
 

Open Access https://doi.org/10.48130/fia-0025-0005

Food Innovation and Advances 2025, 4(1): 10−18

Detection of soluble solid content in table grapes during storage based on
visible-near-infrared spectroscopy
Yuan Su1#, Ke He2#, Wenzheng Liu1, Jin Li2, Keying Hou2, Shengyun Lv1 and Xiaowei He3*

1 College of Enology, Northwest A & F University, Yangling 712100, China
2 College of Mechanical and Electronic Engineering, Northwest A & F University, Yangling 712100, China
3 College of Mechanical and Electrical Engineering, Tarim University, Alar 843300, China
# Authors contributed equally: Yuan Su, Ke He
* Corresponding author, E-mail: chuanyunyihe@163.com

Abstract
The  soluble  solid  content  (SSC)  in  grapes  significantly  influences  their  flavour  and  plays  an  integral  role  in  evaluation  of  the  quality  and  consumer

acceptance. This study employed visible near-infrared (Vis-NIR) spectroscopy to rapidly quantify SSC in table grapes during storage. A predictive model was

developed to construct a correlation between the spectral data and the measured SSC, while a comparative analysis was undertaken to assess the effects of

various spectral preprocessing techniques. Successive projection algorithms (SPA), uninformative variable elimination (UVE), and the competitive adaptive

reweighting  algorithm  (CARS)  were  adopted  to  eliminate  redundant  variables  from  both  the  original  and  preprocessed  spectral  data.  The  partial  least

squares regression (PLSR), and support vector regression (SVR) algorithms were adopted to establish a predictive model. Comparing the modelling results

derived from whole-band spectral data with those obtained from selected spectral variables, the optimal spectral prediction model was formulated utilizing

PLSR.  The  model,  which  incorporated  filtered  characteristic  wavelength  spectral  data  obtained  through  CARS  following  standard  normal  variate  (SNV)

preprocessing  yielded  optimum  results  with  the  correlation  coefficients  of  the  calibration  set  (RC),  and  the  prediction  set  (RP)  were  0.956  and  0.940,

respectively. The root mean square errors of the calibration set (RMSEC), and prediction set (RMSEP) were 0.683 and 0.769, respectively, while the ratio of

prediction to deviation (RPD) was 2.899. These results suggest that the application of Vis-NIR spectroscopy technology could effectively detect the SSC in

grapes during storage, and it can provide a valuable reference for the rapid assessment of the table grape quality.
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Introduction

Grapes are a fruit  with distinctive characteristics that make them
valuable  as  food  and  for  processing,  occupying  a  prominent  posi-
tion  in  global  fruit  production.  Renowned  for  their  rich  nutritional
content,  grapes  contain  polysaccharides,  polyphenols,  and  flavo-
noids, which endow them with notable antioxidant and anti-ageing
properties.  These  health-promoting  attributes  have  increased
grapes'  popularity  among  consumers[1].  China  is  a  major  producer
and consumer of grapes, with production increasing annually. Glob-
ally, China ranks as the second-largest grape producer and holds the
leading position as the largest producer of  table grapes.  According
to  the  relevant  data,  by  2021,  the  planting  area  of  grapes  in  China
accounted  for  12.3%  of  the  global  total,  and  the  total  output  was
14.44  million  tons.  China  primarily  produces  grapes  for  human
consumption and over 80% of the country's yearly harvest is desig-
nated for table grapes[2]. Forecasts suggest that as the grape indus-
try  continues  to  develop,  table  grape  consumption  in  China  will
inevitably increase annually.

Grape quality  is  the main factor  affecting consumers'  willingness
to buy and market price. High-quality grapes are more flavorful and
offer  more  excellent  nutritional  benefits[3].  Grape  quality  includes
appearance  and  internal  physicochemical  properties,  with  critical
internal  indicators  including  soluble  solid  content  (SSC),  total  acid,
pH, and total polysaccharide. Among these, SSC is a general term for
organic  compounds  in  fruits  that  can  be  dissolved  in  water,  which
mainly are soluble sugars. It is one of the critical factors affecting the
quality  and  taste  of  grapes[4].  As  such,  accurately  detecting  SSC

levels  in  grapes  is  of  considerable  importance.  Traditionally,  the
grape  SSC  assessment  is  performed  through  physicochemical  test-
ing.  Although  these  methods  can  provide  accurate  measurements,
they  have  many  problems  and  challenges  in  practical  applications,
including  low  efficiency,  destructiveness,  and  inconsistent  test
results  due  to  human  factors[5].  Consequently,  these  approaches
cannot satisfy the requirements of rapid, non-destructive, and auto-
mated detection for SSC detection at present.

Recently, with the rapid development of science and technology,
non-contact  measurement  technologies  such  as  visible  near-
infrared spectroscopy (Vis-NIR)[6],  hyperspectral[7],  electronic nose[8],
and  nuclear  magnetic  resonance[9] have  been  used  to  detect  the
SSC  in  fruits.  The  Vis-NIR  spectroscopy  technology  has  demon-
strated  significant  potential  and  value  in  agricultural  product  test-
ing due to its non-destructive, low-cost, and rapid[10]. The use of Vis-
NIR  spectroscopy  technology  to  achieve  non-destructive  testing  of
internal quality indicators in fruits has become the focus of research.
Researchers  have  applied  the  technique  to  research  the  quality
detection of  various  fruits.  The  Vis-NIR  spectroscopy technique has
shown excellent performance in fruit quality detection for mandarin
oranges[11], peaches[12], mangoes[13], and tomatoes[14].

A  series  of  research  results  have  demonstrated  the  effectiveness
of  spectral  techniques  for  detecting  grape  quality,  showing  that
spectral technology applies to a range of quality indicators, such as
vitamin  C  (VC)  content,  peel  anthocyanin  levels,  and  other  quality
parameters.  Costa  et  al.  used  Vis-NIR  reflectance  spectroscopy  and
various  regression  modelling  algorithms  to  construct  predictive
models  for  SSC  and  anthocyanin  content  in  Syrah  and  Cabernet
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Sauvignon.  The results  demonstrated that Vis-NIR reflectance spec-
troscopy  is  a  powerful  tool  for  non-destructive  assessment  of  the
quality attributes and ripening stage[15]. Xiao et al. employed partial
least squares regression (PLSR) to predict grape quality parameters,
including  color  space,  SSC,  and  total  phenols.  The  result  revealed
that  Vis-NIR  spectra  were  correlated  with  SSC  and  total  phenols  in
intact  grape  berries,  with  prediction  coefficients  of  determination
exceeding  0.74[16].  Zhang  et  al.  applied  Vis-NIR  spectroscopy  to
construct  quality  prediction  models  for  wine  grapes  at  different
ripening  stages,  which  were  able  to  predict  SSC  accurately.  In  the
dataset  of  grape  berries,  the  correlation  coefficient  of  the  calibra-
tion and validation sets were above 0.93 and 0.86, respectively, indi-
cating  predictive  performance.  The  research  proved  that  Vis-NIR
spectroscopy is suitable for the rapid and non-destructive detection
of SSC in vineyard settings[17]. Liu et al. carried out a non-destructive
testing  study  on  total  phenolics  and  tannins  in  grape  skins  and
seeds using Vis-NIR spectroscopy coupled with stoichiometric meth-
ods  and  constructed  a  prediction  model  for  these  parameters.  The
model  yielded  prediction  set  correlation  coefficients  above  0.83,
which  demonstrated  that  the  spectroscopy  technique  can  be  used
to detect the content of total phenols and tannins in table grapes[18].
Furthermore,  Liu  et  al  introduced  an  aggregative  quality  indicator
(AQI) to synthesize the evaluation of grape quality and used Vis-NIR
spectroscopy  combined  with  chemometric  analysis  to  achieve  an
AQI prediction model[19].

Currently,  researchers  have demonstrated the feasibility  of  using
visible  near-infrared  spectroscopy  to  detect  the  internal  quality  of
grapes,  and  have  been  continuously  optimizing  the  predictive
model to enhance the accuracy and reliability. However, most exist-
ing studies mainly focus on the prediction of the internal quality of
grapes during the ripening stage. There are relatively few investiga-
tions  into  the  application  of  spectroscopy  for  quality  assessment
during  grape  storage.  In  this  study,  the  Vis-NIR  reflectance  spec-
troscopy  technique  was  employed  to  evaluate  its  ability  to  rapidly
and  quantitatively  detect  the  SSC  of  table  grapes  throughout  the
storage period.  The specific  research content of  this  study includes
the  following  four  aspects:  (1)  a  visible  near-infrared  spectroscopic
detection system for SSC of table grapes during storage stage in the
wavelength range of 400−1,100 nm was established; (2)  the effects
of  different  spectral  pre-processing on the modelling results  of  the
spectral prediction model for the SSC content of table grapes during
the  storage  period  were  compared;  (3)  a  step-by-step  projection
algorithm  (SPA),  an  uninformed  variable  elimination  Variable  Algo-
rithm (UVE) and Competitive Adaptation (CARS) to screen the near-
infrared  spectral  detection  feature  wavelengths  of  SSC  content  of
table  grapes;  (4)  the  partial  least  squares  regression  (PLSR)  algo-
rithm and the support vector machine (SVR) algorithm were used to
develop a quantitative prediction model between the spectral data
and the measured SSC content  of  table  grapes  and to  analyze  and
compare the results of the different modelling approaches. 

Materials and methods
 

Preparation of samples
Grapes of the Seedless White cultivar were purchased from a local

supermarket  in  Yangling,  China.  Upon arrival  at  the  laboratory,  the
grape  berries  were  carefully  separated  using  fruit  shears  to  avoid
damaging the grape,  while  retaining a  small  section of  the stalk  to
minimize  water  loss.  According  to  size,  colour,  and  shape  without
deterioration  or  mechanical  damage,  and  stored  at  three  different
temperatures 2.7, 10, and 20.6 °C for up to 13 d. During the experi-
ment,  20  grapes  were  grouped  for  spectrum  collection  and  SSC

analysis, with 5~6 groups tested daily for each temperature. During
the  testing  period,  a  total  of  149  valid  group  samples  with  varying
SSC levels were acquired. 

Vis-NIR spectroscopy detection system and spectral
data acquisition

The  reflectance  spectral  data  of  grape  samples  were  obtained
using  a  portable  Vis-NIR  spectrum  system.  The  system  included  a
high-resolution  micro-spectrometer  (ATP3030,  Op-tosky  Photonics
Inc.,  Xiamen,  China),  a  bulb  light  source  (HL2000),  a  dark  chamber,
and a computer running Optosky Spectra software. The structure of
the  Vis-NIR  spectroscopy  acquisition  system  is  illustrated  in Fig.  1.
The  acquisition  wavelength  range  of  the  Vis-NIR  spectrometer  was
from 200 to 1,100 nm with an approximate sampling interval of 0.05
nm. Before spectral data acquisition, the spectral acquisition system
should be preheated for 30 min by activating the bulb light source,
and spectral data collection should begin only once the light source
is  stable.  The  environmental  influence  was  minimized  by  using  a
standard  whiteboard  (Guangzhou  Jingyi  Optoelectronic  Technol-
ogy Inc., Xiamen, China) as a white reference and a dark chamber as
a  black  reference.  Each  sample  within  a  group  was  measured  five
times  from  both  grape  sides  (the  sunny  and  shady  sides),  and  the
average spectral data across all measurements was used as the final
spectral data for each group. To mitigate the effects of signal noise
at  the  edges  of  the  spectral  range,  the  instrument's  spectral  range
was limited deliberately to wavelengths between 400 and 1,100 nm
for subsequent analysis[20]. 

Determination of SSC
To  obtain  more  accurate  data,  SSC  measurements  were  con-

ducted  immediately  following  the  spectral  acquisition.  The  grapes
were manually pressed into juice and filtered, after which the grape
juice  was  dispensed  onto  a  digital  refractometer  (PR-101a,  ATAGO,
Japan)  using  a  rubber-tipped  burette.  Three  measurements  were
taken for  each sample juice and the average of  the three measure-
ments was taken as the actual SSC value for that sample[21]. 

Chemometrics and statistical analysis 

Spectral data pre-process
The  collected  spectrum  was  affected  by  various  factors  such  as

external  environment,  noise,  and  baseline  drift,  which  resulted  in
the  original  spectral  information  containing  extraneous  data  and
adversely affecting the stability and accuracy of the model. To elimi-
nate useless details and improve the model's accuracy and strength,
it is necessary to preprocess the original spectrum. In this study, first
derivative (FD), Savitzky-Golay convolutional smoothing (S-G), multi-
variate  scatter  correction  (MSC),  and  standard  normal  variables
transformation (SNV) were adopted to process the spectrum. The FD
method  could  enhance  the  resolution  of  spectral  signals  and

 

Portable power source

Halogen lamp

Dark
chamber

Sample

Whiteboard
Spectrometer

Spectra map

Fig. 1    Vis-NIR spectroscopy acquisition system.
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facilitate the separation of overlapping peaks.  Meanwhile,  Savitzky-
Golay  (S-G)  smoothing  serves  to  attenuate  high-frequency  noise
within spectral profiles, with a five-point smoothing window applied
in the present study. MSC and SNV methods allow the spectrum to
be  appropriately  corrected  and  normalized,  thereby  reducing  the
influence  of  various  factors  and  increasing  the  reliability  of  subse-
quent data modelling[22]. 

Selection of characteristic wavelengths
The  Vis-NIR  spectrum  is  rich  in  molecular  vibrational  absorption

information,  however,  there  is  a  significant  amount  of  redundant
information in the raw spectral data that needs to be more relevant
to  SSC  detection.  The  spectrum  data  corresponding  to  the  wave-
lengths of the NIR spectra are used as input variables for the model.
These  input  variables  contain  information  regarding  the  composi-
tion of all components in the sample. For spectral detection of SSC,
there  are  a  large  number  of  wavelengths  in  the  NIR  spectrum  that
are  independent  of  SSC  detection.  Therefore,  selecting  a  limited
number  of  essential  wavelengths  related  to  the  response  informa-
tion  can  significantly  reduce  the  number  of  input  variables.  These
important  wavelengths  are  identified  as  feature  variables  through
a  mathematical  algorithm.  To  determine  the  most  suitable  charac-
teristic wavelength, the successive projections algorithm(SPA), unin-
formative  variable  elimination(UVE),  and  competitive  adaptive
reweighted sampling(CARS) were employed in this paper.

The  SPA  is  a  forward  feature  variable  selection  method.  The
fundamental  principle  of  SPA  entails  selecting  a  specific  wave-
length,  subsequently  calculating  the  projection  of  this  wavelength
onto other wavelengths in each iteration, and ultimately identifying
the  wavelength  exhibiting  the  maximum  projection  as  the  feature
variable.  The  feature  wavelength  selected  by  SPA  represents  the
minimum  collinear  variable  combination,  which  contains  the  least
redundant  information[23].  The  UVE  algorithm  is  a  feature  selection
technique  predicted  on  a  noise  model.  It  integrates  a  noise  matrix
with  spectral  data  and  a  physical  and  chemical  value  matrix,  sub-
sequently  calculating  a  threshold  for  discerning  noise  information.
The  spectral  variables  are  categorized  into  valid  variables  and  in-
valid  variables  based  on  the  threshold,  and  only  characteristic
wavelengths  with  a  high  correlation  with  the  target  component
are  retained.  This  algorithm  can  avoid  the  interference  of  invalid
variables  in  the  model  and  enhance  the  stability  and  predictive
performance  of  the  model[24].  The  CARS  algorithm  is  a  wavelength
selection algorithm that  combines  the  Monte  Carlo  sampling tech-
nique with the regression coefficient of the PLS model.  Specifically,
the  CARS  algorithm  uses  an  adaptive  weighting  method  to  select
data points  with elevated absolute weight  values of  the regression
coefficients  in  the  PLS  model  during  each  iteration  to  construct  a
new data subset, while eliminating those points with lower weights.
Subsequently,  based  on  this  new  subset,  the  PLS  model  is  recon-
structed and subjected to multiple rounds of calculation and verifi-
cation.  Ultimately,  the  wavelength  in  the  subset  with  the  minimal
root  mean  square  error  (RMSECV)  of  the  PLS  model  in  the  inter-
active  verification  is  selected  as  the  characteristic  wavelength.  This
method  effectively  improves  both  the  precision  and  efficiency  of
feature extraction[25]. 

Build of the spectral prediction model
According to the Lambert-Beer law, the amplitude of the spectral

curve peak is linearly related to the content of the measured compo-
nent.  The  characteristics  of  the  spectral  curve  exhibit  variability
corresponding  to  differing  levels  of  SSC  in  grapes.  Partial  least
square regression (PLSR) is the most widely used multivariate linear
regression  method  in  Vis-NIR  spectroscopy  analysis.  This  method
decomposes  the  spectral  matrix X and  the  concentration  matrix Y,

while simultaneously considering the relationship between the two
matrices and reinforcing the corresponding computational relation-
ship to obtain the optimum calibration mode.  When using PLSR to
establish  a  model,  it  is  imperative  to  select  the  optimal  number  of
latent variables (LVs) involved in the modelling to mitigate the risks
of underfitting or overfitting. The number of LVs is a critical parame-
ter  for  establishing  a  robust  PLSR  model[26].  This  study  determined
the optimal number of LVs based on the minimum value of the root
mean square error of cross-validation (RMSECV) of the calibration set
samples  in  10-fold  cross-validation.  Nonetheless,  recent  studies
have  indicated  that  there  may  be  a  more  complex  nonlinear  rela-
tionship  between  some  components  and  spectral  information.
Therefore, the support vector regression (SVR), as a classic nonlinear
regression algorithm, was adopted in this study for comparison. The
principle of SVR is to transform the input variables into high dimen-
sional  space through nonlinearity  mapping and construct  the opti-
mal  hyperplane  in  the  high  dimensional  space  to  minimize  the
distance from all sample points to the plane[27]. In this investigation,
the  model  development  was  performed  using  Matlab  R2019b  to
ensure computational rigor and reliability in the analysis. 

Evaluation of the indicators
To  comprehensively  evaluate  the  prediction  performance  of  the

model, the calibration set correlation coefficient (Rc), the root mean
square error of calibration set (RMSEC),  as well as the prediction set
correlation coefficient (Rp), the root mean square error of prediction
set  (RMSEP)  are  used  to  evaluate  the  model  comprehensively.  To
mitigate the risk  of  overfitting or  underfitting,  the values of Rc and
Rp, RMSEC, and RMSEP are required to be closely aligned. In addition,
the  relative  analytical  error  (RPD)  serves  as  an  indicator  of  the
model's  predictive  capability.  For  RPD,  when  it  is  less  than  1.5,  it
indicates  that  the  model  possesses  inadequate  predictive  ability;
conversely, when the value exceeds 1.5, it means that the model has
a  prediction  effect.  Notably,  when  the  value  exceeds  2,  the  predic-
tion  ability  is  markedly  enhanced[28].  The  calculation  methods  of
these evaluation indexes are shown in Eqns (1)−(3).
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Results and discussion
 

Measurement of SSC
Figure 2 presented the temporal variation in soluble solid content

(SSC)  of  seedless  white  grapes  across  different  storage  tempera-
tures.  During storage, the SSC levels of grapes initially exhibited an
increase  followed  by  a  subsequent  decline[29].  This  pattern  arises
due to an early ripening phase, during which SSC levels rise. As stor-
age  duration  extends,  organic  acids  within  the  grapes  undergo
metabolic  conversion,  resulting  in  a  gradual  reduction  in  SSC.
Grapes stored at 20.6 °C exhibited noticeable deterioration after 5 d,
while  those  at  10.0  °C  showed  similar  deterioration  beginning
after  10  d.  By  contrast,  grapes  maintained  at  2.7  °C  demonstrated
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minimal signs of  deterioration over the entire experimental  period.
In  low-temperature  environments,  the  respiratory  and  metabolic
activities  of Seedless  White grapes  are  markedly  diminished,  result-
ing  in  a  relatively  more  minor  variation  in  SSC  compared  to  the
10.0  °C  condition,  thus  extending  the  storage  duration  of  the
grapes.  In  contrast,  at  10.0  °C,  the  enhanced  respiration  and
metabolic processes lead to a more rapid decline in SSC.

Table  1 demonstrates  that  the  range  of  SSC  was  9.23%–22.73%.
The  concentration  gradient  methodology  was  applied  to  partition
the data into a calibration set and a prediction set. The SSC range of
11.43%–22.6%  within  the  prediction  set  fell  within  the
9.23%–22.73% interval  of  the calibration set.  There is  no significant
variation  in  standard  deviations  observed  between  the  calibration
and prediction sets. There were no apparent differences in the stan-
dard deviations found between the calibration and prediction sets.
Therefore,  the  distribution  of  SSC  in  the  calibration  and  prediction
sets is almost identical, which avoids biases in the distribution of the
data sets. This phenomenon illustrated that both sets were suitable
for reliable analysis. 

Analysis of grape SSC spectral data
The  spectral  data  of  all  samples  were  acquired  using  a  Vis-NIR

spectroscopy  detection  system.  The  reflectance  spectral  curves  of
149 group grapes of 400–1,100 nm are shown in Fig. 3. As shown in
Fig. 3, the spectral curves of all samples exhibited a consistent vibra-
tional  pattern.  The  absence  of  any  significant  differences  among
spectral curves indicates that the spectral data of all  grape samples
could  be  used  for  subsequent  modelling.  Across  the  entire  spec-
trum, three distinct wave peaks were observed at 530−630, 720, and
810 nm respectively, along with two distinct troughs at 670 and 970
nm. The peak at the wavelength of 530−630 nm reflected the color
of  the Seedless  White cultivar  grape,  while  the  trough  at  the  wave-
length of 670 nm may correlate with the absorption of carotenoids
and chlorophyll.  The peak at 810 nm might correlate with the third
overtone of C-H in sugars. The absorption at the wavelength of 970
nm  was  associated  with  the  first  overtone  of  O-H  stretching  vibra-
tion and it is closely related to the moisture content of grapes[30,31]. 

Spectrum detection analysis of SSC based on the
whole band spectral data

The  whole  band  spectral  variables  obtained  by  the  portable  Vis-
NIR  spectrometer  served  as  input  data  and  grape  SSC  obtained  by
the measurement were used as output data. The PLSR and SVR algo-
rithms were employed to establish the grape SSC prediction models

based on whole band spectral data. To improve the model accuracy,
six  pre-processing  methods  were  applied  to  the  raw  spectral  data.
The modelling results are shown in Fig. 4,  which illustrates that the
different pre-processing methods significantly  affect  the prediction
accuracy of the model. In particular, the MSC and SNV methods can
improve  the  prediction  accuracy  of  the  model,  which  is  because
both  of  the  pre-processing  methods  can  alleviate  the  effect  of  the
scattering  from  the  surface  of  the  sample.  The  S-G  smoothing
method can reduce the impact  of  the high-frequency noise on the
modelling,  although  its  contribution  to  model  accuracy  improve-
ment  is  limited.  Conversely,  while  derivative  processing  can
enhance  the  spectral  signal,  it  also  amplifies  the  effect  of  noise.
Since the spectral data resolution is 0.5 nm, the noise introduced by
derivative processing masks the enhancement of  the spectral  data,
which  explains  the  observed  decline  in  model  accuracy  following
derivative processing[32].

Compared  to  the  SVR  algorithm,  the  PLSR  algorithm  achieved
better  results  due  to  the  strong  collinearity  among  the  1,507
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Fig. 2    Reference grape SSC tested on each day of the experiment.

 

Table 1.    Reference measurement of grape SSC.

Subsets Number of
sample Range of SSC Mean Standard

deviation

Calibration set 112 9.23%−22.73% 17.349% 2.342%
Prediction set 37 11.4%−22.07% 17.357% 2.230%
Total samples 149 9.23%−22.73% 17.351% 2.307%
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spectral data points in the whole band. After MSC pre-processing, an
optimal  PLSR prediction model  was established,  yielding the corre-
sponding  correlation  coefficients  of  the  calibration  set  of  0.96  and
the  root  mean  square  error  of  the  calibration  set  of  0.651.  For  the
prediction  set,  the  corresponding  correlation  coefficient  was  0.840
with  the  root  mean  square  error  of  1.21.  The  RPD  of  the  optimum
model was calculated as 1.84. 

Spectrum determination analysis of SSC based on
screening characteristic wavelength by SPA

The use of feature wavelength selection methods to identify criti-
cal  spectral  regions  can  reduce  the  number  of  input  variables  and
contribute  to  a  more  robust  and  concise  model.  SPA  was  used  to
screen  feature  variables  from  both  raw  and  various  preprocessed
spectral  data.  In  the  feature  variable  selection  process,  the
constraints  of  the  number  of  feature  variables  could  result  in  the
loss  of  useful  information and the introduction of  redundant  infor-
mation,  so  there  were  no  constraints  on  the  number  of  screening
variables.  The combinations of  spectral  variables  that  would reflect
the  SSC  variation  in  raw  and  preprocessed  spectral  data  were
screened  by  SPA  based  on  the  minimum  predicted  root  mean
square error. Subsequently, the PLSR and SVR methods were used to
build  a  grape  SSC  prediction  model  derived  from  the  optimized
spectral data. The modelling results are shown in Fig. 5a.

As shown in Fig. 5, the SVR prediction model for the SSC of seed-
less white grapes demonstrates superior performance compared to
the  PLSR  model.  The  effects  of  different  preprocessing  methods
vary,  with  both  MSC  and  SNV  preprocessing  yielding  better
modelling results than the original spectral data model, whereas S-G
smoothing  and  derivative  processing  lead  to  a  reduction  in  the
model's predictive accuracy. Following SNV preprocessing, the opti-
mal predictive model derived from SPA-selected variables has been
determined to be the SVR model. This model demonstrates a corre-
lation  coefficient  of  0.876  for  the  calibration  dataset  and  a  correla-
tion coefficient of 0.833 for the prediction dataset. Additionally, the
root mean square error for the calibration dataset is 1.134, while that
for the prediction dataset is 1.224, resulting in a model RPD of 1.822.
Figure 5b illustrates the distribution of variables after SPA selection.
As  a  result  of  the  SPA  selection  process,  the  number  of  variables
utilized in the modelling was reduced to 18. 

Spectrum determination analysis of SSC based on
screening characteristic wavelength by UVE

To  compare  the  effects  of  different  spectral  pre-processing
methods  on  the  screening  of  feature  wavelengths  by  UVE,  various
pre-processing  techniques  were  applied  to  the  raw  spectral  data

before screening the feature wavelengths. The UVE algorithm elimi-
nated  the  irrelevant  information  variables  within  the  wavelength
range of 400−1,100 nm in the spectral data while retaining informa-
tion  related  to  the  grape  SSC.  The  selection  of  principal  compo-
nents  is  critical  in  the  process  of  eliminating  irrelevant  information
using UVE, and the root mean square error of prediction is the basis
for  determining  the  number  of  principal  components.  When  the
root  mean  square  error  of  prediction  reaches  the  minimum  value,
the corresponding principal  component is  regarded as  the optimal
principal component. Ultimately, the PLSR and SVR algorithms were
used  to  establish  a  quantitative  prediction  model  between  grape
SSC and spectral  data.  The detailed modelling results  are  shown in
Fig. 6a. As shown in Fig. 6, the PLSR prediction model for the SSC of
seedless  white  grapes  outperforms the  SVR prediction model,  with
models  constructed  using  spectral  data  preprocessed  by  MSC  and
SNV demonstrating superior  performance.  As  shown in Fig.  6a,  the
optimum UVE-PLSR prediction model could be established after SNV
pre-processing.  The  corresponding  correlation  coefficients  of  the
calibration set and prediction set were 0.862 and 0.848, respectively;
the root mean square errors of the calibration set and prediction set
were  1.182  and  1.176,  respectively.  The  RPD  of  the  optimal  model
was 1.84.

Figure  6b illustrates  the  distribution  of  feature  wavelength
selected using UVE after SNV pre-processing at the optimal number
of  principal  components.  The  horizontal  coordinates  represent  the
spectral  and  noise  matrices,  and  the  vertical  coordinate  represents
the  stability t-value.  The  two  parallel  lines  indicated  the  threshold.
The  variables  with  stability  between  the  threshold  separating  lines
were  excluded.  Conversely,  if  the  stability  of  the  variable  was
beyond  the  threshold,  the  corresponding  variables  remained  as
feature  information[33].  The  results  showed  that  the  feature  vari-
ables  were  reduced  to  299  after  irrelevant  information  was  elimi-
nated by UVE. 

Spectrum determination analysis of SSC based on
screening characteristic wavelength by CARS

The  CARS  algorithm  was  used  for  the  selection  of  the  characte-
ristic wavelengths associated with SSC in Seedless White grapes. The
Monte  Carlo  sampling  number  of  100  was  set  and  10-fold  cross-
validation  was  used  for  the  calculation. Figure  7a & b showed  the
vibration of RMSECV during the process  of  extracting the characte-
ristic  wavelengths  of  the  SSC,  from  which  it  can  be  seen  that  the
value  of RMSECV reached  the  minimum  when  the  number  of
sampling  times  was  50;  the RMSECV value  showed  a  decreasing
trend  during  the  first  to  the  50th sampling  operations,  indicating
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that  the  wavelength  variables  remained  in  the  spectra  data  that
were  useful.  In  the  51st to  the  100th sampling  operations,  the
RMSECV value  showed  an  increasing  trend,  suggesting  that  the
CARS  algorithm  removed  some  critical  information  related  to  the
SSC in grapes[34].

Figure  7c shows  the  results  established  by  the  CARS  screening
variables.  As  shown  in Fig.  7c,  it  can  be  seen  that  the  optimum

CARS-PLSR  prediction  model  could  be  built  following  the  SNV
process.  The  corresponding  correlation  coefficients  of  the  calibra-
tion  set  and  prediction  set  were  0.956  and  0.940,  respectively;  the
root  mean  square  errors  of  the  calibration  set  and  prediction  set
were 0.683 and 0.767, respectively. The RPD of the model was 2.899.
These  results  indicate  that  the  model  established  based  on  the
variables selected by the CARS algorithm exhibited higher accuracy

 

0

1

2

3

4

5

62.0 60

40

20

t-v
al

ue

0

−20

−40

−60
0 500 1,000

Real variables-index-random variables
1,500 2,000 2,500 3,000

a b

1.8

1.6

R
PD

1.4

1.2

1.0

R C
/R

P

RAW

0.980

0.907 0.824

1.326 1.007

0.902 0.845

1.257 1.169

0.865 0.862

1.182 1.188

0.863 0.816

1.364 0.888

0.929

1.175 1.105

0.884 0.885

1.101

0.872

S-G FD S-G+FD MSC SNV RAW S-G FD S-G+FD MSC SNV

PLSR SVR
6

4

2

0

R
M

SE
C

/R
M

SE
P

RC RP  RMSEC  RMSEP RPD

0.832

1.262 1.407 1.614 1.504

0.754 0.839

1.209 1.176

0.848 0.765

1.425 1.496

0.745 0.780

1.384
1.447

1.075 0.834

1.203

0.837

1.227

0.786 0.735

Fig.  6    The grape SSC prediction result  based on the UVE screening characteristic  variables.  (a)  Performance comparison of  predicting model  for  SSC
from the UVE selected variables data with different pre-processing methods. (b) The distribution of variables selected by UVE.

 

0

1

2

3

43.0
1.7

1.6

1.5

1.4

1.3

R
M

SE
C

V

1.2

1.1

1.0

0.9

0.8

0.7
0 20 40

Number of sampling runs
60 80 100

ca

80

60

60

50

40

R
ef

le
ct

an
ce

 (%
)

30

20

10

0

40

R
eg

re
ss

io
n 

co
ef

fic
ie

nt
s p

at
h

20

0

−20

−40

−60

−80
0 20 40

Number of sampling runs Wavelength (nm)
60 80 100 400 500 600 700 800 900 1,000 1,100

b d

2.5

2.0

R
PD 1.5

1.0

0.0

0.5

R C
/R

P

RAW

1.836

0.934 0.936

1.818
1.245

0.847 0.899

1.038
0.689

0.955 0.956

0.683
1.153

0.877 0.845

1.266
0.763

0.950

0.759 0.506

0.977 0.969

0.582

0.949

S-G FD S-G+FD MSC SNV RAW S-G FD S-G+FD MSC SNV

PLSR SVR
8

6

4

2

0

R
M

SE
C

/R
M

SE
P

RC RP  RMSEC  RMSEP RPD

0.894

1.007 1.112 1.650 1.393

0.810 0.909

0.949 0.769

0.940 0.817

1.301 1.315

0.809 0.776

1.437 1.029

0.886 0.932

1.832

0.942

1.969

0.871 0.757

Fig.  7    The  grape  SSC  prediction  result  based  on  the  CARS  screening  characteristic  variables.  (a)  The  RMSECV  variation  during  the  CARS  algorithm
iteration process. (b) The regression coefficient path of each variable with an increase in the number of sampling runs. (c) The performance comparison of
predicting model for SSC from the CARS selected variables data with different pre-processing methods.(d) The distribution of variables selected by CARS.

Detection of grape SSC using Vis-NIR spectroscopy
 

Su et al. Food Innovation and Advances 2025, 4(1): 10−18   Page 15 of 18



and  stability  compared  to  the  whole  band  spectrum.  The  fea-
ture  wavelength  distribution  following  CARS  selection  is  displayed
in Fig. 7d. 

Comparison analysis of SSC spectral detection results
based on the whole band and characteristic
wavelength

Figure 8 shows the comparison of the feature bands remained by
three variable selection algorithms. It can be seen that the variables
all contained the spectral data around 400, 750, and 970 nm, which
are associated with anthocyanin and chlorophyll  content[35].  This  is
the foundation for ensuring the establishment of the SSC prediction
model. Compared with UVE and CARS, the least number of variables
remained  by  using  SPA,  which  may  explain  why  SPA  failed  to
improve  the  prediction  model  accuracy.  The  variables  selected  by
UVE had a  wide  distribution between 530 and 630 nm,  which  may
lead  to  the  possibility  of  collinearity  among  the  variables.  In
summary, the CARS methods contained more information related to
SSC  and  exhibited  the  least  collinearity  among  the  selected  vari-
ables. These factors are the primary reasons for CARS screening vari-
ables  to  establish  the  PLSR  model  with  the  best  performance.
Furthermore,  the  UVE  and  CARS  retained  the  spectral  data  around
970 nm, which may be related to the moisture content in grapes[36].

To  achieve  high-precision  and  rapid  detection  of  grape  SSC
during storage and simplify  the  complexity  of  the  model,  the  opti-
mal  model  established  based  on  whole  spectrum  data  was
compared  with  the  predictive  performance  of  the  three  selected
feature variable spectral  data.  The comparison results are shown in
Table  2.  As  shown  in Table  2,  both  the  prediction  model  based  on
whole  band  spectrum  and  selected  variable  spectrum  data  could
facilitate rapid and non-destructive quantitative assessments of SSC
in  grapes  during  storage.  The  SNV  pre-processing  method  could
effectively  improve  the  accuracy  and  stability  of  the  prediction
model.  The  three  feature  variable  selected  methods  could  effec-
tively  eliminate  redundant  information  in  spectral  data.  Notably,
both  the  SPA  and  CARS  algorithms  significantly  simplified  the
complexity  of  the  model,  while  the  UVE  method  had  relatively
meager  simplification  effects  on  the  model.  Compared  with  the
grape SSC prediction model established using the whole band spec-
trum  data,  the  PLSR  model  established  using  CARS  selected  vari-

ables  exhibited  the  optimum  overall  properties.  The  correlation
coefficient  of  the  calibration  set  was  updated  from  0.960  to  0.956,
and  the  corresponding  root  mean  square  error  was  updated  from
0.651 to  0.683;  the  correlation coefficient  of  the  prediction set  was
increased  from  0.840  to  0.940,  and  the  corresponding  root  mean
square  error  decreased  from  1.212  to  0.769.  The  RPD  of  the  opti-
mum model rose from 1.753 to 2.899. The optimum model of SSC in
grapes  based  on  characteristic  variables  was  displaced  more  intu-
itively by the scatter plots of Fig. 9. 

Conclusions

In this study,  Vis-NIR spectroscopy combined with chemometrics
was  used to  detect  the  SSC in  grapes  during storage.  The research
demonstrated that the reliable grape SSC prediction model could be
established  using  the  whole  band  spectrum  data.  Different  pre-
processing methods had varying influences on model accuracy, and
the  SNV  method  could  effectively  improve  model  accuracy.  In
contrast, the SPA, UVE, and CARS algorithms were adopted to select
the  essential  variables  effectively  and  simplify  the  model  complex-
ity. Among the three variable selection algorithms, the PLSR predic-
tion  model  based on the  variables  selected by  the  CARS algorithm
yielded  optimal  overall  performance.  The  correlation  coefficient  of
the  calibration  set  and  the  corresponding  root  mean  square  error
were 0.956 and 0.683, respectively; the correlation coefficient of the
prediction set  and the corresponding root  mean square error  were
0.940  and  0.769,  respectively,  resulting  in  an  RPD  of  2.899.  In
summary, this study provides a feasible reference for rapid and non-
destructive  assessment  of  grape  quality,  including  SSC  and  total
acid,  during  storage.  It  is  worth  noting  that  deep  learning  has
increasingly  been  applied  in  the  analysis  of  agricultural  product
quality,  yielding  promising  results.  However,  due  to  the  limited
sample  size,  it  is  essential  to  adjust  the  network  model  when
employing algorithms such as deep learning, which represents a key
focus  for  future  research.  Further  optimization  is  necessary  to
enhance  the  applicability  of  these  models  to  a  broader  range  of
grape cultivars and quality characteristics. 
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Table 2.    Performance comparison of optimal modelling results of the whole
variables and selected variables.
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Modelling
methods
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SNV 61 CARS + PLSR 0.956 0.683 0.940 0.769 2.899
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