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Abstract
The potential  of employing hyperspectral imaging (HSI) in the near-infrared (NIR) range (386.82−1,004.50 nm) for predicting the firmness of 'Fuji'  apples

cultivated  in  Aksu  has  been  evaluated.  The  performance  of  seven  preprocessing  algorithms  and  two  feature  selection  algorithms  was  evaluated.  The

coefficient of determination (R2) and root mean square error (RMSE) of Partial Least Squares (PLS) models are contrasted using various inputs. These results

confirm  that  the  Multiplicative  Scatter  Correction  (MSC)  preprocessing  algorithm  was  the  optimal  choice  (  =  0.7925, RMSEP =  0.6537),  and  the

Competitive Adaptive Reweighted Sampling (CARS) feature selection algorithm demonstrated superior performance (  = 0.8325, RMSEP = 0.6257). Based

on  the  aforementioned  findings,  PLS,  Multiple  Linear  Regression  (MLR),  Heterogeneous  Transfer  Learning  (HTL),  and  Back  Propagation  Neural  Network

(BPNN) models were constructed for cross-validation purposes. The experimental results indicate that the CARS-BPNN model exhibits the optimal prediction

performance, with an  value of 0.9350 and an RMSEP value of 0.4654. The results of the research indicated that a deep learning method combined with

hyperspectral  imaging  technology  could  be  utilized  to  non-destructively  detect  the  firmness  of  'Fuji'  apples,  which  will  be  beneficial  and  potentially

applicable for post-harvest fruit firmness monitoring. This research provides a reference point for the non-destructive detection of apple in the selection of

preprocessing, feature selection algorithms, and predicting firmness model.
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Introduction

China holds a dominant position in the world's apple production,
having  the  greatest  apple-growing  area,  and  the  largest  export[1].
Apples'  rich  trace  elements  and  organic  component  composition
give  them  a  delicious  flavor  and  significant  nutritional  benefits.  In
this  case,  the  quality  of  apples  has  a  significant  impact  by  several
factors,  including  shape,  size,  sugar,  acids,  external  colour,  soluble
solids  content  (SSC),  and  texture[2].  However,  weight  loss,  disease,
and chilling injury of postharvest loss are the most common occur-
rences.  These losses may affect customer purchasing decisions and
result  in  a  decline  in  apple  sales[3].  Detecting  all  postharvest  loss
parameters  is  unquestionably  intricate.  Research  has  revealed  a
substantial  link  between  fruit  weight  reduction  and  texture
attributes, suggesting that texture trait evaluations may be used to
determine postharvest loss[4].

Firmness is an important metric for analyzing textural characteris-
tics and determining the degree of postharvest loss. At present, the
techniques employed for determining firmness are largely based on
conventional  physicochemical  methods,  and  sensory  analysis.
However,  these  approaches  are  known  to  be  detrimental,  time-
consuming,  and  arduous[5].  The  industry  standard  for  determining
the  firmness  of  fruits  is  a  penetrometer  test  that  involves  piercing
fruit flesh to a depth with a Magness-Taylor instrument, which leads

to a loss of financial losses[6]. Hence, it is essential to develop a rapid,
non-destructive test technique for monitoring apple firmness.

Several  research  works  have  been  carried  out  non-destructive
evaluation of fruit quality using acoustic[7],  multispectral imaging[8],
hyperspectral  imaging[9],  electronic  nose[10],  fluorescence
imaging[11],  machine  vision[12],  and  so  on.  Hyperspectral  imaging
stands  out  as  the  most  comprehensive  of  the  approaches  listed
above  since  it  allows  for  the  utilization  of  both  visual  and  spectral
data  from  the  sample  for  firmness  detection[13].  The  mechanism
behind  some  detections  is  grounded  on  the  measurement  of  the
spectrum  from  the  fruit  surface  by  reflection,  interaction,  or  trans-
mission.  By  applying  certain  chemometric  techniques,  the  relevant
wavelength  variations  in  the  spectrum  can  be  employed  to  be
connected with firmness, because the measured spectrum is related
to the content and structure of the fruit[14].

However,  because  hyperspectral  imaging  remains  enormously
dimensional,  standard  processing  techniques  find  it  challenging  to
handle  the  massive  volume  of  data.  In  this  project,  we  intend  to
introduce deep learning techniques. Using huge amounts of data or
high dimensional data, deep learning creates deep neural networks
to  simulate  human  brain  neurons  and  perform  complicated  func-
tion approximation[15]. With numerous successful applications in the
fields  of  food,  image  processing,  speech  recognition,  and  object
detection,  these techniques have demonstrated their  sophisticated
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technology for big data analysis[16]. More studies on the hyperspec-
tral  imaging  for  fruit  quality  assessment  could  be  found  such  as
loquat[17],  apple[18],  kiwifruit[19],  blueberry[20],  and  banana[21].  Xiang
et  al.[22] completed  SSC  and  firmness  nondestructive  testing  of
tomatoes, applying hyperspectral imaging and deep learning. Addi-
tionally,  a  novel  regression  model  based  on  one-dimensional  (1D)
Con1dResNet  (Con1dResNet)  was  proposed  and  evaluated  in
comparison  to  existing  techniques.  The  evaluation  results  indicate
that  with  a  sufficiently  large  number  of  samples,  this  technique
outperforms  the  state-of-the-art  technique  by  26.4%  for  SSC  and
33.7%  for  firmness[22].  Hyperspectral  imaging  and  deep  learning
were  utilized  by  Xu  et  al.  to  predict  the  firmness  and  pH  of  Kyoho
grapes[23].  Their  research  demonstrated  that  grape  firmness  and
acidity  may  be  rapidly  and  non-destructively  assessed  through  the
integration of stacked auto-encoders (SAE) with hyperspectral imag-
ing.  At  the  moment,  the  majority  of  literature  researches  concen-
trate  on  optimization  of  a  single  model,  which  results  in  a  lack  of
comparison effect of other models and limited reference value.

This  manuscript's  particular  goals  were:  (1)  Process  the  spectral
data and firmness indicators of the collected apple samples in order
to  determine the optimal  spectral  preprocessing method;  (2)  Com-
pare the optimization of feature wavelength extraction methods in
order to determine the optimization feature wavelength extraction
methods;  (3)  Optimization  learn  modeling  by  selecting  methods:
multiple  linear  regression  (MLR),  heterogeneous  transfer  learning
(HTL),  and  backpropagation  neural  network  (BPNN);  (4)  Through
various modeling analysis and prediction effects on the firmness of
apple  samples,  the  modeling  method  with  a  larger  coefficient  of
determination (R2)  and a smaller root mean squared error (RMSE)  is
selected to determine the best prediction model to achieve the opti-
mal result for apple firmness. 

Materials and methods
 

Apple material
All the 220 tested apples (Malus domestica Borkh) were harvested

on  local  farms  (80°20'  E,  41°28'  N,  Aksu  Prefecture,  Xinjiang,  China)
within  a  week  after  the  frost's  descent  (25−30  October,  2023).  The
average apple weight of these apple samples was 233.42 g and the
average  apple  diameter  was  83.40  mm.  After  removing  the  frost
wax, the apple samples were numbered and labeled. Following that,
spectral  analysis  and  associated  experiments  were  used  to  analyze
the  apple  samples.  The  raw  data  set  was  rearranged  at  a  4:1  ratio
using the Kennard-Stone algorithm (KS), resulting in the generation
of  two  distinct  datasets:  a  calibration  set  comprising  176  apple
samples and a prediction set comprising 44 apple samples. 

Hyperspectral image
In  the  actual  screening  process,  the  position  of  the  apple  is  not

fixed and there are numerous potential configurations. To enhance
the  precision  of  detection,  we  opted  to  gather  four  surfaces  of
apples in a flat position, aiming to gather as much surface informa-
tion  as  feasible.  The  experiment  used  a  push-and-scan  hyperspec-
tral  imaging  camera  (ResononPikaKC2  imaging  spectrometer,
Beijing  Liga,  Beijing,  China),  linear  mobile  platform,  installation
tower,  lighting  device,  head,  NB  single-phase  current  intelligent
detector,  GST36U12-P1JW  power  supply  sensor  (Mingwei,  Taiwan),
DMX-J-SA-17  stepper  motor  (Arcas,  USA),  acA1920-155 μm  array
camera (Basler, Germany). The hyperspectral spectrometer included
an exposure time of 20.0 ms, a frame frequency of 20.0 HZ, a spec-
tral  resolution  of  1.3  nm,  and  a  spectral  range  of  386.82−1,004.50
nm.  The  platform  has  a  maximum  operating  rate  of  355  pps
(packets per second),  a maximum gain of 3,  and a fixed distance of
20.0 cm between the sample and the camera[24]. 

Firmness measurement
Firmness measurement using GY-1 fruit firmness tester (Dongguan

Sanliang  Measuring  Tools  Co.,  Ltd,  Dongguan,  China),  suitable  for
measuring apples, pears, and other high-firmness fruits professionally.
The scale display range is 2−15 kg/cm2, the side head diameter size is
3.5  mm, the index value is  0.1  kg/cm2,  and the indentation depth of
the  indenter  is  standardized  to  10  mm.  The  external  dimensions  of
the firmness tester are 140 mm × 60 mm × 30 mm and the net weight
is  0.5  kg.  Considering  that  the  GY-1  firmness  tester  is  a  manual
measurement,  to  ensure  the  accuracy  of  the  experiment,  apple
samples need to be collected three times the firmness value, and take
the average of the three as the final firmness of the sample to obtain
the  measurement  value.  The  final  experimental  solution  was  deter-
mined as three different parts of the apple on the equatorial line, with
each part spaced 120 degrees apart. 

Spectral data extraction
In  order  to  obtain  a  stable  light  environment,  the  hyperspectral

imaging  equipment  should  be  turned  on  and  warmed  up  for
approximately  half  an hour  before scanning each sample.  By  using
Eqn (1), the raw hyperspectral image is calibrated with the standard
white  and  dark  reference  images  in  order  to  remove  the  effects  of
uneven illumination and dark current noise[25].

Rc = (R0−B)/(W −B) (1)
In  this  context, Rc represents  the calibrated hyperspectral  image,

R0 designates  the  raw  hyperspectral  data, W means  the  standard
white  reference  image  obtained  through  the  use  of  a  rectangular
Teflon  plate,  and B stands  for  the  standard  black  reference  image,
which  is  obtained  by  fully  covering  the  lens  completely  with  an
opaque black cover.

Every  apple  was  given  a  hyperspectral  image,  which  was  then
preprocessed  and  used  to  extract  the  spectra.  To  extract  the  spec-
tral data information from the acquired spectral image of the apple
sample, a 150 × 150 pixels region of interest (ROI) was identified in
the vicinity of the equatorial plane. The Environment for Visualizing
Images software (ENVI 5.1, Research Systems Inc, Boulder, CO, USA)
was used to calculate the raw average reflectance from ROI. 

Spectral processing
Spectral  preprocessing  can  boost  accuracy,  remove  redundant

and  erroneous  information,  and  lessen  the  impact  of  light,  noise,
and  background  interference  produced  by  the  test  instrument
during  the  spectrum  acquisition  procedure  on  the  measured  light
spectrum data. To reduce noise from various electronic sources and
variations  in  sample  conditions,  the  raw  mean  spectra  data  were
preprocessed  using  seven  standard  methods:  Min  Max  Scaler
(MMS)[26],  Standard Scaler (SS)[27],  Mean Centering (CT)[28],  Standard
Normal  Variate  (SNV)[29],  Moving  Average  (MA)[30],  Savitzky  Golay
smoothing  filtering  (SG)[31],  and  Multiplicative  Scatter  Correction
(MSC)[32].

The  Partial  least  squares  regression  (PLS)  model  was  developed
using  the  pre-treated  spectrum  and  the  raw  spectrum,  with  the
determination  coefficient  (R2)  and  the  root  mean  square  error
(RMSE)  as  the  evaluation  indexes,  and  the  optimal  scheme  was
determined by selecting the one with greater R2 and a smaller RMSE.
The calculation formulas of R2 and RMSE are shown in Eqns (2) & (3):

R2
c ,R

2
p = 1− [

∑n
i=1(yi− ŷi)2/

∑n
i=1(yi− ym)2] (2)

RMS EC, RMS EP =

√
1
n
∑n

i=1(yi− ym)2 (3)

ŷiwhere,  express  the  predicted  value  of  the ith sample, yi means  the
measured value of the ith sample, n shows the total number of samples,
and ym is the mean value of the samples. 
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Feature selection algorithm
The  selection  of  an  effective  wavelength  is  a  crucial  aspect  of

spectral  data analysis.  Its  function is  to  eliminate superfluous infor-
mation present in the spectrum, retain data pertinent to the current
task, and subsequently reduce the data dimension[33]. The Competi-
tive  Adaptive  Reweighted  Sampling  (CARS)  algorithm  enables  the
identification  of  the  optimal  combination  of  specific  key  variables,
thereby  enhancing  the  detection  of  corresponding  indicators[34].
The Random Frog (RF) algorithm is employed to find the most likely
significant variables, then local search is used to expand the signifi-
cant variable interval width[35]. At present, there are successful cases
of  the  application  of  CARS  and  RF  in  combining  the  firmness  of
hyperspectral  technology.  Both  feature  wavelength  selection  algo-
rithms have certain superiority. Based on a comprehensive consider-
ation  of  the  article,  we  have  selected  the  above  two  feature  selec-
tion methods for experimental investigation.

CARS not only optimizes the accuracy of  firmness prediction but
also increases the efficiency of the prediction model in comparison
to  other  feature  wavelength  selection  algorithms,  including  the
Successive Projection Algorithm (SPA)[36],  and Principal Component
Analysis  (PCA)[37].  It  chooses  the  wavelengths  exhibiting  the  great-
est  absolute  values  of  the  PLS  model's  regression  coefficients,
emulating the Darwinian principle of 'survival of the fittest'[38]. CARS
is capable of filtering out the most complex bands with the greatest
number  of  eigenvalues,  and  can  be  combined  with  other  process-
ing methods to enhance the accuracy and stability of the model[39].
Experiments  have  been  conducted  to  establish  a  correlation
between hyperspectral images and kiwifruit hardness, with success-
ful  results  in  predicting  and  visualizing  this  variable.  Therefore,  the
use  of  CARS  is  both  reasonable  and  appropriate  for  the
experiment[40].

The PLS model was created by the algorithm using 80% randomly
divided data sets for analysis. The target variable's explanatory value
is  determined  by  the  regression  coefficient's  absolute  value.  Every
sample  iteration  involves  four  sequential  steps  that  CARS  goes
through to function: (1) Model sampling using Monte Carlo; (2) Per-
form enforced wavelength selection,  using an exponentially  dimin-
ishing function; (3) Adopt ARS to achieve a competitive wavelength
selection process; (4) Use cross-validation to assess the subset[41].  In
this study, the Monte Carlo sampling run times were 500, the maxi-
mum  principal  component  number  was  10,  the  sampling  rate  was
0.8,  and  the  optimal  number  of  iteration  number  was  195.  Equa-
tions (4)−(6) describe the most important theory of CARS.

ri = αe−ki (4)

α = (P/2)1/(N−1) (5)

k = ln (P/2)/(N −1) (6)
where, ri shows  the  ratio  column  of  reserved  wavelength  points
obtained, i express  the  Monte  Carlo  sampling  runs, α and k are  two
constants, P designates the raw wavelength number, N means preset
Monte Carlo sampling number.

The  RF  algorithm  is  based  on  post-heuristic  particle  swarm  opti-
mization,  enabling the iterative process  by integrating the benefits
of  the  reversible  jump  Markov  chain  Monte  Carlo  algorithm.  The
selection  probability  of  the  variable  is  calculated  using  the  Markov
chain  based  on  the  stationary  distribution.  The  optimal  bands
selected by RF provide a technical foundation for subsequent semi-
quantitative  modeling  of  spectroscopy  and  chemometrics[42].  In
light  of  the  possibility  of  errors  in  the  CARS  (ignoring  interactions
between  features  or  errors  caused  by  other  reasons),  the  CARS
algorithm is used to extract features while the RF algorithm is used
to select spectral features[43]. There are four steps in the process: (1)

Set the initial  number of  frog population variables Q,  which form a
subset  V0;  (2)  Calculate  the  positional  fitness  of  each  variable;  (3)
Appropriately  transform  the  frog  position  according  to  its  fitness
and  relevance  to  the  problem;  (4)  After  N  iterations,  calculate  the
probability  of  the  variable  being  selected  according  to  Eqn  (7)[35].
The  RF  algorithm  had  its  operational  specifications  set  as  follows:
the number of iterations N was 3000,  the frog population variables
Q was 6, and the resampling factor for variable adjustment was 10.

Probabilityi = N j/N, j = 1,2,3, . . . , p (7)

where, Probabilityi designates  the  probability  variables, Ni means
iterations  number  in  progress,  N  is  the  total  iterations  number, p
expresses the total wavelength number. 

Firmness prediction models
To create models between the apple's firmness and feature wave-

length,  four  common  techniques  were  used:  Back  Propagation
Neural  Network  (BPNN),  Heterogeneous  Transfer  Learning  (HTL),
Multiple  Linear  Regression  (MLR),  and  PLS.  Supervised  learning  in
hyperspectral  imaging  analysis  frequently  uses  methods  like  MLR.
Because it can identify the linear relationships with a single indepen-
dent variable and a multitude of dependent variables.

The  objective  of  MLR  is  to  minimize  the  discrepancies  between
anticipated and actual  results  by  using a  simple  method of  assign-
ing values to the independent variable coefficients[44].  The majority
of HTL techniques used today deal with heterogeneous domains by
either  learning  an  asymmetric  transformation  between  them  or
discovering  a  common  subspace  for  them.  The  objective  is  to  use
knowledge  (or  information)  from  related  tasks  to  enhance  perfor-
mance on the target learning task[45].

By using an end-to-end feature extraction method in place of the
manual  feature  extraction  process,  BPNN  may  swiftly  extract  infor-
mation  about  hidden  features  from  a  given  data  set[46].  There  are
different types of layers that make up the structure of a neural net:
(1) the input layer, which contains the basic data of the network; (2)
the hidden layer, which works as an intermediary between the inter-
mediate  input  layer  and  the  downstream  output  layer;  and  (3)  the
output layer, which generates the output based on the input.

R2
c R2

p

Following building the regression model, the models were evalu-
ated for  accuracy using the determination coefficient of  calibration
and prediction (  and  ) and the root mean square error of cali-
bration and prediction (RMSEC and RMSEP). Formulas for parametric
in the spectral processing section.

Using the characteristic wavelength data elected by CARS and RF,
the prediction model of apple firmness based on the MLR algorithm
was established. For the network model optimizer of transfer learn-
ing,  Adaptive  Moment  Estimation  (ADAM)  was  elected  as  the
network  model  optimizer  for  transfer  learning;  Leaky  Rectified
Linear Unit (Leaky ReLU) was taken as the activation function; Mean
Squared Error (MSE) was chosen as the loss function; Mean Absolute
Error  (MAE)  was  chosen  as  the  training  evaluation  criterion;  the
batch  size  was  64;  the  verification  ratio  of  each  round  was  0.2;  the
initial learning rate was 0.0005. The initial training rounds epoch was
20. The value of the output layer represents the predicted firmness,
and the number of layers is 1. The number of neurons in the hidden
layer is 26, and the training stride is 20000. 

Results and discussion
 

Spectral characteristics
Due to the large amount of  physical  and chemical  information it

includes,  hyperspectral  information  is  extremely  dimensional  and
collinear.  The  entire  sample  spectral  (386.82−1,004.50  nm)  derived
from the hyperspectral image of the apple sample is shown in Fig. 1.

BPNN based apple firmness prediction
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The  complete  spectral  data  set,  comprising  220  samples,  is  pre-
sented in this figure, where the horizontal coordinates represent the
hyperspectral wavelengths and the vertical coordinates indicate the
spectral absorbance.

The  raw  spectral  data  is  divided  into  bands  at  approximately
1.32 nm intervals,  so all  the data is divided into a total of 462 band
counts.  The  spectra  of  all  samples  exhibit  a  similar  pattern,  with  a
single  peak  and  three  valleys.  The  peak  was  observed  at  810  and
830  nm,  whereas  the  valleys  were  observed  at  400−600,  690,  and
960 nm.  It  has  a  peak at  810 and 830 nm is  part  of  the chlorophyll
absorption spectra[47]. 

Statistics of reference firmness
The mean value of 8.97 kg/cm2 and the standard deviation (SD) of

0.90 kg/cm2 for all 220 examined apple samples showed a change in
firmness from 6.45 to 12.30 kg/cm2. The samples' largest and lowest
values  differed  by  5.85.  The  results  demonstrate  that  even  in  the
same origin,  the quality  of  the same batch of  fruit  still  had notable
variations,  so  is  essential  to  establish  a  non-destructive  testing
method.

The  distribution  histogram  and  firmness  box  diagram  shown  in
Fig.  2 highlight  the  fact  that  most  samples  cluster  in  the  8−10
kg/cm2 range, despite the firmness index parameters having a fairly
wide  span.  For  the  accuracy  and  dependability  of  the  predictive
model, this concentration is quite beneficial. 

Spectral data processing
By removing unnecessary data and reducing the impact of back-

ground noise, spectral preprocessing can increase model prediction
accuracy. Figure  3 displays  seven  images  of  the  whole  sample  by
process.

There is no discernible difference between the other results in the
collection  of  graphs,  except  the  results  derived  from  the  MMS  and
SS  algorithms,  which  call  for  more  investigation  and  analysis.  The
spectral  images  processed  by  MMS  and  SS  are  manifestly  more
diffuse  than  the  raw,  which  makes  the  data  smoother  but  dimin-
ishes the correlation and learning potential of the data, and renders
it more challenging to construct the prediction model subsequently.
The spectral  image data obtained from the remaining five process-
ing methods are more centralized, which strengthens the normaliza-
tion of  the  data  and can effectively  promote the  learning speed of
the prediction model. However, for all the preprocessing methods, it
is difficult to illustrate the advantages and disadvantages of the data
solely based on the spectral images. Therefore, further analysis and
validation are necessary.

R2
p

R2
p R2

c

The pre-processed spectral wavelength and the raw wavelengths
(RW)  were  employed  as  input  for  the  establishment  of  PLS  regres-
sion  models,  which  were  utilized  to  assess  the  efficacy  of  the  vari-
ous processing algorithms. These models facilitated a visual analysis
of  the  performance  of  the  treated  spectral  data. Table  1 illustrates
the  potential  for  information  loss  and  decreased  model  prediction
accuracy  caused  by  the  seven  spectrum  preprocessing  techniques
(MMS,  SS,  CT,  SNV,  MA,  SG,  and  MSC).  The  preprocessed  data  will
exhibit a modest decrease relative to the original dataset when eval-
uating training outcomes. This is attributable to the inherent limita-
tions of data processing, which inevitably entail a certain degree of
data  loss.  Consequently,  it  becomes  essential  to  identify  a  prepro-
cessing algorithm that approximates the characteristics of the origi-
nal  data  set.  The RMSE of  the  preprocessing  procedures  was
computed respectively for each type of input data when building a
PLS  regression  model  using  the  data.  The  model's  accuracy  and
stability increase with decreasing RMSE, but the  has the reverse
effect.  The  MSC  preprocessing  approach  has  a  greater  prediction
accuracy;  the  is  0.7925,  the RMSEP is  0.6537,  and  and RMSEC
are  0.7862,  0.6525,  respectively.  An  examination  of  the  data  table
reveals that the evaluation values of SG and MSC exhibit close align-
ment  with  the  original  data  set.  Nevertheless,  SG  exhibits  subopti-
mal performance when applied to the prediction set. Consequently,
after weighing these observations, the MSC algorithm is selected as
the preprocessing algorithm for the forthcoming experiment. 

Feature wavelength selection
Following  the  segmentation  of  the  raw  samples  using  the  KS

algorithm and subsequent processing using the MSC algorithm, the
feature  wavelengths  were  obtained  through  the  application  of  the
CARS and RF algorithms. CARS and RF algorithms were employed to
select  feature  wavelengths  that  were  connected with  the  firmness,
reducing  data  redundancy,  and  increasing  model  operating  effi-
ciency.  To  determine  the  suitability  of  the  CARS  algorithm  for
extracting  feature  wavelengths  from  pre-processed  spectra,  the
RMSE and  the R2 of  the  model  were  determined  for  a  range  of
feature  spectral  wavelengths.  The  lower  the RMSE and  the  higher
the R2,  the greater  the precision and reliability  of  the model.  When
the  RMSE  attains  a  minimum  value,  the  number  of  wavelengths
extracted  as  features  is  13,  representing  2.81%  of  the  all-spectral
band. As demonstrated in Fig. 4, adaptive reweighted sampling has
been  applied  to  select  the  wavelength  with  the  largest  absolute
value of the PLS model,  and cross-validation modeling was used to
identify the subset of optimal wavelength variables. When the spec-
tral  data  was  extracted  by  CARS  features,  the  number  of  selected
wavelengths  also  decreased  from  462  to  1  as  the  Monte  Carlo
sampling number increased from 1 to 350. In this process, the 195th

iteration  interactive  verification  error  (RMSECV)  was  the  smallest,
and 13 feature wavelengths were proposed.
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Figure 5 shows that the variable's selection probability spans from
0.0  to  0.35,  and  that  the  higher  the  probability  of  a  variable,  the
bigger  the modeling impact.  A distinct  variable  address  was linked
to  every  spectral  wavelength.  Characteristic  wavelength  variables
are those wavelengths that have an associated variable with a selec-
tion probability above 0.132.  Finally,  the number of selected bands
in  this  interval  is  17.  The  selection  probability  value  of  variables  in
these  wavelength  ranges  is  high,  which  indicates  that  these  wave-
lengths also have a stronger influence on modeling.

The majority of feature wavelength selection algorithms markedly
diminish  the  overall  complexity  of  variables  while  maintaining  a
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Fig.  3    Wavelength processing graph based on the seven different pre-processing algorithms and the raw wavelength graph.  (a)  Min Max Scaler,  the
spectrum  of  the  MMS  for  dataset,  (b)  Standard  Scaler,  the  spectrum  of  the  SS  for  dataset,  (c)  Mean  Centering,  the  spectrum  of  the  CT  for  dataset,  (d)
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the SG for dataset, (g) Multiplicative Scatter Correction, the spectrum of the MSC for dataset, (h) Raw Wavelength, the spectrum of the RW for dataset.

 

Table  1.    Comparison  of  different  processing  methods  in  the  calibration  set
and prediction set.

Method R2
c RMSEC R2

p RMSEP

MMS 0.7247 0.8081 0.7130 0.8330
SS 0.7795 0.6855 0.7690 0.7336
CT 0.7758 0.6935 0.7780 0.7083
SNV 0.7750 0.6993 0.7861 0.6770
MA 0.7876 0.6481 0.6778 0.8902
SG 0.7913 0.6434 0.6680 0.9013
MSC 0.7862 0.6525 0.7925 0.6537
RW 0.7942 0.6357 0.7891 0.6613
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R2
c R2

p

R2
p

high degree of accuracy in model detection. The CARS and RF algo-
rithms  effectively  reduced  the  number  of  feature  variables  to  less
than  5%  of  the  full  band  (13  and  17  wavelengths,  respectively).  As
shown  in Table  2,  compared  to  RW-PLS  model,  the  and  are
slightly  lower  but  the RMSEC and RMSEP are  larger  in  the  RF-PLS
model,  indicating  that  RW-PLS  model  is  superior  to  the  RF-PLS
model and eliminating some relevant regions leads to a slightly infe-
rior  prediction  performance.  On  the  contrary,  despite  the  limited
number of relevant feature wavelength chosen by the CARS feature
wavelengths  extraction  method,  the  of  the  firmness  at  0.8325,
with  an RMSEP of  0.6257.  The  detection  performances  of  RF-PLS
models  exhibited  slight  decreases,  whereas  those  of  CARS-PLS
models  demonstrated  improvements.  This  demonstrates  that  the
PLS  model  employing  the  CARS  feature  wavelength  extraction
method  eliminates  regions  with  low  correlation,  reduces  modeling
redundancy  significantly,  preserves  the  effective  region,  and
improves efficiency by reducing the time needed. Hence, the CARS
feature  wavelength  extraction  method  was  chosen  to  extract  the
characteristic wavelength of apple samples. 

Analysis of firmness prediction models

R2
c R2

p

PLS,  MLR,  HTL,  and  BPNN  models  were  developed  to  learn  firm-
ness feature of apple using RW and CARS wavelengths.  The perfor-
mance  of  each  model  is  shown  in Table  3.  The  BPNN  model  using
the  feature  wavelength  by  CARS  algorithm  (CARS-BPNN)  obtained
the  optimum  predictive  performance,  with , RMSEC, ,  and
RMSEP of 0.9532, 0.4184, 0.9350, and 0.4654, respectively.

R2
p

To verify the superiority of the BPNN model, various models, and
spectral  extraction  methods  were  mixed  for  cross-testing  perfor-
mance,  and  the  confusion  matrix. Figure  6 was  made  according  to
the evaluation parameters, which showed that the modeling perfor-
mance of the BPNN model was more effective than the other three
modeling  methods.  The  figure  illustrates  that  all  12  models  are
capable  of  accurately  detecting  the  firmness  of  the  apple.  Further-
more,  the  overall  performance  of  the  model  calibration  set  was
found to be marginally superior to that of the prediction set. Never-
theless,  the discrepancy was not statistically  significant,  suggesting
that the performances were consistent across the four methods and
that there was no major problem with overfitting. The R2 and RMSE
of  firmness  calibration and prediction set  of  the BPNN model  were
0.9523, 0.4184, 0.9350, and 0.4654, respectively. The RMSEP of BPNN
model  was  11.53%  lower  than  that  of  the  other  three  models,  and
the  was 6.87% higher than that of the other three models.

The  RW-PLS,  RW-MLR,  RW-HTL,  and  RW-BPNN  models  exhibited
superior  calibration  performance,  as  all  calibration  sets  displayed
correlation  coefficients  floating  around  0.8.  This  indicates  the  exis-
tence of both linear and nonlinear correlations between the RW and
firmness.  The  recognition  ability  of  the  RW-MLR,  RW-HTL,  and  RW-
BPNN models was superior to that of the RW-PLS models,  implying
that the nonlinear relationship with the RW was pronounced rather
than  the  linear  relationship.  The  RW-BPNN  model  displayed  supe-
rior  performance  versus  the  other  three  models,  indicating  an
enhanced  capacity  for  processing  both  linear  and  nonlinear  rela-
tionships.

The CARS-BPNN models' predictive performance was assessed. As
can be seen from Fig. 7, which shows scatter plots of the predicted
and  true  firmness  of  the  apple  samples,  the  findings  for  the  CARS-
BPNN  model  exhibited  strong  prediction  and  accuracy.  The  antici-
pated firmness  values  also  corresponded well  with  the  actual  firm-
ness.  The  tight  distribution  of  the  plot's  scatterplots  around  the
predicted  regression  plot  suggested  that  the  model  could  identify
an apple's firmness with a high degree of accuracy. Accordingly, the
model  could  be  employed  to  reliably  monitor  the  firmness  evolu-
tion of the apple. 

Conclusions

In this work, 'Fuji' apples were selected as subjects to predict firm-
ness.  To  optimize  the  quality  of  marketable  fruit,  it  is  essential
to  design  a  rapid,  nondestructive  technology  testing  system  for
pre-market  apples.  Firmness  indicator  monitoring  is  employed  to
predetermine  the  quality  of  apples  by  a  deep  learning  model.
The  accuracy  of  the  CARS-BPNN  was  demonstrated  with  excellent

 

400

200

0

0.9

0.8

0.7

N
um

be
r o

f v
ar

ia
b

R
M

SE
C

V

0 50 100 150 200
Number of sampling runs

250 300 350

0 50 100 150 200
Number of sampling runs

250 300 350

a

b

Fig.  4    Firmness  feature  extraction  of  CARS.  Trend  charts  of  (a)
selecting the number of wavelengths and (b) RMSECV.

 

0.35

0.30

0.25

0.20

0.15

0.10

0.05

0.00

Se
le

ct
io

n 
pr

ob
ab

ili
ty

0 100 200
Wavelength index

300 400

Fig. 5    Firmness feature extraction of RF.

 

Table  2.    Comparison  of  different  feature  wavelengths  in  the  calibration  set
and prediction set.

Model No. of wavelengths R2
c RMSEC R2

p RMSEP

RW-PLS 462 0.7862 0.6505 0.7925 0.6537
CARS-PLS 13 0.8484 0.5965 0.8325 0.6257
RF-PLS 17 0.7666 0.6719 0.7480 0.7054

 

Table 3.    Parameter  evaluation of  models  and CARS feature  wavelengths  for
firmness prediction.

Model Input R2
c RMSEC R2

p RMSEP

PLS CARS 0.8484 0.5965 0.8325 0.6257
MLR CARS 0.8843 0.4994 0.8718 0.5069
HTL CARS 0.9344 0.4487 0.9254 0.4691
BPNN CARS 0.9523 0.4184 0.9350 0.4654
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R2
p R2

c

agreement  with  real  experimental  values.  The  cross-validation  of
different wavelengths and different models  was displayed,  and the
prediction model of apple firmness by CARS-BPNN algorithm is opti-
mum (  = 0.9350,  = 0.9523, RMSEP = 0.4654, RMSEC = 0.4184).
The  results  provided  some  references  for  other  researchers  in  the
field to select pre-processing and feature selection algorithms.

However, there are several potential challenges and limitations to
the  development  and  evaluation  of  deep  learning  models,  includ-
ing those related to data quality and privacy, the challenge of algo-
rithm selection and optimization, model representability, and other
ethical  sensitivities.  In  light  of  these  prospective  challenges,  and
constraints, the subsequent research trajectory for the optimization
of  the  industrialization  of  fruit  quality  should  be  to  ascertain
methodologies  to  surmount  them.  It  is  recommended  that  future
research  on  fruit  quality  assessment  based  on  artificial  intelligence
prioritize interdisciplinary collaboration, leverage big data and deep
learning  techniques  to  enhance  prediction  accuracy,  develop

intelligent  agriculture  systems  to  optimize  harvesting  and  trans-
portation, and prioritize ethical and privacy considerations to ensure
the sustainability and social responsibility of the technology's appli-
cation. 
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