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Abstract
In the process of post-harvest storage and transportation, the quality of fresh fruits and vegetables are decreased due to the autogenetic physiological effect

and microbial  pollution,  which causes great losses to the food industry.  Food packaging using edible film and coatings is  an emerging environmentally

friendly method of fruits and vegetable preservation. This review provides an overview of various film fabrication techniques, including solution casting,

extrusion,  electrospinning,  and  3D  printing,  while  examining  the  advantages  and  limitations  of  each  method.  A  detailed  analysis  is  offered  on  the  key

performance  parameters  of  these  films,  such  as  mechanical  strength,  water  vapor  permeability,  antioxidant  activity,  antimicrobial  properties,  and  their

effectiveness in preserving fruits and vegetables. Additionally, strategies to enhance the performance of edible films through incorporating nanoparticles,

natural additives, and crosslinking methods are explored. The review aims to establish a comprehensive theoretical foundation and offer practical insights to

support the further development and application of edible film technology in fruits and vegetables preservation.
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Introduction

Fruits  and  vegetables  are  an  indispensable  part  of  the  human
diet.  The FAO and the World Health Organization recommend that
adults  consume  at  least  400  g  of  fruits  and  vegetables  per  day.
Adequate  intake  of  fruits  and  vegetables  can  provide  a  variety  of
nutrients  and phytochemicals  that  reduce the risk  of  heart  disease,
prevent  cancer  and  other  diseases,  and  maintain  optimal  health[1].
However, the physical damage and their own respiratory and other
metabolic  reactions  could  cause  the  growth  of  microorganisms  on
the  surface  of  fruits  and  vegetables[2].  Food  decay,  microbial
contamination,  and  moisture  loss  not  only  cause  waste  of  food
resources  but  also  cause  critical  harm  to  human  health[3].  In  the
supply  chain,  the  loss  or  waste  of  fruits  and  vegetables  is  higher
than  that  of  other  foods.  According  to  the  FAO,  up  to  50%  of  the
fruits  and  vegetables  produced  in  developing  countries  are  lost
along  the  supply  chain  between  harvest  and  consumption.  As
shown in Fig. 1, many indicators can reflect the quality of fruits and
vegetables, such as color, hardness, and total soluble solids content.
Employing  different  methods  allows  for  the  effective  detection  of
these  indicators.  The  traditional  preservation  methods  could
preserve  fruits  and  vegetables  for  a  short  time,  but  there  is  a
decrease in nutritional value[4].

In  recent  years,  innovative  food  packaging  systems  to  keep  the
freshness  of  fruits  and  vegetables  during  transportation  and  to
extend  their  shelf  life  have  been  greatly  developed  in  the  food
industry[5].  Packaging  serves  as  an  effective  barrier,  safeguarding
food  from  mechanical  damage  and  separating  it  from  moisture,
dust,  radiation,  and  microorganisms  in  the  surrounding  environ-
ment[6,7].  At  present,  the  most  used  food  packaging  materials  are
synthetic  plastic  polymers  such  as  nylon,  polypropylene,  high-
density  polyethylene,  low-density  polyethylene,  and  polyethylene
glycol  terephthalate[8].  These  materials  are  cheap,  versatile,  and
widely  used  in  packaging,  but  their  non-biodegradability  and

contamination risks make them environmentally harmful, highlight-
ing  the  need  for  biodegradable,  functional  alternatives[9,10].  Edible
films are thin layers made from natural, edible materials designed to
wrap  and  protect  fruits  and  vegetables,  thereby  extending  shelf
life[11].  Commonly used substrate materials  include polysaccharides
(chitosan,  sodium  alginate,  cellulose,  agar),  proteins  (casein,  zein),
and  lipids[2,12,13].  Stable  films  can  be  formed  through  physical  and
chemical  crosslinking  interactions.  Some  films,  upon  absorbing
water, can form crosslinked hydrogels with a 3D structure[14]. Edible
films can enhance their preservation effectiveness by incorporating
functional  substances  such  as  antioxidants  and  antimicrobial
agents.  These  films  effectively  slow  down  the  spoilage  process  of
fruits  and  vegetables  by  reducing  moisture  loss,  controlling  gas
exchange,  and  inhibiting  microbial  growth,  thereby  maintaining
their freshness and nutritional value[15].

There are various methods for preparing edible films.  One of the
most  basic  techniques  is  solvent  casting,  which  has  gained
widespread  use  due  to  its  simplicity  and  ease  of  operation[16,17].
Extrusion  methods,  which  involve  heating  natural  materials,
produce  films  that  are  tougher  and  more  stable[18].  Additionally,
novel spinning technology has emerged, enabling the production of
films  with  a  nanofiber  structure[19].  These  methods  are  suitable  for
different  types  of  polymer  materials  and  meet  the  preservation
needs of fruits and vegetables.

Edible  films  used  for  the  surface  packaging  of  fruits  and  vegeta-
bles  are  expected  to  possess  excellent  properties  to  fully  achieve
their  protective  and  preservative  effects.  However,  biopolymers
often  suffer  from  drawbacks  such  as  low  thermal  stability,  poor
mechanical  properties,  and  brittleness[20].  Single-component  films
typically  do  not  yield  optimal  results  in  practical  applications.  To
enhance  their  performance,  researchers  have  employed  various
strategies, such as incorporating nanoparticles (e.g.,  silver nanopar-
ticles, zinc oxide nanoparticles) through nanotechnology to improve
the  films'  antibacterial  properties  and  mechanical  strength[21,22];
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adding  natural  antioxidants  (e.g.,  vitamin  C,  tea  polyphenols)  to
enhance  the  films'  antioxidant  capabilities[23,24];  or  introducing
crosslinking  agents  and  plasticizers  to  improve  the  crosslinking
degree  and  thus  increase  the  durability  and  functionality  of  the
films[25].

This  review summarizes the progress of  edible films in fruits  and
vegetables  packaging.  We  outline  various  methods  for  producing
edible films and provide a comparative analysis of their advantages
and  disadvantages.  Additionally,  we  focus  on  several  key  perfor-
mance  attributes  of  edible  films  and  outline  some  strategies  for
improving  them.  Therefore,  this  review  aims  to  provide  valuable
insights  into  selecting  appropriate  film  preparation  methods  and
improving  these  films  from  different  perspectives  to  achieve  a
highly functional edible film. 

Fabrication methods of edible films

Edible films are typically made from natural or synthetic polymers,
which can be directly applied to the surface of food or incorporated
into  packaging  films.  These  films  serve  to  preserve  food  freshness
through  their  barrier  properties  or  the  functional  characteristics  of

additives[2,26].  Currently,  there  are  numerous  materials  available  for
the production of edible films, such as polysaccharides and proteins.
Different  materials  possess  varying  physical  properties,  necessitat-
ing the selection of an appropriate fabrication method. The process-
ing  techniques  employed  also  directly  influence  the  mechanical
strength,  gas  permeability,  moisture  barrier  properties,  and  other
functional  characteristics  of  the  film. Table  1 presents  the  fabrica-
tion  method  of  edible  film  for  fruits  and  vegetables  preservation
applications.  Common  film  fabrication  methods  include  solvent
casting, extrusion, and the spinning method. 

Solvent casting method
Solvent  casting  is  a  simple  and  commonly  used  wet  processing

method.  It  consists  of  three  main  stages:  dissolution,  casting,  and
drying[46]. The first stage involves selecting an appropriate solvent to
dissolve the polymer, with water, alcohol, or other non-toxic organic
solvents being the most commonly used.  The polymer and solvent
are  thoroughly  mixed  through  stirring.  In  the  second  stage,  the
homogenized solution is poured into a pre-designed mold to form a
uniform  film.  Following  a  period  of  drying,  the  solvent  evaporates,
resulting in the formation of the polymer film within the mold[47].
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Fig. 1    Quality indicators of fruits and vegetables and their detection methods or instruments.

 

Table 1.    Fabrication method of edible film for fruits and vegetables preservation applications.

Constituent substance Fabrication method Food system Ref.

Cactus mucilage, gelatin, plasticizer (glycerol/sorbitol), probiotic Casting Fresh-cut apple [27]
Sargassum pallidum polysaccharide nanoparticles, chitosan Casting Cherry [28]
Corn/cassava starch, glycerol, eugenol, gelatin microspheres Casting Fresh-cut apple [29]
Zein, sodium alginate, glycerol Casting Chili peppers [30]
Guar gum, candelilla wax, glycerol Casting Strawberry [31]
Aloe vera gel, chitosan Casting Fresh fig fruits [32]
Levan, pullulan, chitosan, ε-polylysine Casting Strawberry [33]
Chitosan, cellulose nanocrystals, beta-cyclodextrin Casting Cherry [21]
Pomegranate peel extract, jackfruit seed starch Casting White grapes [34]
Succinylated corn starch, glycerol Extrusion Mango [18]
Starch, gelatin, natural waxes Extrusion / [35]
Gelatin, native corn starch Extrusion with the casting Mango [36]
Cassava starch, wheat, oat bran Extrusion / [37]
Zanthoxylum bungeanum essential oil, polyvinyl alcohol, β-Cyclodextrin Electrospinning Strawberry and sweet cherry [38]
Baicalinliposomes, alcohol-chitosan Electrospinning Mushrooms [39]
Zein, gelatin-proanthocyanidins-zinc oxide nanoparticles Electrospinning Cherry [40]
Pullulan, citric acid, thyme oil Rotary jet spinning Avocados [41]
Thymol, 2-hydroxypropyl-β-cyclodextrin, chitosan, polycaprolactone Solution blow spinning Tomato [42]
Pullulan, Water-in-oil emulsions Solution blow spinning Fresh-cut apple [43]
Corn starch, gelatin, hawthorn berries extract 3D printing / [44]
Gelatin, glycerol, Garcinia atroviridis extract 3D printing / [45]

/, not provided.
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The selection of solvent and drying conditions is the pivotal factor
in the solvent casting process. It is essential to choose a solvent that
ensures  optimal  solubility  of  the  polymer  matrix  while  minimizing
its  expansion  rate[48].  Furthermore,  variations  in  drying  time  and
humidity  can  significantly  influence  the  mechanical  properties  of
the  film,  with  the  specific  drying  parameters  being  determined  by
the type of plasticizer incorporated in the solution[49].

One  of  the  primary  advantages  of  solvent  casting  lies  in  its
simplicity,  low  equipment  cost,  and  low  processing  temperature,
which prevent damage to heat-sensitive materials. Additionally, the
intimate  contact  between  the  polymer  and  solvent  promotes  the
formation  of  a  more  homogeneous  film.  However,  the  method  is
limited  to  the  production  of  sheet  or  tubular  films,  and  more  cri-
tically,  the  extended  drying  times  and  the  complex  control  of
environmental  variables  pose  challenges  for  large-scale  industrial
applications[50]. 

Extrusion method
In the extrusion process, solvents are either not used or only mini-

mally added, as the film formation is achieved through heating and
melting.  The  main  equipment  used  in  this  process  is  the  extruder,
which consists of a feed zone, a kneading zone, and a heated extru-
sion  zone[51].  The  polymer  matrix  is  introduced  into  the  extruder,
and plasticizers may be added to enhance the flexibility of the film,
with starch being a commonly used matrix. The mixture undergoes
shearing  and  conveying  in  the  kneading  zone,  and  is  eventually
heated and melted, forming a film at the mold outlet[52].

The  final  properties  of  the  film  are  influenced  by  several  factors,
including  temperature,  screw  speed,  feed  moisture  content,  and
feed  rate,  as  well  as  mold  temperature[53].  Screw  speed  affects  the
particle  size  and  swelling  rate  of  the  material,  while  temperature
also impacts the water vapor permeability of the film[54]. The contin-
uous  nature  of  the  extrusion  process  reduces  processing  time,
allows  for  better  control  of  process  parameters,  improves  produc-
tion  efficiency,  and  makes  large-scale  production  more  feasible.
However, extrusion imposes limitations on the thermal stability and
moisture  content  of  the  raw  materials,  and  the  design,  operation,
and  maintenance  of  the  equipment  contribute  to  increased  pro-
duction costs[55]. 

Spinning method
Spinning techniques applied in the field of materials include elec-

trospinning,  rotary  jet  spinning,  and  solution  blow  spinning,  as
shown  in Fig.  2.  Among  them,  electrospinning  technology  is  the
most widely used. Electrospinning, as an advanced non-mechanical
fiber  manufacturing  technology[56],  uses  high  voltage  to  produce
nanofiber films. During electrospinning, due to surface tension, the
liquid  is  forced  out  of  the  spinneret  to  produce  pendant  droplets.
After electrification, the presence of electrostatic repulsion between
surface  charges  of  similar  characteristics  causes  the  droplet  to
undergo deformation into a Taylor cone, resulting in the ejection of
a charged jet. Initially, the jet extends linearly until it starts to move
vigorously  due  to  bending  instability.  When  the  jet  stream  is
stretched  to  a  finer  diameter,  it  rapidly  solidifies,  leading  to  the
deposition of solid fibers on the grounded collector[57].

Rotating jet spinning technology is a manufacturing method that
uses centrifugal force to induce dissolved polymer solutions to form
fiber deposits on the target surface, and control the fiber pattern by
a focused airstream[58]. The edible film containing natural antibacte-
rial  agents  made  by  rotary  jet  spinning  technology  has  been
demonstrated  to  effectively  control  the  growth  of  microorganisms
on the surface of avocado and to maintain the weight of the fruit[41].

Solution blow spinning (SBS) is  an emerging technology capable
of  rapidly  producing  nanofibrous  films  with  high  specific  surface
area and porosity from polymers[59].  The polymer solution is  pulled
into  fine  filaments  under  high-speed  airflow,  and  upon  solvent
evaporation,  a  nanofiber  film  is  formed  on  the  collector[60].  In
comparison  to  electrospinning,  SBS  does  not  necessitate  a  high-
voltage  power  supply  and  exhibits  significantly  higher  efficiency,
which  has  led  to  its  extensive  utilization  in  the  food  packaging
industry[42].

The  fibers  produced  by  spinning  technology  can  reach  the
nanoscale  and,  by  combining  the  properties  of  different  polymers,
can  result  in  films  with  excellent  physical  and  chemical  properties.
Additionally, it can address the issue of material functional degrada-
tion  caused  by  heating[61].  As  an  emerging  technology,  spinning  is
not  yet  suitable  for  large-scale  production  due  to  its  relatively  low
output and the complexity of the required equipment. 
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3D printing technology
In recent years, 3D printing technology has developed rapidly and

has also been applied in the food industry. It is based on traditional
additive  manufacturing  techniques,  where  edible  materials  are
deposited  or  built  layer  by  layer  to  form  films  with  specific  shapes
and structures[62].  The process begins by mixing the base materials
to create a film-forming gel, which is then stored in a syringe. When
used,  the gel  is  loaded into the printer's  nozzle.  The 3D printer can
then print according to a set program, adjusting speed and temper-
ature as needed[38,39].

Although  3D  printing  has  shown  potential  in  food  packaging,  it
has not yet been widely explored. While it allows for the customiza-
tion of films with specific textures and nutritional components, chal-
lenges remain. These include limitations in available printing materi-
als,  slow printing speeds,  and high costs,  all  of  which are  hindered
by underdeveloped processing technologies[62]. 

Properties of edible film and methods of
enhancement
 

Mechanical properties
Mechanical properties are the most fundamental yet crucial char-

acteristics  of  edible  films.  Films  need  to  possess  appropriate
strength and ductility to withstand the stresses encountered during
transportation,  storage,  and  processing,  thereby  providing  protec-
tive  functions  for  the  food.  The  mechanical  properties  of  films
include tensile strength, elongation at break, elastic modulus, punc-
ture force, and puncture deformation[63]. Films with higher strength
and  toughness  offer  better  protection,  while  adequate  ductility
ensures the film remains intact during handling.

Some  polymeric  materials  exhibit  hydrophilicity  and  poor
mechanical  performance,  which  results  in  suboptimal  mechanical
properties  for  single-component  films,  such  as  agar  and
chitosan[64,65]. However, interactions between different matrices can
improve  film  performance  through  intermolecular  forces.  Thus,
composite  films  made  from  two  or  more  polymers  have  a  higher
potential for practical applications. Proteins and polysaccharides can
enhance  the  tensile  strength  and  elongation  at  break  of  films
through  intra- or  intermolecular  hydrogen  bonding[66,67].  Polysac-
charides can also form denser cross-linked structures, enhancing the
overall network[68]. Although lipids are difficult to form into films on
their own due to their structural characteristics, as an additive, lipids
can significantly improve the rigidity and ductility of  protein-based
and polysaccharide-based films[69].

Plasticizers  reduce  the  intermolecular  forces  between  polymer
chains,  increasing  chain  mobility,  thereby  improving  the  flexibility
and ductility  of  films.  Common plasticizers  include glycerol,  propy-
lene  glycol,  and  sorbitol.  Crosslinking  agents  (such  as  glutaralde-
hyde) can strengthen the 3D network structure of the film, thereby
increasing its strength and hardness[25,70]. Research by Para et al. has
shown that  adding glycerol  and polyethylene glycol  as  plasticizers,
along  with  glutaraldehyde  as  a  crosslinking  agent,  significantly
affects  the  elongation  at  the  break  of  films,  while  increasing
glutaraldehyde content results in higher tensile strength[71].

The mechanical properties of the films were significantly affected
by  the  addition  of  nanoparticles.  With  their  high  surface  area  and
excellent  interface  compatibility,  nanoparticles  can  form  nanoscale
strong  connections  within  the  film  matrix,  thereby  enhancing  its
strength  and  rigidity.  For  instance,  after  the  addition  of  2.0  wt%
copper sulfide nanoparticles (CuS NP), the thickness of the agar film
increased from 51.8  to  60.2 μm, and the tensile  strength improved
from 34.9 to 41.1 MPa. These improvements arise from the increased

solid  content  due to  the  presence of  CuS NP,  as  well  as  the  strong
intermolecular  interactions  between  the  agar  and  CuS  NP[72].  The
tensile  strength  was  significantly  improved  to  ~60  MPa  by  adding
zinc  sulfide  nanoparticles,  while  elongation  at  break  and  elastic
modulus slightly increased and decreased. This may be attributed to
the  favorable  interface  interaction  between  the  carrageenan/agar
matrices and the nanofillers[73].

The processing method also impacts the mechanical properties of
films. Longer drying times can promote crosslinking and crystalliza-
tion  of  the  film  material,  enhancing  its  mechanical  properties.
Appropriate heat treatment can also reduce the moisture content of
the  film.  For  example,  starch  forms  a  more  compact  3D  structure
under  prolonged  drying  conditions.  This  results  in  starch-based
films  produced  via  casting  having  higher  tensile  strength,  lower
elongation  at  break,  and  higher  Young's  modulus  compared  to
those produced by hot pressing[74,75]. 

Barrier properties
The barrier properties of packaging films help prevent the loss of

moisture  in  fresh  fruits  and  vegetables,  slow  down  oxidation  and
spoilage,  and  play  a  crucial  role  in  maintaining  their  quality.  Key
indicators  such  as  water  vapor  permeability  (WVP)  and  water
content  (WC)  can  be  used  to  characterize  the  films'  barrier  proper-
ties.  Testing  methods  for  these  properties  include  manual  tech-
niques  like  pressure  and  gravity  measurements,  as  well  as  auto-
mated  methods  such  as  gas  permeability  sensors  and  water  vapor
transmission sensors[76].

Edible films based on proteins exhibit good gas barrier properties
but  perform  poorly  in  terms  of  water  vapor  permeability[77].
Although  the  properties  of  lipids  are  closely  related  to  the  length
and unsaturation of fatty acid chains, their inherent hydrophobicity
still  leads  to  a  strong  hindrance  to  water  migration  in  lipid-based
films[13].  Polysaccharide-based  films,  on  the  other  hand,  have  good
hydrogen  bonding  between  their  structural  components,  which
effectively prevents the permeation of oxygen and noble gases, but
they  show  poor  water  resistance[78].  The  barrier  properties  of  films
can be significantly altered by varying the polymer composition and
ratio.  The  same  effect  can  also  be  achieved  by  adding  plasticizers
and  other  substances. Table  2 summarizes  the  effects  of  different
additives  on  the  barrier  properties  of  edible  films.  It  is  all  achieved
by altering the microscopic structure of the films.

As  the  proportion  of  pectin  in  pectin-chitosan  composite  films
increases,  the  films'  porosity  gradually  increases,  allowing  more
gases  and  moisture  to  pass  through  the  matrix[88].  The  addition  of
curcumin  with  a  rod-like  crystal  structure  to  zein  and  shellac
composite  films  hinders  the  penetration  of  water  droplets  on  the
film surface, thereby reducing the water contact angle of the film[89].
Conversely, adding plasticizers such as glycerol or sorbitol increases
the water vapor permeability of  the films.  On one hand,  this  is  due
to  the  hydrophilicity  of  these  substances;  on  the  other  hand,  it  is
because  the  plasticizer  reduces  the  density  of  the  polymer's  3D
network, thereby decreasing the difficulty of water permeation[90].

Environmental  conditions  also  affect  barrier  properties  in  a
manner similar to the principles outlined above. For example, Wu et
al.  prepared  gelatin-dextran  blend  films  with  different  microstruc-
tures, and compatibilities by adjusting the gelatin/dextran ratio and
pH.  The  results  showed  that  for  films  with  the  same  composition,
water  solubility,  and  water  vapor  permeability  increased  as  the  pH
value  rose.  This  was  attributed  to  macroscopic  phase  separation
between  gelatin  and  dextran,  which  disrupted  the  continuity  and
tightness  of  the  network  structure  and  facilitated  water  molecule
transport[91].  Kerch & Korkhov found that, at room temperature, the
water vapor absorption of chitosan films decreased as storage time
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increased. However, at −24 °C, the absorption showed the opposite
trend, likely due to low temperatures causing the polymers' molecu-
lar conformation to expand, allowing water molecules to penetrate
the polymer structure[92]. 

Thermal properties
Thermal properties directly influence the stability, operability, and

performance of films under different storage conditions. Good ther-
mal stability ensures that the film will not decompose or fail during
cooling or  heating processes,  thus  maintaining its  protective  prop-
erties.  The  most  common  methods  for  evaluating  thermal  proper-
ties include differential scanning calorimetry (DSC) to measure glass
transition temperature, melting temperature, degradation tempera-
ture,  and  thermogravimetric  analysis[93,94].  DSC  helps  assess  the
mechanical properties, stability, and processing performance of the
film at high temperatures, while thermogravimetric analysis is used
to  analyze  the  thermal  degradation  of  materials[95].  Additionally,
some studies employ photoacoustic techniques to examine thermal
diffusivity and thermal runaway, and calculate the thermal conduc-
tivity to characterize the heat transfer capability of the film[96].

Enhancing  the  crosslinking  interactions  between  different  film
components  can  improve  thermal  stability.  Research  by  Mojo-
Quisani et al. showed that the addition of modified starch increased
the  compatibility  with  Nostoc,  resulting  in  a  more  stable  structure
and  reducing  the  maximum  weight  loss  of  the  film  during
heating[86].  Similarly,  Nedim  pointed  out  that  as  the  amounts  of
pineapple peel extract and aloe vera gel increased, the interactions
formed between these substances and the polymer matrix required
higher  dissociation  energy,  thereby  demonstrating  improved  ther-
mal stability[97]. By forming a multi-crosslinked network with calcium
ions,  the  relative  sliding  between  agar  molecular  chains  was
hindered,  raising  the  films'  maximum  degradation  temperature
from 243.5 to 301.7 °C[98].

New studies have also suggested that gamma-ray irradiation can
narrow  the  N-H  and  O-H  bonds,  enhancing  the  molecular  interac-
tions between chitosan and glycerol. This result is an increase in the
peak  melting  temperature  of  the  chitosan-glycerol  composite  film
from  173.4  to  190.2  °C[99].  This  method  of  altering  intermolecular
interactions  through  radiation  provides  a  novel  approach  to
enhancing the thermal properties of films. 

Optical properties
The transparency,  color,  and ultraviolet  (UV)  light  barrier  proper-

ties of films are the key optical characteristics. Generally, high trans-
parency  and  suitable  color  can  provide  consumers  with  a  pleasant
visual  experience,  thereby  increasing  consumer  acceptance[100,101].
On the other hand, higher UV light barrier properties can effectively
protect  food  from  UV  damage,  especially  for  light-sensitive
substances,  preventing  oxidation  and  discoloration[102,103].  A

colorimeter can be used to measure lightness ('L') and chromaticity
parameters  ('a'  for  red-green  and  'b'  for  yellow-blue),  while  a  UV
spectrophotometer  can  analyze  the  transparency  and  UV  blocking
ability[104].

Film thickness significantly affects transparency.  As the thickness
increases,  light  scattering  becomes  more  pronounced,  resulting  in
lower  transparency[105].  Similarly,  the  concentration  of  the  polymer
matrix  influences  film  transparency  in  the  same  way,  as  increased
aggregation of materials enhances light scattering[106]. While higher
transparency allows for better food visibility, films with lower trans-
parency  exhibit  stronger  light-blocking  properties[107].  These  pro-
perties  can  be  adjusted  based  on  specific  applications.  The  color
parameters  of  the  film  largely  depend  on  the  composition  of  the
material.  For  example,  the  addition of  silver  nanoparticles  can turn
the film yellow, and at higher concentrations, it  appears brown[108].
The  addition  of  plasticizers  can  dilute  the  polymer  concentration,
reducing overall color differences[109].

Some matrix materials inherently possess good UV-blocking capa-
bilities. Purohit et al. have shown that pure chitosan films can block
nearly 100% of UV-B and about 97% of UV-A radiation. The addition
of  cerium  nanoparticle  (CeNP)  fillers  enhances  this  UV-blocking
property of chitosan films[104]. Certain active substances also possess
natural  UV-blocking  abilities.  Phenolic  compounds,  which  contain
unsaturated  double  bonds  conjugated  with  saturated  covalent
bonds,  can  absorb  UV  and  visible  light[110].  The  addition  of  a Puli-
caria  jaubertii extract,  which  contains  phenolic  compounds,  signifi-
cantly  improved the films'  barrier  properties  against  UV and visible
light[93].  Lignin also exhibits spectral blocking properties against UV
radiation,  likely  due  to  functional  groups  in  lignin  (including  phe-
nolic,  ketone,  and  other  pigment  groups)  that  absorb  UV  light.
This  suggests  that  incorporating  natural  active  substances  can
enhance the UV-blocking ability of films[107]. 

Antibacterial and antioxidant properties
During the storage, transportation, and sale of fruits and vegeta-

bles,  they  are  highly  susceptible  to  microbial  contamination,  lead-
ing to issues with edibility and safety. Oxidation reactions can cause
the degradation of nutrients such as fatty acids and vitamins, result-
ing  in  off-flavors,  discoloration,  and  even  the  formation  of  toxic
substances[26,111,112].  The  addition  of  antimicrobial  agents  and
antioxidants to the packaging films is  the most direct and effective
method for enhancing these properties.

Antibacterial  agents  are  important  functional  components  in
fruits packaging films. But some novel antibacterial agents with safe,
non-toxic,  and  broad-spectrum  antibacterial  activity  properties  will
encounter  some problems in application.  For  example, ε-polylysine
will bind to anions in the food substrate to produce precipitation or
bitterness due to its electrostatic properties[113]. The glass transition

 

Table 2.    Effects of different additives on the barrier properties of edible films.

Additives Concentration Water content Water vapor permeability Water solubility Ref.

Pectin 5% 30.79%−21.07% 13.39−29.25 × 10−3 g·m/h·pa 76.77%−83.32% [79]
Whey protein isolate / 40.21%−21.85% 15.28−23.32 g/m2·day 34.71%−36.46% [80]
Cellulose nanocrystals 75% 9.6236%−12.9845% 1.75−2.34 × 10−9 g/s·Pa·m / [81]
Oxidized poly- (2-hydroxyethyl acrylate) 10% 17.01%−25.7% / 41.7%−56.9% [82]

Tangerine oil, tween 80 0.10% 26.05%−20.25% 0.613−0.233 g·mm/m2·h·kPa 50.19%−45.94% [83]
Arrowroot powder, refined wheat flour, corn starch 3.5%, 2%, 2% 13.69%−6.76% 0.0019−0.0106 g·mm/m2·day·mmHg 33.33%−24.35% [84]
Black pepper essential oil 0.15% 31.79%−39.25% 0.315−0.420 g·mm/m2·h·kPa 24.00%−22.35% [85]
Modified potato starch, glycerol 9%, 1% / 18.1−6.1 × 10−3 g·mm/h·m2·Pa 62.238%−45.639% [86]
Sunnhemp protein isolate, potato starch 50%, 50% 18.31%−12.89% / 74.26%−52.77% [16]

Orange oil 2.50% 16.12%−9.55% 2.71−2.25 × 10−12 g·cm/cm2·s·Pa 74%−29% [87]

/, not provided.
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temperature  of  the  polymer  from  2-hydroxy-3-cardanylpropyl
methacrylate  is  about −13.5  °C  so  the  polymer  film  is  sticky[114].
Therefore, it is important to find a delivery system that can balance
high  antimicrobial  properties  with  good  aggregation  stability.
Nanospheres made of functional components by cross-linking tech-
niques  can  sustain-release  polyphenols  and  protect  them  from
deactivation[115].  Chen  et  al.  prepared  eugenol/gelatin  micro-
spheres by the emulsify-crosslinking method as shown in Fig. 3, and
coated  fresh-cut  apple  cubes  with  composite  films  containing
eugenol/gelatin  microspheres.  The  results  demonstrated  that  the
apple  cubes  exhibited  no  bacterial  contamination,  with  only  mild
dehydration[29].  Liang  et  al.  employed  chitosan/silver  nanoparticle
composite  microspheres  for  cherry  preservation  and  observed
remarkable efficacy in reducing decay rate and weight loss[116]. Yang
et  al.  found  that  cinnamaldehyde-loaded  polyhydroxyalkanoate/
chitosan porous microspheres can reduce the rate of  hardness loss
of  strawberries  and  keep  the  total  soluble  solids,  titratable  acidity,
and  ascorbic  acid  content  stable[117].  These  results  show  that  the
nanospheres have antibacterial and antioxidant properties that can
extend the shelf life of fruits.

Essential  oils  (EOs)  are  volatile  and  fragrant  liquids  that  are
derived from plants, which have powerful antimicrobial activity[118].
Adding  essential  oils  to  food  packaging  can  control  food  spoilage
and  foodborne  pathogenic  bacteria.  However,  in  general,  essential
oils  are  composed  of  non-polar  components,  so  they  have  poor
water  solubility,  strong  sensory  flavor,  and  low  stability[119,120].
Nanoemulsions  are  emulsions  with  nanoscale  droplets,  typically
formed  by  dispersing  two  or  more  immiscible  liquids  (such  as  oil
and  water)  into  tiny  particles  through  physical  methods  like  high-
pressure homogenization, microfluidization, and ultrasonication[121].
The particle size of nanoemulsions generally ranges from 20 to 200
nm,  which  is  significantly  smaller  than  that  of  conventional  emul-
sions[122].  This  smaller  particle  size  imparts  nanoemulsions  with
higher  stability,  a  larger  surface  area,  and  enhanced  penetration
capabilities[123].  Nanoemulsion  technology  aims  to  shield  essential
oils from the influences of environmental conditions, diminish their
toxicity,  conceal  their  potent  flavor  and  aroma,  and  enhance  their
bioavailability[124].  Compared  to  traditional  emulsions,  nanoemul-
sions  containing  functional  ingredients  offer  advantages  such  as
smaller  diameters,  higher  transparency,  increased  stability,  and
improved  antimicrobial  activity[125].  Liu  et  al.  stabilized  the

nanoemulsion  with  carboxymethyl  chitosan-peptide  conjugates
and  prepared  an  active  film  containing  camellia  oil.  Experimental
results  showed  that  it  could  maintain  the  firmness,  reduce  weight
loss, and slow down the formation of soluble solids in blueberry[126].
Malondialdehyde (MDA) is a marker of membrane peroxidation and
its content can be used to measure membrane integrity[127]. Sodium
alginate/tea tree essential oil nanoemulsion active film-coated fruits
have  the  lowest  MDA content  compared with  uncoated groups  by
the  end  of  storage,  which  means  the  suppressive  effect  on  lipid
peroxidation[128]. 

Conclusions and perspectives

This review discusses the methods and properties of edible films
for  fruits  and vegetables.  Solvent  casting  is  a  commonly  used wet-
processing technique, where the key factors are selecting the appro-
priate solvent and controlling the drying conditions,  both of  which
affect  the  films'  properties.  The  extrusion  method,  which  involves
heating and melting the polymer with minimal solvent use, is more
suitable  for  large-scale  production.  While  the  process  parameters
influence  the  films'  properties,  this  method  requires  high-quality
raw  materials  and  has  higher  equipment  maintenance  costs.  Spin-
ning can produce nanoscale fibers, but its low output and complex
equipment  have  limited  its  widespread  application.  The  develop-
ment  of  3D  printing  in  the  food  sector  has  been  slow,  constrained
by  limitations  in  materials  and  technology,  along  with  high  costs,
and  slow  speeds.  However,  it  holds  potential  for  future  develop-
ment.  The  mechanical  properties  of  edible  films  determine  their
protective performance during transportation, storage, and process-
ing.  Combining  different  polymers  can  enhance  the  films'  strength
and flexibility. Plasticizers like glycerol and crosslinking agents such
as  glutaraldehyde  improve  the  films'  flexibility  and  strength.
Nanoparticles  and  processing  methods  like  drying  and  thermal
treatments  can  also  boost  the  films'  mechanical  properties.  Barrier
properties,  including  water  vapor  and  oxygen  permeability,  are
essential for food protection, and the choice of polymers and plasti-
cizers affects these characteristics. Thermal properties, transparency,
color,  and  UV-blocking  ability  also  influence  the  films'  stability
and  appearance.  Furthermore,  certain  natural  substances  and
antioxidants can enhance the films' functionality.

The  future  of  edible  film  technology  is  not  limited  to  the  food
industry;  and  it  has  the  potential  to  extend  into  fields  such  as
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Fig. 3    Microspheres made using the emulsify-crosslinking method and their antibacterial effect.
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medicine  and  agriculture,  offering  a  wide  range  of  applications.
Furthermore, there is a need for further advancements in the appli-
cation  technology  of  edible  films  and  coatings  to  meet  consumer
demands  for  both  functionality  and  visual  appeal.  In  addition  to
antibacterial  and  preservation  properties,  functionality  can  be
expanded to enhance the nutritional value of food by incorporating
probiotics  and  other  methods.  Moreover,  with  the  rapid  develop-
ment of internet technology, edible films, and coatings can be inte-
grated  with  technologies  like  the  Internet  of  Things,  big  data,  and
artificial  intelligence  to  create  intelligent  packaging  systems,
thereby ensuring the freshness and safety of food more effectively. 
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