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Abstract
Machine learning, in combination with optical sensing, extracts key features from high-dimensional data for non-destructive food quality assessment. This

approach overcomes the limitations of traditional destructive and labor-intensive methods, facilitating real-time decision-making for food quality profiling

and robotic handling. This mini-review highlights various optical techniques integrated with machine learning for assessing food quality, including chemical

profiling methods such as near-infrared, Raman, and hyperspectral imaging spectroscopy, as well as visual analysis such as RGB imaging. In addition, the

review  presents  the  application  of  robotics  and  computer  vision  techniques  to  assess  food  quality  and  then  drives  the  automation  of  food  harvesting,

grading, and processing. Lastly, the review discusses current challenges and opportunities for future research.
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Introduction

The  growing  focus  on  health  has  driven  consumers  to  demand
higher  food  quality.  A  recent  cross-national  consumer  survey  in
Europe has revealed that the physical appearance of food, including
color,  size,  and  shape,  are  the  most  important  factors  when
consumers  evaluate  food  quality,  accounting  for  52.7%  of  797
survey  participants[1].  Specifically,  freshness  is  one  of  the  most
frequently cited quality cues based on physical appearance. In addi-
tion,  chemical  properties,  such  as  nutritional  components,  play  a
critical role in determining overall food quality, as they often lead to
noticeable changes in physical attributes[2,3].

Food  industries  find  conventional  quality  assessment  methods
not  ideal  because  these  methods  are  time-consuming,  laborious,
and/or  destructive[4,5].  In  the  current  practice,  multiple  approaches
are  typically  performed  to  comprehensively  analyze  food  quality
indicators,  which  prolongs  the  overall  analysis  time  and  increases
labor demands. For example, total soluble solids and titratable acid-
ity  are  commonly  measured  in  fruits  using  Brix  measurement  and
titration, while total volatile basic nitrogen (TVBN) can be measured
as a key seafood quality indicator using titration or gas chromatog-
raphy[6,7].  Colorimetric  analysis  measures  the  color  attributes  of
food.  Texture  analyzers  measure  fruit  firmness  by  puncturing,
providing an indication of ripeness[8]. It is also common to manually
determine  food  quality  using  criteria  cards,  such  as  those  used  for
evaluating  beef  marbling  grades,  which  may  generate  relatively
subjective  results  due  to  human  interpretation.  To  resolve  these
technical challenges, optical sensors have been recently utilized for
rapid and non-destructive quality assessment. The use of RGB imag-
ing  and  spectroscopy,  such  as  near-infrared  (NIR)  spectroscopy,
Raman  spectroscopy,  and  hyperspectral  imaging  (HSI),  have  been
commonly studied[9].  Despite their advantage of rapid data acquisi-
tion,  these  methods  face  challenges  in  data  feature  extraction  and
interpretation due to the vast amounts of complex information they
generate[10].

Machine  learning  extracts  critical  features  from  data  and  offers
accurate  solutions,  enabling  users  to  interpret  complex  datasets

through  efficient  algorithms[11].  Machine  learning  is  commonly
applied  for  tasks  such  as  classification  and  regression.  The  food
industry has recently started leveraging the advantages of machine
learning  to  analyze  data  collected  from  optical  sensors  for  food
quality  assessment,  as  well  as  in  automation  systems  for  pre- and
post-harvest  processing[12].  By  integrating  machine  learning  with
optical  sensors,  food  industries  can  minimize  subjective  decisions
based  on  human  visual  assessment  and  achieve  rapid,  accurate
quality  evaluation.  Furthermore,  the computer  vision generated by
optical  sensors  and  machine  learning  could  guide  robotics  for
consistent control of food quality while reducing repetitive tasks for
humans[13].

This  mini-review  provides  a  focused  perspective  on  the  applica-
tion  of  machine  learning,  optical  sensors,  and  robotics  in  pre- and
post-harvest  food  processing  for  quality  assessment  and  control.
The  workflow  is  summarized  in Fig.  1.  Representative  studies
published in the last 5 years are discussed to demonstrate the appli-
cation of this novel interdisciplinary technology across various food
industries,  including  fruit  and  vegetables,  meat,  and  seafood.  The
food types,  types  of  optical  sensors,  machine learning models,  and
key  results  are  summarized  in Table  1.  The  advantages  of  using
these  techniques  include but  are  not  limited to  i)  the  implementa-
tion  of  non-destructive  methods  for  real-time  analysis  and  waste
reduction; ii)  decreased reliance on human labor; and iii)  adaptabil-
ity to various food industries across various food products. 

Application of machine learning and optical
sensors for non-destructive food quality
assessment

For consumers, the physical and chemical properties of food, such
as freshness and nutritional attributes, are considered quality indica-
tors.  However,  most  conventional  detection methods to determine
these  quality  indicators  are  destructive[14].  Mechanical  damage  to
food can lead to quality deterioration and unnecessary waste, which
is  particularly  critical  for  high-value  products  and  food  industries
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operating  with  low  profit  margins[15].  To  prevent  this  issue,  optical
sensors  with  machine  learning  have  been  applied  for  food  quality
assessment as non-destructive methods. Depending on their under-
lying principles, optical sensors collect signals from various sources,
such  as  visible  light,  fluorescence,  reflectance,  and  Raman  scatter-
ing.  They  enable  the  rapid  and  cost-effective  detection  of  targets
without  damaging  food  samples[16].  Machine  learning  models  can
analyze data from optical sensors to predict specific quality features,
such as color,  water content,  and soluble solids.  These applications
have  been  demonstrated  for  fresh  produce,  meat,  and  seafood.
Figure 2 illustrates the key components of quality assessment work-
flow,  including  data  collection  using  optical  sensors,  data  analysis
using machine learning, and data sharing to cloud servers for model
training and sample testing. 

Fresh produce
Due  to  the  short  pack-out  time  and  limited  shelf  life  of  fresh

produce,  quality  assessment  should  be  both  fast  and  accurate  to
prevent  the  release  of  spoiled  or  contaminated  products  to  the
market[17].  To  achieve  these  goals,  HSI  has  been  used  to  provide
chemical  and  morphology  features  from  spectral  and  spatial  infor-
mation  using  illumination  ranging  from  visible  to  infrared  regions.
For  instance,  the  freshness  of  the  spinach  and  Chinese  cabbage
were  classified  based  on  storage  time  (0,  3,  6,  and  9  h)  at  room
temperature  using  HSI  and  deep  learning  classification  models[18].
Although  the  HSI  spectra  for  each  storage  time  overlapped  and
were  indistinguishable  by  the  naked  eye,  the  machine  learning
model  demonstrated  the  feasibility  of  predicting  the  storage  peri-
ods  of  the  tested  vegetables.  Convolutional  neural  network  (CNN)
and  long  short-term  memory  (LSTM)  neural  network  models  were
applied to efficiently analyze the sequential features of HSI spectra,
achieving  an  accuracy  of  85%  and  84%  for  spinach  and  Chinese
cabbage,  respectively.  The  Gradient-weighted  Class  Activation
Mapping  (Grad-CAM)  was  further  used  to  identify  the  important
spectral wavenumbers. The insights obtained from Grad-CAM could
help  users  understand  which  components  changed  at  specific
wavenumbers, thereby validating the model's decisions and exclud-
ing  the  false  results  caused  by  confounding  factors.  Another  study
introduced an Internet of Things (IoT) cloud system to manage data
from  multiple  devices  and  employed  transfer  learning  for  model
training[19].  The  IoT  refers  to  a  network  of  interconnected  physical
devices  where  these  devices  collect,  exchange,  and  analyze  data
over  the internet.  This  connectivity  enables  the devices  to  perform
automated actions,  enhance operational  efficiency,  and reduce the
need  for  constant  human  intervention.  To  evaluate  the  ripeness  of
apples,  soluble  solid  contents  were  predicted  using  handheld  NIR

detectors and deep learning[19]. The NIR spectra collected from vari-
ous  devices  were  transferred  to  the  IoT  cloud  system,  where  they
were  calibrated  to  minimize  device  variation.  This  calibrated  data
was  then  used  to  train  the  automatic  encoder  neural  network
models,  achieving  an R2 value  greater  than  0.95.  The  IoT  cloud
system could efficiently integrate and analyze big data, regardless of
where they are collected. Besides, using transfer learning on the IoT
cloud system could accelerate the model training by fixing the pre-
trained  fore-section  of  the  model.  This  effective  platform  saves
users' time and computational cost by eliminating the need to train
the  model  from  scratch.  Furthermore,  optical  sensors  can  assess
food quality  when products  are  packaged in  transparent  materials.
For  instance,  a  visible  to  short-wave  NIR  spectroscopy  combined
with  a  neural  network-based  machine  learning  model  was
employed  to  predict  key  quality  characteristics  of  fresh  dates  in
modified atmosphere packaging[20]. The model achieved regression
R² values of 0.854 for pH, 0.893 for total soluble solids, and 0.881 for
sugar content[20]. Overall, these non-destructive approaches showed
that deep learning models successfully identified the quality of fruits
and vegetables, even in the presence of minor quality changes over
short  periods.  Also,  transfer  learning  enables  the  minimization  of
efforts  in  model  training  and  the  application  of  machine  learning
models to a variety of foods. 

Meat
When  purchasing  meat,  consumers  consider  comprehensive

quality  cues,  such  as  freshness  and  appearance[21,22].  Meat  quality
assessment  primarily  relies  on  visual  inspection  or  sensory  evalua-
tion to assess color, marbling, and overall appearance. These meth-
ods  require  trained  personnel,  are  expensive  and  time-consuming,
and are prone to variability between inspectors[23].  Objective meth-
ods  such  as  colorimetry,  pH  measurement,  water-holding  capacity
tests, and texture analysis are often used in combination to achieve
a  more  comprehensive  understanding  of  meat  quality[24,25].
However, these techniques remain time-consuming and cost-inten-
sive,  limiting  their  widespread  use.  In  recent  studies,  mechanical
methods  for  analyzing  meat  texture  and  assessing  water  and  fat
contents  have  been  replaced  by  optical  sensor-based  methods  to
maintain  sample  integrity[26].  For  example,  a  785-nm  Raman  spec-
trometer was applied to determine the effects of freezing and thaw-
ing on beef  quality[27].  Color  changes  and water  loss  were  selected
as  key  quality  features  for  predicting  beef  quality  using  machine
learning  models.  It  is  necessary  to  extract  meaningful  information
from Raman spectra,  which often contain noise.  Therefore,  an opti-
mized  number  of  principal  components  and  important  variables
was selected based on the lowest root mean square error values to
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Fig.  1    Overview of  non-destructive  quality  assessment  using optical  sensors  and machine learning to  report  food quality  and guide robotics  for  the
automated process. This figure was created using BioRender.
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improve the performance of the partial least squares model. By inte-
grating  variable  selection  with  the  uninformative  variable  elimina-
tion  partial  least  squares  (UVE-PLS)  model,  Raman  spectroscopy
could predict the color values (i.e., L*, a*, and b*) and water content
with  an R2 of  0.99.  This  method  overcame  traditional  methods  by
eliminating sample destruction.

In  addition to spectra-based techniques,  imaging techniques are
used  alongside  machine  learning  to  provide  information  on  meat
appearance[28].  For  example,  one  study  analyzed  the  muscle  and
marbling contents as indicators of the taste and flavor of beef using
structured illumination reflectance imaging (SIRI) and deep learning
models[29].  Conventionally,  the  marbling  assessment  is  manually
conducted  by  well-trained  personnel.  Alternatively,  collecting  and
analyzing images with optical sensors and machine learning models
could shorten processing time and reduce human errors[29]. The SIRI
method  generates  and  obtains  signals  of  reflected  multiple  sinu-
soidal  patterns  by  irradiation  to  improve  image  resolution  and
contrast[30].  The  regions  of  beef  muscles  were  differentiated  from
non-muscle  regions  using  different  segmentation  models,  includ-
ing Unet++[31], DeepLabv3+[32], and SegFormer[33]. The transformer-
based  SegFormer  model  performed  the  best R2 (i.e., R2 =  0.996)
compared to the other two CNN-based models (i.e., Unet++ with an
R2 of  0.950,  DeepLabv3+  with  an R2 of  0.984).  After  segmentation,
the  ResNeXt-101  model  was  able  to  classify  three  degrees  of  beef
marbling  with  a  classification  accuracy  of  88.7%.  The  classification
using segmented muscle images had higher  classification accuracy
(88.7%) than the one using whole images (84.5%). This accuracy was
further improved to 90.9% by applying Minimum Redundancy Maxi-
mum  Relevance  to  identify  the  optimal  number  of  140  features
based on their weights (i.e., the order of importance to the classifica-
tion). 

Seafood
Seafood  is  perishable,  making  the  timely  quality  assessment

crucial. TVBN and K-value are commonly used indicators for evaluat-
ing  seafood  freshness,  reflecting  protein,  and  nucleotide  degrada-
tion. They are typically measured using traditional chemical analysis

methods,  such  as  steam  distillation  method,  gas  chromatography,
or  high-performance  liquid  chromatography  (HPLC)[34,35].  These
methods  involve  sample  preparation  and  time-consuming  proce-
dures. To replace these destructive methods, a recent study utilized
Raman spectroscopy to track the change in chemical bonds related
to  protein  or  fat  content  in  sea  bass  during  storage[36].  The  fresh-
ness  of  sea  bass  was  assessed  using  a  CNN  model  that  correlated
TVBN  values  with  the  Raman  spectra.  Even  though  deep  learning
can  deal  with  complex  data,  the  high  dimensions  and  noises  of
Raman  spectra  generally  reduce  prediction  accuracy.  Thus,  this
study  selected  the  weighted  features  using  Analysis  of  Variance
(ANOVA), improving classification accuracy from 86.2% to 90.6%[21].
To further understand the key Raman peaks contributing to the clas-
sification,  Grad-CAM[37] was applied to visualize the weight of  each
Raman  wavenumber.  In  another  study,  a  smartphone  application
was  developed  to  predict  fish  freshness  using  images  of  fisheye
captured with a smartphone[38]. The opaque appearance of the fish's
pupils  indicates that  the fish is  no longer fresh.  After  obtaining the
image  data  set,  feature  extraction  was  performed  using  two  CNN-
based models, namely SqueezNet[39], and Visual Geometry Group 19
(VGG19)[40].  Five  machine  learning  models  were  trained  in  these
features,  and the freshness of  fish was classified based on the stor-
age  date.  The  classification  models  included  k-nearest  neighbor,
support vector machine, artificial neural network, logistic regression,
and  random  forest.  Artificial  neural  networks  outperformed  other
models, obtaining classification accuracies of 77.3% and 72.9% with
features  extracted  by  VGG19  and  SqueezeNet,  respectively.  This
method provides consumers with an option to assess the quality of
their food directly using their smartphones. 

Application of computer vision and robotics in
harvesting, sorting, and processing high-quality
food

Robotics  is  an  interdisciplinary  field  focusing  on  designing,
programming,  and  operating  robots.  Robots  have  been  applied  to
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the  food  industry  since  the  1970s  to  automate  repetitive  or  physi-
cally  demanding  tasks,  thereby  reducing  human  fatigue  and
increasing  production  efficiency[41].  Computer  vision,  a  subfield  of
artificial  intelligence  that  combines  optical  sensors  and  machine
learning, enables machines to interpret and understand visual infor-
mation in a  way similar  to human vision.  With the aid of  computer
vision technology, robots have recently become capable of perform-
ing  more  sophisticated  operations.  The  application  of  robotics
further enhances the automation of both pre- and post-harvest food
processing, contributing to high food quality and yield. 

Harvesting
Automated  harvesting  robots  have  been  developed  to  precisely

harvest  fruits  after  assessing  fruit  quality  levels.  Computer  vision
guides the operation of harvesting robots, which should have accu-
rate object detection to assess fruit quality and to distinguish fruits
from  environmental  backgrounds.  As  a  result,  robotic  arms  locate
fruits, control the force to grab them, and prevent them from being
damaged.  Harvesting  robots  have  been  developed  alongside
computer  vision  for  both  soft  fruits  (e.g.,  strawberries),  and  tree
fruits (e.g., apples). For example, a five-finger robotic arm was deve-
loped  to  grasp  strawberries  and  rotate  them  to  detach  them  from
the plants (Fig. 3a)[42].  The You Only Look Once v4 (YOLOv4) model
was  trained  to  detect  mature  strawberries  using  the  images
captured by a camera on the robotic arm. The YOLO algorithm can
detect  multiple  target  objects  on  the  same  image  from  a  single
analysis, enabling a real-time decision[43]. Five scenarios were tested,
ranging  from  the  easiest  (fruits  isolated  from  others  and  unob-
structed  by  obstacles  such  as  leaves)  to  the  most  difficult  (fruits
grouped  with  others  and  obstructed  by  obstacles).  The  harvesting
robot  achieved  a  successful  fruit  harvesting  rate  of  71.7%  with  a
cycle  time  of  7.5  s.  Another  study  has  designed  a  robotic  apple
harvester by using both RGB-D cameras and laser line scan cameras
(Fig.  3b)[44].  The  RGB-D  cameras  provided  color  information  (RGB)
and  depth  information  (D)  to  create  a  3D  map  for  locating  the
apples,  while  laser  line  scan cameras  provided line-by-line  detailed
imaging of apple surfaces. The deep learning model with a Mask R-
CNN backbone was developed to segment apples from the complex
background  and  provide  the  3D  locations  of  detected  apples  to
guide  the  robot.  The  vacuum  effector  then  picked  the  apples  to
avoid  mechanical  damage.  This  robotic  harvester  was  tested  in
apple orchards,  achieving an average harvesting rate  of  73.8% and
taking 5.97 s  per  apple.  In  these studies,  the most  common reason
for  harvesting  failure  was  due  to  the  obstacles  that  hindered  the
harvesting robot from reaching the apples. 

Food sorting and grading
Manual  fruit  sorting  and  grading  are  subjective  and  time-con-

suming.  An automated robot equipped with machine learning and
optical  sensors  can  enhance  accuracy  and  reduce  the  burden  on
humans.  For  example,  a  robot  was  designed  to  sort  winter  jujube
based on their maturity (Fig. 3c)[45].  Using cameras mounted on the
robotic arms, the robot observed winter jujubes on a black flat plate
from  three  different  angles  to  gather  comprehensive  information
about the fruits, simulating a realistic processing scenario where the
fruits move on a conveyor belt. The maturity of winter jujube is asso-
ciated with the ratio of the red area to the total surface area. There-
fore, the YOLOv3 algorithm was trained to classify winter jujubes at
three  different  maturity  levels  based on the  red area  ratio,  guiding
the  robotic  arms  to  place  the  winter  jujubes  in  different  packing
boxes. The accuracy of the robotic grader was 97.3%, which was vali-
dated  using  manual  grading  as  the  ground  truth.  The  processing
time was 1.37 s per fruit. 

Food processing
Automated robotics with computer vision have also been applied

to meat  production,  addressing food safety problems,  and improv-
ing  meat  quality[46].  In  carcass  processing,  the  appropriate  cutting
points of meat vary across different types of meat, therefore requir-
ing trained experts.  Alternatively,  computer vision can assist robots
in meat cutting, ensuring uniformity in meat products. Additionally,
the  production  yields  are  expected  to  increase  due  to  the  rapid
processing speed. For example, the U-Net deep learning model was
trained on RGB-D images to predict the gripping and cutting points
of the pig limbs (Fig.  3d)[47].  The mean average precision and recall
of  Norwegian-style  gripping  points  were  0.963  and  0.974,  respec-
tively,  while  for  Danish-style  gripping  points,  they  were  0.984  and
0.994.  Another  study  employed  3D  computed  tomography  (CT)
imaging to scan the carcass,  resulting in a more accurate trajectory
for  the  cutting  robot  (Fig.  3e)[48].  U-Net,  Mask-region-based  convo-
lutional neural network (Mask-RCNN), and ICNet models were deve-
loped  to  predict  the  arrangement  of  rib,  neck  bone,  and  cartilage
for  splitting  shoulder  cuts.  The  accuracy  of  each  model  was  0.904,
0.920,  and  0.979,  respectively.  These  studies  showed  accurate  and
robust results when cutting targeted sections of pork meats.

Robots not only independently process food but also collaborate
with human operators to conduct the same task. This multi-purpose
collaborative  robot  is  known  as  a  'cobot'.  The  concept  of  human-
robot  interaction  emerged  to  understand  their  activities  in  shared
workplaces,  ensuring  human  safety  around  cutting  robots[49].  The
meat  cutting  performance  and  operation  safety  of  the  cobot  were
evaluated (Fig. 3f)[50]. The cobot required human assistance to place
the  pork  loin  in  cutting  positions;  therefore,  it  must  guarantee  the
safety  of  employees.  The  proximity  sensor  and  inertial  measure-
ment unit were equipped on the cutting knife to detect the desired
contact on the meat and the undesired contact with human opera-
tors,  such  as  human  contact  area  and  approaches.  The  random
forest  classifier  achieved  accuracy  ranging  from  90.43%  to  98.14%
for classifying butter and meat contact and greater than 99.99% for
classifying approaches to safe workplace areas. 

Advantages, challenges, and prospects

For  food  quality  assessment,  machine  learning  and  optical
sensors can achieve rapid and non-destructive testing. Compared to
manual  quality  assessment,  optical  sensors  with  machine  learning
rapidly process comprehensive spectral and image data to provide a
real-time decision.  The development of  transfer  learning also facili-
tates  the  fine-tuning  of  machine  learning  models  for  adapting  to
various  foods.  On  the  other  hand,  food  industries  save  time  and
labor  by  integrating  computer  vision  technology  and  robotics  for
harvesting, sorting, and grading, ensuring high-quality food produc-
tion.  Using  independent  robots  not  only  reduces  the  need  for  re-
petitive  human  tasks  but  also  enables  an  aseptic  process  to  mini-
mize microbial contamination.

To  further  apply  machine  learning,  optical  sensors,  and  robotics
for  a  smarter  food  manufacturing  system,  there  are  several  chal-
lenges  to  be  resolved.  Firstly,  there  is  a  need  for  standardized,
publicly-available  databases.  Training  machine  learning  models
requires  sufficient  data  size.  However,  food-specific  databases  are
scarce. Only a few food-specific image databases are available, such
as  Food-101  (containing  101  food  categories  with  1,000  images
each),  UEC  Food  256  (containing  256  food  categories  with  anno-
tated images and bounding boxes for object detection),  and Vireo-
Food-172 (containing 172 food categories)  (assessed as  of  October
2024). As far as we know, only a few HSI data sets are publicly avail-
able for  food,  such as the DeepHS Fruit  v2 Dataset,  which contains
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1,018  labeled  and  4,671  unlabeled  data.  Secondly,  the  black-box

nature  of  deep  learning  models  makes  it  difficult  for  users  to

completely  understand  and  interpret  the  results.  In  the  future,

developing  more  explainable  machine  learning  models  should  be

 

Application 1: Harvesting robot

Application 2: Sorting/grading robot Application 3: Cutting robot

Strawberry
harvesting robot

with RGB
camera

Apple vacuum harvesting robot
equipped with RGB and laser camera

Strawberry
localization &

maturity
assessment with

YOLOv4

Motor drivers

End-effector

Limit
switch

Stepper
motors

Z
Y

X

αi rA

rB

L1

L2

θi

Backbone Region proposal
network

Feature
maps

ROI
features

Conv FCN

Conv FCN

Class Bbox

Class Bbox

Class Bbox

…

Occluder branch

Feature expansion
Occludee branch

CNN model

a b

c d

e

f

Raw image Red channel Threshold
filtering

Centroid
extraction

Curve fitting Output

Maturity assessment with
YOLOv3Winter jujube sorting by

RGB camera in robot

Future
application

CT images of pig

Future application for
aseptic food processing Robot cut Manual cut

Determine cutting point Human places the meat
in front of the robot

Automated cutting

Robot plans and executes
the desired trajectory to

make precise cuts

Approaching

ContactCobot

Safe
workspace

Pig images

Determine cutting points
using deep learning

Decoder block

Residual block

Batch norm

Batch norm

Batch norm

ReLU

ReLU

+

Conv. layer Conv. layer

Conv. layer

Batch norm

ReLU

ReLU

Conv. layer

H × W × KH × W × 32
H × W × 4

OutputInput

Upsample

Upsample

Upsample

Upsample

Upsample

Decoder 
block

Residual
block

Residual
block

Residual
block

Residual
block

Max Pool

Batch norm

ReLU

Decoder 
block

Decoder 
block

Decoder 
block

Decoder 
block

Encoder block 1

Encoder block 2

Encoder block 3

Encoder block 4

Encoder block 5

Conv. layer

2 × × 64H
2
W

4 × × 64H
4
W

8 × × 128H
8
W

16× × 256H
16
W

32× × 512H
32
W

16× × 768H
16
W

8 × × 384H
8
W

2 × × 128H
2
W

4 × × 192H
4
W
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encouraged.  Interpretation  models  can  improve  the  reliability  of
classification  and  regression  models  by  explaining  the  weighted
features  in  the  analysis.  Thirdly,  the  performance  of  independent
robots needs to be further enhanced to improve the quality of food
products.  In  fruit  harvesting,  obstacles  such  as  leaves  that  hinder
that targeting of fruits could cause a decrease in detection accuracy
and,  thus,  lower  harvest  rates.  Flexible  robotic  arms  can  reduce
harvesting failure by avoiding obstacles and reaching fruits. In meat
processing,  undesirable  bone  fractions  or  meat  loss  can  be  mini-
mized using flexible and adaptive robotic arms to optimize cutting
trajectories. Fourthly, ensuring user safety is necessary when apply-
ing  robots  in  food  industries,  especially  for  those  robots  that  may
work collaboratively with human workers. Contact detection sensors
can be developed to avoid unexpected contact between the cobot
and the operators. Last but not least, previous studies have primar-
ily focused on applications in the fresh produce, meat, and seafood
industries. Future research should broaden its focus to include other
agri-food  sectors,  such  as  grains,  baking,  and  dairy  products,  to
enhance the scope and impact of these technologies. 

Conclusions

This  mini-review  discusses  the  application  of  non-destructive
optical sensors and machine learning for food quality assessment, as
well as the application of computer vision and robotics for automat-
ing  the  processing  of  high-quality  food.  Machine  learning  models
can extract and learn features from high-dimensional data and accu-
rately  predict  various food quality.  To develop an optimal  machine
learning model, algorithms should be selected and compared based
on research questions, as well as the size and nature of dataset. The
model  performance  also  depends  on  factors  such  as  the  optimiza-
tion of hyperparameters[51].  These advantages allow real-time qual-
ity evaluation and have the potential  to automate food harvesting,
sorting,  and  grading.  Data  transferring  systems  and  standardized
collecting  criteria  are  needed  in  future  studies  to  ensure  the  high
quantity  and  quality  of  data.  The  advanced  object  detection  algo-
rithms and robotics mechanisms can be further improved to provide
an automated pre- and post-harvest process. 
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