAs, TMAO, and BAs[61,63,64].

The  primary  causes  of  obesity  are  abnormalities  in  energy
balance and weight regulation, often accompanied by enlarged
fat cells and changes in insulin function, which can further lead
to  the  development  of  diabetes.  Peroxisome  proliferator  acti-
vated receptor alpha (PPARα) and peroxlsome proliferator-acti-
vated receptor-gamma coactivator-1 alpha (PGC1α)  are associ-
ated  with  the  proliferation  of  adipose  tissue  and  adipocyte
hypertrophy following dietary intake, while targets such as liver
X  receptor  (LXR),  farnesoid  X  receptor  (FXR),  and  CYP7A1  play
crucial  roles  in  regulating  lipid,  glucose,  and  energy
metabolism,  making  them  key  targets  for  the  treatment  of
metabolic  diseases  such  as  obesity  and  diabetes[65−67].  Alka-
loids can effectively act on the above targets and play a key role
in disease improvement. For instance, palmatine treatment can
regulate BA metabolism, reduce cholesterol accumulation, and
alleviate  obesity  by  enhancing  the  expression  of  PPARα and
CYP7A1 while  suppressing the expression of  FXR[68].  Berberine
can inhibit hepatic lipogenesis by up-regulating the expression
of intestinal FXR and fibroblast growth factor 15, as well as acti-
vating  the  AMP-activated  protein  kinase  (AMPK)-dependent
Raf-1  pathway,  thereby  affecting  the  expression  of  the  low-
density  lipoprotein  receptor  (LDLR)[62,69].  Notably,  LDLR  is  a
transmembrane glycoprotein primarily responsible for clearing
lipoproteins,  and  an  effective  therapeutic  target  for  treating
hypercholesterolemia and related cardiovascular diseases[69]. In
diabetic  mice,  supplementing  with  ruthenine  improved  the
disease by activating the PPARα/PGC1α signaling pathway and
upregulating β-oxidation-related  genes  in  the  liver[70].  In  addi-
tion, studies have shown that Streptococcus faecalis can convert
berberine in Rhizoma coptidis into oxyberberine, a potent hypo-
glycemic  metabolite[54].  This  metabolite  contributes  to  anti-
diabetes by upregulating the mRNA expression of  the pancre-
atic  nuclear  factor  erythroid  2-related  factor  2  (Nrf2)  signaling
pathway  and  activating  the  phosphatidylinositol  3-kinase
(PI3K)/protein kinase B (Akt) signaling pathway[71].

Alkaloids  exhibit  anti-inflammatory  properties  by  inhibiting
pathways  such  as  TRIF-dependent  NF-κB  signaling.  For
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example,  oxyberberine  modulates  the  toll-like  receptor  4
(TLR4)-myeloid  differentiation  factor  88  (MyD88)-NF-κB  path-
way[54] and the TLR4/PI3K/NF-κB pathways, reducing inflamma-
tory responses[71]. For another, berberine can exert its effects by
inhibiting  the  phosphorylation  of  insulin  receptor  substrate-1
(IRS-1)  and  increasing  the  phosphorylation  of  AKT  in  adipose
tissue  and  cultured  adipocytes[72].  These  studies  highlight  the
significant role of alkaloids in human health by interacting with
gut  microbiota  and  their  metabolic  products,  thereby
contributing  to  the  maintenance  of  homeostasis.  Despite
extensive research on the structure and physiological activity of
alkaloids metabolites, investigations into their in vivo roles and
specific  mechanisms  in  regulating  human  health  are  still
limited. 

Terpenoids
Terpenoids  have  demonstrated  efficacy  in  ameliorating

metabolic disorders by regulating gut microbiota. Studies indi-
cate  that  terpenoids  such  as  fucoxanthin  affect  the
Firmicutes/Bacteroidetes ratio and influence the abundance of
key species, which are pivotal in anti-obesity activities[73]. Addi-
tionally,  terpenoids  have been shown to  enhance populations
of Lactobacillus, Bifidobacterium, Clostridium sensu stricto 1, Turi-
cibacter,  uncultured Erysipelotrichaceae, Faecalibaculum,  and
Ruminococcus,  while  reducing Lachnospiraceae NK4A136,
uncultured Lachnospiraceae,  and  taxa  such  as  Prevotellaceae
UCG-003 and Oscillospira[74−76]. In another context, the adminis-
tration  of  ginsenoside  extract  enriched  gut E.  faecalis signifi-
cantly[77].  Zhang et al.[78] confirmed that a guava extract abun-
dant  in  1-3  glucose-based  residues  of  triterpenoid  glycosides
has  significantly  regulated Elusimicrobium, Lachnospiraceae
UCG-004, acetic acid, butyric acid, and 1β-hydroxycholic acid in
T2DM  rats.  Gentiopicroside  has  been  shown  to  directly  bind
FGFR1,  promoting  FGF21  signaling,  and  subsequently  activat-
ing PI3K/AKT and AMPK pathways to regulate glucose and lipid

metabolism[79].  Reports  indicate  that  gentiopicroside  can  be
metabolized by intestinal bacteria into potential pharmacologi-
cally  active  metabolites  such  as  erythrocentaurin,  gentianine,
and gentianal[80].  Consumption of  erythrocentaurin can inhibit
α-amylase  activity,  improving  postprandial  hyperglycemia,
while  supplementation  with  gentiopicroside  may  reduce
inflammation  by  inhibiting  TLR4/NLRP3-mediated
pyroptosis[80,81].

The  anti-inflammatory  mechanisms  of  terpenoids  involve
several  key  factors.  Glycyrrhetic  acid  is  a  triterpenoid  saponin
extracted  from  licorice.  It  can  be  hydrolyzed  by β-D
glucuronidase  of Eubacterium sp.  strain  GLH  and  then
converted  to  Glycyrrhetic  acid  3-O-mono-D-glucuronide,
enhancing anti-inflammatory activity[82].  Han et al.[75]illustrated
that  lactucin  curtails  p38,  extracellular  signal-regulated  kinase
(ERK),  and  AKT  phosphorylation  within  lipopolysaccharides
(LPS)-stimulated RAW264.7 cells, consequently diminishing the
mRNA and protein levels of inducible nitric oxide synthase and
cyclooxygenase-2,  and attenuating interleukin-6  (IL-6)  produc-
tion. Jolkinolide B mitigates LPS-induced degradation of NF-κB
inhibitor  alpha  (IκBα)  and  phosphorylation  of  p65  and  MAPK,
subsequently  reducing  histological  alterations  and  inflamma-
tory  markers[83].  Limonin,  a  triterpenoid  extracted  from  citrus,
mitigates  intestinal  inflammation  by  downregulating  p-
STAT3/miR-214  levels,  demonstrating  anti-inflammatory  and
apoptotic  effects[84].  Fucoxanthin,  derived  from  marine  algae,
activates  Nrf2/Antioxidant  response  element  (ARE)  through
PI3K/Akt  pathways,  enhancing  antioxidant  synthesis[85−87].
Fucoxanthin also activates AMPK, reducing fatty acid synthesis
via the sirtuin 1 (SIRT1)/AMPK pathway[88]and improving mito-
chondrial  function while  reducing oxidative stress  in  endothe-
lial  cells  through  the  AMPK-Akt-cAMP  response  element-bind-
ing protein (CREB)-PGC1α pathway[89].

Phytol, a plastid terpenoid synthesized via the methylerythri-
tol  phosphate  pathway  in  plastids,  is  released  when  chloro-

 

Fig. 2    Natural product-derived gut microbial metabolites in metabolic diseases. Different colors refer to different classes of metabolites, with
red  representing  alkaloids,  green  representing  terpenoids,  and  yellow  representing  flavonoids.  The  blue  boxes  indicate  key  sites  on  the
pathways, and the brown boxes indicate key sites shared by the three metabolites (created with BioRender.com).
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phyll  molecules  are  partially  digested  in  animals[90].  It  is
absorbed in the small intestine and converted to phytanic acid
in the liver[91]. Phytanic acid activates PPARγ and the retinoid-X-
receptor  (RXR),  regulating  lipid  metabolism  in  various  cell
types[92].  The  activation  of  PPARγ in  adipose  tissues  improves
insulin  resistance,  while  PPARα activation  in  the  liver  lowers
circulating  lipid  levels[93,94].  Terpenoids  derived  from Resina
commiphora modulate lipid metabolism by augmenting PPARα
and  carnitine  palmitoyl  transferase  1  (CPT1)  expression[95].
Auraptene,  a  novel  PPARα and  PPARγ ligand  found  in  citrus
fruits  exerts  anti-atherosclerotic  and  anti-diabetic  effects  by
balancing  anti-inflammatory/pro-inflammatory  cytokine  levels
in  adipocytes[96].  These  functions  of  dietary  terpenoids  are
important for the control of metabolic diseases through dietary
intervention. 

Flavonoids
Flavonoids can be classified into several categories: flavones

(including apigenin and luteolin), flavonols (including quercetin
and  curcumin),  flavanones  (including  naringenin  and
hesperidin),  flavanols  (including  catechin  and  epicatechin),
isoflavones  (including  daidzein  and  genistein),  and  antho-
cyanins (including pelargonidin and cyanidin). They are primar-
ily  derived  from  fruits,  vegetables,  legumes,  onions,  seeds,
plant  roots  and  stems,  tea,  wine,  olive  oil,  tomato  sauce,  and
various dietary supplements[97,98]. After supplementing the diet
with flavonoid-rich foods, such as soybean, bilberry, citrus fruit,
and green tea, the enzymes produced by gut bacteria undergo
various  reactions  including  deglycosylation,  demethylation,
and  oxidation,  which  generate  biologically  active  metabolites
with health benefits such as genistein, quercetin, anthocyanin,
and  catechin[99].  Santangelo  et  al.[100] summarized  multiple
studies  showing  that  quercetin  inhibits  some  intestinal  bacte-
ria  such  as Streptococcus, Lactobacillus, Bifidobacterium,  and
Bacteroides,  and  was  converted  into  small  molecules  like
phenylacetic  acid,  phenylpropanoic  acid,  dihydroxypheny-
lacetic  acid,  hydroxybenzoic  acid,  dihydroxybenzoic  acid,  and
propionic  acid,  absorbed  and  utilized  by  the  body[101].  The
catabolism  of  cyanidin-3-O-glucoside  in  the  gastrointestinal
tract  yields  bioactive  metabolites  like  protocatechuic  acid,
phloroglucinaldehyde,  vanillic  acid,  and  ferulic  acid,  support-
ing  the  integrity  of  the  mucosal  barrier  and  improving  the
health of the microbiota[102,103]. Escherichia fergusonii and E. coli
metabolize  curcumin  into  dihydrocurcumin,  tetrahydrocur-
cumin,  and  ferulic  acid[104].  In  particular, Bifidobacterium
animalis subsp.  lactis  AD011  efficiently  converted  85%  of
quercetin  3-glucoside  and  isorhamnetin  3-glucoside  into
quercetin  and isorhamnetin,  respectively,  within  just  2  h  with-
out degrading the flavonoid backbone[105].

Flavonoids  exert  significant  effects  on  metabolic  diseases
through interactions with key targets such as PPAR, AMPK, Nrf2,
and NF-κB. For instance, they can bind to non-phosphorylated
signal  transducer  and  activator  of  transcription  3  (STAT3)  in
visceral  adipose  tissue,  reducing  its  phosphorylation  and  tran-
scriptional activity. This action leads to a decreased expression
of  the  STAT3  target  gene  CD36,  which  typically  influences
adipogenesis  and  anti-visceral  obesity  by  suppressing  PPAR-γ
expression[106].  Daidzein influences cardiac energy metabolism
by  modulating  Sirtuin  3  (SIRT3),  thereby  improving  lipid,
glucose  and  ketone  body  metabolism  disorders,  and  mitigat-
ing  mitochondrial  dysfunction,  which  is  crucial  for  meeting

cardiac  ATP  demands  both in  vivo and in  vitro[107].  Daidzein
influences  the  LXR  signaling  pathway,  activating  RXR,  PPARα,
and  AMPKα,  which  enhances  energy  metabolism[108,109].  In
skeletal  muscle,  daidzein  inhibits  the  Glut4/AMPK/Forkhead
box O (FoxO) pathway and reduces the expression of atrogin1
and muscle ring finger protein1, thereby inhibiting the protein
degradation of the skeletal muscle[110].

Insulin  induces  GLUT-4  transport  from  the  vesicle  to  the
plasma membrane, thereby promoting glucose uptake in cells,
through  the  PI3K/Akt  pathway.  Disruption  of  these  pathways
may lead to insulin resistance, which can subsequently result in
diabetes[111].  Fraction  D,  rich  in  flavonoids  isolated  from
Enicostema littorale, enhances cell glucose uptake by upregulat-
ing  IRS-1/PI3K/Akt  pathway  components[112].  Both  cyanidin-3-
O-β-glucoside and pinocembrin inhibit inflammatory pathways
like  NF-κB  and  TLR4/MD2,  providing  therapeutic  benefits  for
liver  and  intestinal  inflammation[113,114].  Cyanidin-3-O-β-gluco-
side treatment stimulates SIRT1 activity, inhibits NF-κB acetyla-
tion,  and  subsequently  inhibits  the  activation  of  inflamma-
somes  and  the  release  of  pro-inflammatory  cytokines  in  liver
cell lines[113]. Quercetin in diet improves experimental colitis by
enhancing the anti-inflammatory and antibacterial capacities of
macrophages  through  the  Nrf2/Heme  Oxygenase  1  (HO-1)
pathway[115].  Additionally,  the  inclusion  of Eucommia  ulmoides
flavones leads to increased levels  of  phosphorylated Akt,  IκBα,
and  IKKα/β,  while  simultaneously  reducing  the  expression  of
Bax  and  Caspase-3  proteins  in  LPS-treated  cells[116].  Other
flavonoid  metabolites,  including  protocatechuic  acid,
phloroglucinol,  and  vanillic  acid,  can  downregulate  the  MAPK
pathway  by  inhibiting  the  phosphorylation  of  ERK,  c-Jun  N-
terminal  kinase  (JNK),  and  p38[117,118].  Overall,  flavonoid
metabolites  play  active  roles  in  modulating  various  pathways,
including NF-κB, MAPK, ERK, JNK, and p38, contributing to their
anti-inflammatory and metabolic regulatory effects in different
physiological conditions. 

Impact of food processing on dietary
nutrients and their health benefits via gut
microbiota and metabolites

Food  processing,  including  thermal  processing  and  non-
thermal  processing,  plays  a  crucial  role  in  our  daily  diet[119].
These  processes  can  alter  the  nutritional  composition  of  food
by introducing new compounds or converting existing ones[120]

(Fig.  3).  Considering  that  utilizing  dietary  interventions  to  im-
prove  metabolic  diseases  has  become  an  effective  means[121],
its efficacy is highly correlated with gut microbiota metabolites
as described previously.  Therefore,  comprehending the effects
of food processing technology is crucial for assessing the nutri-
tional  value  of  processed  foods  and  selecting  appropriate
processed foods based on differential health needs. 

Thermal processing
Heat treatments,  such as boiling, baking, stewing, steaming,

frying,  and  roasting,  are  widely  used  in  both  domestic  and
industrial  food  processing[122].  Previous  research  has  indicated
that  the  carbohydrate  levels  in  grains,  vegetables,  and  fruits
typically  rise  following  heat  treatment[123,  124].  For  example,
heat-treated  highland  barley  has  been  found  to  have  a  high
dietary  fiber  content[124].  Similarly,  it  is  found  that  boiling
increases  the  content  of  fiber  by  8.32%  in  garden  cress
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seeds[125]. The increase in dietary fiber after thermal processing
yields  some  beneficial  outcomes,  such  as  boosting  the  preva-
lence  of  beneficial  gut  bacteria  including Bifidobacteria and
Bacteroides, while  suppressing  harmful  bacteria  like Helicobac-
ter and Enterococcus[126].  It  also  enhances  the  levels  of  SCFAs.
These typical gut bacteria and metabolites are strongly associ-
ated  with  lipid  metabolism  and  can  effectively  improve
metabolic  diseases[127,128].  The  variability  of  these  nutrients
highlights  that  different  processing  methods  may  impact  the
efficacy  of  food  intervention  in  varying  ways,  possibly  due  to
changes  in  active  components  and  their  related
metabolites[129,130].

Nevertheless,  it  is  crucial  to  recognize  that  most  nutrients,
including  proteins,  phenols,  vitamins,  and  minerals,  are  lost
after  thermal  processing[123].  During  heat  treatment,  protein
structures can undergo modifications due to direct oxidation or
complex reactions with other components of the food, leading
to  changes  in  processing  characteristics  and  a  reduction  in
nutritional  value,  with  potential  negative  health
implications[131].  For example,  heat treatment of  hawthorn has
been  shown  to  cause  the  degradation  of  soluble  phenols  and
proanthocyanidins[132],  which  are  vital  in  the  gastrointestinal
tract due to their antioxidant, anti-inflammatory, and antibacte-
rial properties[133].  These compounds also promote the growth
of  probiotics  like Bifidobacterium and Lactobacillus,  offering
potential  health  benefits.  Additionally,  steaming  fresh  tea
significantly  reduces  the  levels  of  vitamins  (B2,  B3,  and C)  and
minerals[123].  Vitamin  B2  has  been  reported  to  prevent  cancer,
hyperglycemia,  hypertension,  diabetes,  oxidative  stress,  and

other  health  conditions,  while  vitamin  C  is  known  for  its  anti-
inflammatory,  antioxidant,  and  hypoglycemic  effects[134,135].
The  loss  of  these  nutrients  significantly  reduces  the  health
benefits  of  processed  foods.  Taken  together,  while  heat  treat-
ment  can  increase  dietary  fiber,  it  can  also  have  varying
degrees of negative effects on the original nutrients and health
benefits of the diet. 

Non-thermal processing
Non-thermal  processing  technologies,  such  as  cold  plasma

treatment,  irradiation,  high-pressure  processing,  ultrasound,
pulsed  light  technology,  pulsed  electric  field  treatment,  and
microbial  fermentation,  are  widely  used  in  food  processing  to
circumvent the negative effects of heat[136]. These methods are
designed to eliminate the need for high temperatures, thereby
preserving  the  nutritional  integrity  of  food[137].  For  example,
high-pressure  electric  field  treatment  has  been  demonstrated
to  elevate  the  anthocyanin  content  in  strawberries,  thereby
improving its  bioavailability[138,139].  In addition,  ultrasound and
ozone  treatments  have  been  found  to  increase  the  levels  of
phenols  and  vitamin  C,  and  the  antioxidant  capacity  of  guava
juice[140].  Mehta et al.  found that cold plasma treatment for 10
min  retained  up  to  95%  of  vitamin  C [141].  These  polyphenols
and vitamins are crucial for human health[142],  highlighting the
potential of non-thermal processing to optimize the nutritional
retention and even enhance the nutritional value of food prod-
ucts.  As  demonstrated  by  Tan  et  al.[143],  high  hydrostatic  pres-
sure treatment at 400 MPa for 15 min altered the monosaccha-
ride composition of Cyanidin 3-glucoside and blueberry pectin

 

Fig. 3    Impact of food processing on dietary nutrients and their health benefits via gut microbiota and related metabolites. The blue arrows
represent  the  impact  of  thermal  processing,  while  the  purple  arrows  represent  the  impact  of  non-thermal  processing  (created  with
BioRender.com).
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complexes, decreasing mannose, fructose, glucose, xylose, and
arabinose while increasing galactose, which improved colitis in
mice  through  reducing  intestinal  oxidative  stress,  enhancing
anti-inflammatory  factors,  and  inhibiting  the  NF-κB  signaling
pathway mediated by the gut microbiota. Similar benefits have
been  observed  with  plasma  treatment  of  orange  juice  and
apple juice[144]. In terms of proteins, cold plasma treatment can
oxidize  hairtail  muscle  proteins,  creating  a  more  intensive
protein  network,  which  improves  the  texture  and  taste  of  the
hairtail[145].

Microbial  fermentation  in  food  processing  can  lead  to  the
formation of specific nutritional components due to the involve-
ment  of  microorganisms.  For  instance,  probiotic  fermentation
significantly  increases γ-aminobutyric  acid,  rutin,  total  poly-
phenols, and total flavonoids in rice buckwheat[146]. Fermented
rice  buckwheat  has  been  shown  to  reverse  high-fat  diet-
induced  intestinal  dysbiosis,  suppress  hepatic  cholesterol
synthesis  and  lipogenesis,  and  stimulate  lipolysis  by  rebalanc-
ing  the  Firmicutes/Bacteroidetes  ratio,  enhancing  SCFA-
producing  bacteria  like  Bacteroidetes, Lactobacillus,  and Blau-
tia,  and  increasing  total  SCFA  content[147].  Furthermore,  blue-
berry  residue  fermented  by Lactobacillus  rhamnosus GG  and
Lactobacillus  plantarum-1  significantly  suppressed  inflamma-
tion-related  cytokines  (tumor  necrosis  factor-α,  IL-1β,  IL-6),
upregulated  PPAR-α,  and  downregulated  sterol  regulatory
element-binding  protein-1  and  fatty  acid  synthase,  thereby
enhancing  lipid  metabolism[147].  Additionally,  Yan  et
al.[148]observed a rise in lactic acid and a decrease in citric acid
during  the  fermentation  process.  Recently,  new  non-thermal
technologies,  such as selenium processing,  have emerged.  For
example,  our  previous  study  found  that  selenium  processing
markedly increased total carbohydrate and soluble dietary fiber
content  while  decreasing  protein  and  insoluble  dietary  fiber
content  in Cordyceps  militaris[149].  It  also  enhanced the biosyn-
thesis  of  secondary  metabolites,  such  as  terpenoids  and  alka-
loids.  The  application  of  these  new  technologies  not  only
preserves  food quality  and enhances flavor  but  also allows for
adjusting  the  nutritional  composition  of  food  to  meet
enhanced functional requirements. 

Conclusions and future perspectives

Gut microbial-associated metabolites are systematically cate-
gorized into three groups: de novo synthesis,  microbial  dietary
metabolism,  and  host  metabolic  contributions.  The  beneficial
role  and  potential  mechanism  of  novel  gut  microbial  metabo-
lites  derived  from  natural  products  in  chronic  diseases  are
becoming clear.  Furthermore,  gut  microbiota and their  associ-
ated  metabolites  provide  valuable  insights  into  how  food
processing  influences  nutritional  value  and  health  benefits.
However,  the  intricate  diversity  and  complexity  of  these
metabolites  make  the  precise  molecular  mechanisms  underly-
ing  their  effects  still  poorly  comprehended.  To  address  this,
future studies should aim to:  (i)  accurately elucidate the entire
production  process  of  metabolites;  (ii)  clarify  the  spatial  and
temporal  efficacy  targets  of  metabolites;  and  (iii)  comprehen-
sively  understand  the  regulatory  patterns  of  different  types  of
metabolites  in  the  body.  Achieving  these  goals  in  future
research will pave the way for deeper exploration of gut micro-
bial  metabolites  and  their  health  functions,  providing  more
insightful comprehension and innovation in this field. 
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