
 

Open Access https://doi.org/10.48130/FMR-2023-0010

Food Materials Research 2023, 3:10

Microencapsulation to improve the stability of natural pigments and
their applications for meat products
Liuyu Su, Yingqun Nian and Chunbao Li*
Key  Laboratory  of  Meat  Processing  and  Quality  Control,  MOE;  Key  Laboratory  of  Meat  Processing,  MARA;  Jiangsu  Collaborative  Innovation  Center  of  Meat
Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
* Corresponding author, E-mail: chunbao.li@njau.edu.cn

Abstract
In  recent  years,  natural  pigments  have  been  widely  used  in  meat  products  (pork/beef  patties,  sausages,  etc.)  to  maintain  color,  and  as  an

antioxidant  and  antibacterial  to  extend  the  shelf  life  of  meat  products.  To  date,  the  food  pigment  industry  has  developed  rapidly.  Natural

pigments are more popular among consumers because of their color and physiological functions such as bacteriostatic and antioxidant activity.

However, compared with synthetic pigments, some natural pigments have poor stability and water solubility, which limit their application in the

food industry. Therefore, taking certain methods to improve their stability and water solubility can expand the scope of use of the pigments and

achieve favourable economic benefits. In this paper, we briefly analyze the main factors affecting the stability of natural pigments and summarize

the methods commonly used to improve them. The methods mainly include the use of antioxidants and encapsulation of the pigments through

spray/freeze drying, complex coacervation, ionic gelation, supercritical anti-solvent, etc. Finally, this paper also outlines the use of stabilized and

non-stabilized pigments in meat products so as to serve as a baseline for use in meat and meat products.

Citation:   Su  L,  Nian  Y,  Li  C.  2023.  Microencapsulation  to  improve  the  stability  of  natural  pigments  and  their  applications  for  meat  products. Food
Materials Research 3:10 https://doi.org/10.48130/FMR-2023-0010

 
 Introduction

Color is the most important factor for consumers to evalu-
ate  the  sensory  quality  of  meat  products.  The  freshness  of
meat products is usually first judged by the color. In addition,
the  inherent  normal  color  of  meat  products  can  increase
consumers'  appetite,  and  stimulate  their  desire  to  buy[1].
However, the color of meat products easily deteriorate during
processing and storage, although it does not affect the safety
of  them,  but  it  affects  consumers'  desire  to  buy  to  a  certain
extent.  In  order  to  eliminate  the  influence  of  bad  color  on
meat products, the food industry usually adds food pigments
during food processing to improve the color of meat[2].

Pigments could be synthetic or natural. Synthetic pigments
are  chemically  synthesized,  while  natural  pigments  are
obtained from plants, animals and microorganisms. Synthetic
pigments have the advantages of bright color, strong tinting
strength, good stability and low cost. They have been widely
used  in  various  processed  foods  as  food  additives  and  have
an integral position in the market[3]. However, most synthetic
pigments  are  unhealthy,  which  may  cause  certain  allergies,
diarrhea,  carcinogenicity,  mutagenicity[4,5] and  attention
deficit hyperactivity disorder (ADHD) in children[6].  Therefore,
some synthetic food pigments, such as E128, E156, had been
banned. Natural pigments are more popular because they are
considered  as  safe.  In  addition  to  being  environmentally
friendly and safe, natural pigments also have health-promot-
ing  effects[2],  and  they  are  classified  as  bioactive  substances.
Natural  pigments  commonly  used  in  the  food  industry  are
shown  in Fig.  1,  they  mainly  include β-carotene,  lycopene,

monascus pigment,  betalains,  anthocyanins,  curcumin,  etc.
Studies  have  shown  that  these  natural  pigments  are  asso-
ciated  with  low  risk  of  many  diseases,  such  as  cancers[7],
diabetes[8] and cardiovascular  diseases[9].  In  addition,  natural
pigments  also  have  physiological  functions  such  as  antioxi-
dant, antibacterial, and anti-inflammatory effects[10].

Although  natural  pigments  have  many  advantages,  they
have low stability  and are easily  degraded by environmental
factors  such  as  pH,  temperature,  light,  and  metal  ions[11],
which lead to fading and loss of benefits. Secondly, the water
solubility  of  some  natural  pigments  is  poor,  these  include β-
carotene and curcumin, making them difficult to dissolve and
spread evenly in the food matrix, and their low bioavailability
makes  them  difficult  to  be  effectively  absorbed  and  utilized
by the body. These defects greatly limit the development and
application of natural pigments in the food industry[12]. There-
fore, it is necessary to protect natural pigments, improve their
stability,  tinting  strength,  solubility  and  bioavailability,
expand  their  application  scope,  and  improve  economic
benefits.

This  paper  mainly  reviews  several  methods  currently  used
to  improve  the  stability  of  natural  pigments,  such  as  adding
antioxidants,  modifying  the  molecular  structure  of  the
pigments  and  microencapsulation  technologies.  The  advan-
tages  and  disadvantages  of  each  method  are  summarized,
with  the  aim  to  provide  theoretical  reference  and  guidance
for  improving  the  stability  of  natural  pigments.  We  also
outline  the  use  of  stabilized  and  non-stabilized  pigments  in
meat industry with the aim of providing guidance to the use
of natural pigments in meat products.
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 Factors affecting the stability of natural
pigments

Most  natural  pigments  are  prone  to  degradation  in
extreme pH (pH < 3 or  pH > 7)  environments,  because acids
and alkalis  cause cis  and trans isomerization of  some double
bonds, rearrangement, and de-esterification. Qin et al.[13] had
shown that betalains had the best stability in the ranges of pH
3~7. When they are under highly acidic conditions,  betalains
are  prone  to  deglycosylation.  Betalains  consist  of  red  beta-
cyanins  and  yellow  betaxanthins,  and  when  betacyanins  are
under  highly  alkaline  conditions,  they  are  degraded  to  the
colorless  cyclo-dopa-5-O-glucoside  and  the  bright  yellow
betalamic  acid.  A  few  natural  pigments  have  been  docu-
mented to be resistant to extreme pH environments, such as
anthocyanins  that  are  stable  in  acidic  conditions,  and  they

degrade  rapidly  in  alkaline  conditions,  showing  changes  in
color[14].

Temperature  is  one  of  the  most  critical  parameters  for
stability during food processing and storage. Heat treatment
accelerates  the  degradation  of  natural  pigments,  because  it
will  cause  changes  in  their  structure  and  color.  In  the  study
carried  out  by  Rodriguez-Amaya  et  al.[15],  betalains  were
exposed to high temperatures and found to be degraded by
dehydrogenation  leading  to  the  formation  of  yellow  neobe-
tanin. During high temperatures, betacyanin is hydrolyzed to
betalamic  acid  and  cyclo-Dopa-5-O-β-glucoside.  However,
short-term heating can partially regenerate betacyanins.

In  addition,  many  natural  pigments  are  degraded  when
exposed to light.  And light  intensity  and time will  accelerate
the  degradation  of  pigments.  Chen  et  al.[16] exposed  antho-
cyanins  from  red  cabbage  to  darkness,  natural  light  and

β-carotene

Lycopene

Curcumin Monascus pigment

BetalainsAnthocyanins
R1, R2—H, OH or OCH3; R3—H or glycosy1; R4—OH or glycosy1

 
Fig. 1    Natural pigments commonly used in food products.
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sunlight  for  72  h.  The results  showed that  light  would  cause
the  degradation  of  anthocyanins,  and  the  degradation  rate
was  proportional  to  the  number  of  acylated  groups.  There-
fore, natural pigments are generally stored away from light to
avoid degradation.

Both metal ions and oxidants affect the stability of natural
pigments.  The  former  may  have  a  protective  effect  on
pigments  and  may  also  cause  the  degradation  of  pigments.
Cortez et  al.[17] had shown that some metal  ions could stabi-
lize  anthocyanin  extracts,  because  anthocyanin  extracts  can
chelate  with  metal  ions  (potassium,  aluminum,  magnesium,
etc.)  to  form  stable  complexes.  But  Li[18] added  Fe3+ to  the
solution  of  anthocyanin,  and  the  results  showed  that  the
preservation  rate  of  anthocyanins  was  significantly
decreased,  and  the  preservation  rate  was  inversely  propor-
tional  to  the  concentration  of  Fe3+.  At  the  same  time,  some
studies had shown that curcumin was sensitive to Fe3+, beta-
lains were sensitive to Cu2+ and Fe3+ [19].  Enaru et  al.  showed
that  the  unsaturated  chemical  structure  of  natural  pigments
made  them  react  with  oxidants  easily,  which  accelerate
degradation[20].

As  previously  introduced,  the  main  factors  affecting  the
stability of natural pigments are pH, temperature, light, metal
ions  and  oxidants.  Therefore,  a  low  temperature  of  4°C  and
dark  environment  should  be  maintained  during  processing
and  storage.  The  effect  of  storage  temperature  and  light  on
the  preservation  rate  of  beet  red  pigment  has  been  previ-
ously  studied[21].  The  results  showed  that  the  preservation
rate of pigment gradually decreased with the raise of storage
temperature and the extension of time, and the degradation
rate  of  the  pigments  stored  in  the  light  was  significantly
higher than that of the pigments stored in the dark. Oxidants
(H2O2,  O2,  etc.)  and  metal  ions  (Cu2+ and  Fe3+,  etc.)  will  also
affect  the  stability  of  pigments,  so  contact  with  these
substances  should  be  avoided  as  much  as  possible  during
processing and storage.

 Methods for improving the stability of natural
pigments

 Addition of antioxidants
In  order  to  improve  the  stability  of  natural  pigments  and

prolong  their  shelf  life,  a  certain  amount  of  special  antioxi-
dants  can  be  added  during  processing  and  storage,  such  as
ascorbic acid and sodium erythorbate[22]. Studies have shown
that  these  antioxidants  play  a  significant  role  in  enhancing
the stability of  natural  pigments.  They can effectively reduce
the  rate  of  oxidative  degradation  of  natural  pigments,  and
hydrophobic  antioxidants  can  be  concentrated  in  the  oil-
water interface area of emulsions as the main site of oil-phase
or  degradation  of  lipophilic  natural  pigments,  thereby
protecting  natural  pigments.  In  the  study  by  Kim  &  Choi[23] ,
ascorbic acid was added to the aqueous phase in the experi-
ment of preparing lycopene emulsion,  and it  was found that
ascorbic  acid  could  significantly  inhibit  the  degradation  of
lycopene.  It  had been reported that addition of  an appropri-
ate  amount  of  ascorbic  acid  could  improve  the  stability  of
betalains[24],  while  sodium  erythorbate  showed  greater
advantages  in  stabilizing  betalains.  In  addition,  the  synergy

between different antioxidants is a hot spot. By adjusting the
ratio  of  different  antioxidants,  the  stability  of  natural
pigments can be improved.

 Modification of molecular structure
The  stability  and  hydrophilicity  of  pigments  can  also  be

effectively  enhanced  by  structural  modification  of  the  un-
stable  functional  group  of  the  natural  pigment  molecule.
Studies  had  shown  that  the  chemical  stability  of  antho-
cyanins can be improved by acylation. Acylation can increase
anthocyanins  acid-base  stability,  thermal  stability  and  light
stability[25].  Studies  had  shown  that  methylation  may  also
increase  the  stability  of  pigments,  while  hydroxylation  may
reduce  the  stability[26].  The  stability  of  pigments  is  deter-
mined  by  their  structures,  but  the  associations  between  the
chemical  structure  and  fading  mechanism  of  many  natural
pigments need further  studies.  Although more stable antho-
cyanins  can be obtained by  acylation,  they  are  not  commer-
cially available, so this method is difficult to apply in industry
to improve the stability of natural pigments.

In  addition,  pigments  can  also  form  pigment-metal  com-
plexes  by  chelating  metal  ions  to  maintain  their  stability[27].
The  ortho-dihydroxyl  group  of  anthocyanins  can  quickly
chelate  metal  ions,  thereby  inhibiting  the  generation  of
hydroxyl groups and slowing down the degradation of antho-
cyanins[28]. O-dihydroxy  can  also  promote  the  formation  of
anthocyanin-metal-ascorbic acid complexes[29].  However,  the
use of metal ions alone will cause aggregation, the complexes
will dissociate easily, leading to the degradation of pigments.
The interaction of the chelate with alginate, pectin and other
polysaccharides can further enhance the stability of pigments
and  avoid  their  aggregation[30].  It  has  been  shown  that  the
complexes  formed  of  cyanidin-3-glucoside  (C3G)  and  Fe3+

improved  the  thermal  stability  of  C3G,  but  aggregation
occurred,  and  further  alginate  addition  to  the  complexes
improved the thermal stability of C3G, significantly inhibiting
the aggregation of  C3G-Fe3+[31].  The complexes formed from
anthocyanins  and  Zn2+ were  easily  degraded  to  colorless
compounds,  but  the  anthocyanins  treated  with  sodium  algi-
nate  and  Zn2+ were  quite  stable,  the  treatment  greatly
extended  the  shelf  life  of  anthocyanins[32].  Thus,  the  chela-
tion  of  pigments  with  metal  ions  alone is  prone to  aggrega-
tion,  addition  of  macromolecular  substances  such  as  poly-
saccharides or proteins is a good solution.

Furthermore, pigments can be stabilized by adding chelat-
ing agents such as citric acid and ethylenediaminetetraacetic
acid (EDTA)[33]. Transition metals induce the degradation of β-
carotene, while EDTA can chelate metal ions and improve the
stability  of β-carotene  significantly[34].  Herbach  et  al.[35] had
shown  that  chelating  agents  could  effectively  improve  the
stability  of  beet  red  pigment  and  prolong  their  shelf  life,
which worked by neutralizing the positively charged N in the
molecular  structure  of  this  pigment.  In  order  to  obtain  opti-
mal flavor and smell, the selection of chelating agents should
be further studied.

 Microencapsulation
Microencapsulation  is  a  technology  that  encapsulates

bioactives  into  microcapsules  by  using  encapsulant  agents.
The  encapsulant  agents  are  equivalent  to  the  wall  materials,
and the encapsulated compounds are equivalent to the core
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materials.  The  core  materials  include  solid,  liquid  or  gas.
Encapsulant  agents  can  protect  bioactives  from  external
factors and improve the stability of bioactives, they play a role
in  extending  the  shelf  life  of  bioactives[36].  In  addition,
microencapsulation  technology  can  improve  the  water  solu-
bility  of  bioactives  and  increase  their  bioavailability[37].  For
water-soluble  substances,  microencapsulation  technology
can  increase  their  permeability  and  cause  them  to  diffuse
evenly in the food matrix[38].  For bioactives with strong taste
and aroma,  such as  propolis  and astaxanthin,  microencapsu-
lation  technology  can  mask  their  odors  and  expand  their
applications as food additives in the food industry[39]. In addi-
tion,  microencapsulation  technology  can  convert  gas  and
liquid  that  were  not  easy  to  process  and  store  into  a  stable
solid, thereby greatly preventing or delaying deterioration[40].
Microencapsulation  technology  can  also  control  the  release
of  bioactives,  either  slowly  or  at  the  target  site[41],  so  as  to
improve the bioavailability of bioactives.

Proteins  and  polysaccharides  are  common  materials  used
as  wall  materials.  The  proteins  include  gelatin,  soy  protein,
and  casein,  and  the  polysaccharides  include  maltodextrin,
sodium alginate, carboxymethyl cellulose, gum arabic, pectin,
chitosan,  and  starch.  The  choice  of  wall  materials  should  be
based  on  the  properties  of  the  core  materials.  Generally
speaking,  lipophilic  core  materials,  such  as  carotenoids,
curcumin  and  chlorophyll,  should  choose  hydrophilic  wall
materials,  and vice  versa.  Core  materials,  such  as  betalains,
polyphenols, and anthocyanins, should choose lipophilic wall
materials[42]. The methods used to encapsulate bioactives can
be  physical,  physicochemical  and  chemical.  The  commonly
used  physical  methods  include  spray  drying,  freeze  drying,
supercritical  anti-solvent  method,  complex  coacervation,
ionic gelation,  and liposome entrapment.  Chemical  methods
include in situ polymerization, interfacial  polymerization, and
molecular  inclusion[43], Table  1 visually  lists  the  advantages
and  disadvantages  of  the  different  encapsulation  methods.
The  choice  of  the  method  of  encapsulating  the  bioactives  is
also first made according to the properties of the core materi-
als.  Generally  speaking,  to  avoid  unnecessary  release  of  the
hydrophilic  core  materials  in  the  aqueous  phase,  the  core
materials  are  required  to  have  a  certain  degree  of  chemical
interaction with the wall materials, and the physicochemical/

chemical  methods  should  be  selected.  If  the  core  materials
are  lipophilic,  only  physical  encapsulation  can  achieve  the
required  effect[43].  Additionally,  the  size  and  water  solubility
of  the  required  particles,  matrix  of  the  encapsulated  bioac-
tives,  the  feasibility  and  cost  of  methods  should  also  be
considered.  The  studies  using  different  encapsulation  meth-
ods and wall materials to encapsulate different core materials
are summarized in Table 2.

 Spray drying
As shown in Fig. 2, spray drying, which converts liquids into

solid  particles  with  a  high  performance,  is  one  of  the  most
common  methods  for  drying  microencapsulated
bioactives[44]. Spray drying is easy to operate and suitable for
large-scale  continuous  production,  it  has  the  advantages  of
highly  flexible,  low  cost,  high  encapsulation  rate.  The  result-
ing particles have good stability and a long shelf life[45].

Baldin  et  al.[46] used  spray-dried  maltodextrin  to  microen-
capsulate jaboticaba extract,  replacing  carmine  dye,  and
added  to  sausages.  Inclusion  of  2% jaboticaba extract  posi-
tively  affected  sensory  color,  texture  and  overall  acceptance
of  sausages.  It  can  be  considered  as  a  replacement  for
carmine dye in fresh sausages to satisfy demand for new low-
cost  natural  pigments.  Maltodextrin  and  cladode  mucilage
from O.  ficus-indica had  been  used  as  the  wall  materials  and
encapsulated betalains, the treatment increased the encapsu-
lation  efficiency  and  the  thermal  stability,  diminished  the
moisture  content,  and  allowed  to  obtain  more  uniform  size
and spherical particles[47].  In order to improve the stability of
Monascus red  pigments,  Zhang  et  al.[48] used  NaAlg  and
CaCO3 as  wall  materials,  and  prepared Monascus red
pigments  microcapsules  by  emulsification/internal  gelation
with spray/freeze-drying. The results showed that spray-dried
Monascus red  pigments  microcapsules  had  lower  degrada-
tion  constant  and  longer  half-life  under  the  treatment  of
heating,  light  and  vitro  simulated  gastrointestinal  digestion.
Alvarez-Henao et al.[49] microencapsulated lutein using spray-
dried  maltodextrin,  gum  arabic  and  modified  starch,  the
encapsulation  efficiency  was  as  high  as  91.94%.  When  the
encapsulant agents were replaced by gum arabic with modi-
fied  starch,  the  degradation  rate  of  lutein  after  spray  drying
decreased  from  97.62%  to  8.06%.  The  combination  of  these

Table 1.    Advantages and disadvantages of different encapsulation methods.

Methods Advantages Disadvantages

Spray drying Simple method, low cost, high flexibility, high
encapsulation efficiency.

High temperatures, the broad size distribution of the
particles.

Freeze drying Low temperatures, good rehydration properties. Time-consuming, energy-consuming.

Supercritical anti-solvent Low cost, mild operation temperatures and simpler steps.
The particles are of high purity, small size and uniformity.

Use of organic solvents, organic solvent residual.

Complex coacervation High encapsulation efficiency (up to 99%), scalability and
reproducibility.

Tedious, time-consuming, high cost, sensitivity to pH and
ionic strength.

Ionic gelation Good stability, good hydrogel sustained release, high
encapsulation efficiency, low temperatures, no use of
organic solvents, low cost.

The larger size and lower stability of particles. Easy
diffusion and fast release of core material through the
ionic gel network.

Ultrasound assisted High yield, being rapid and relatively simple without any
purification steps. The narrow size distribution of the
particles.

High temperatures, high pressure.

Liposome Good biocompatibility, sustained-releasing potential and
targeting properties, biodegradable, non-immunogenic
and non-toxic.

It is easy to occur in aggregation, fusion, phospholipids
hydrolysis and oxidation during storage.
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Table 2.    Encapsulation of bioactives with different techniques and wall materials.

Stabilization
technique Core material Wall material Results Reference

Spray drying Beetroot extract Maltodextrin, inulin, whey
protein isolate

The values of retention was 88.45%~95.69%. The use of whey
protein isolate together with inulin achieved high stability and
antioxidant activity of beetroot pigments.

[51]

Spray drying Betacyanine Maltodextrin,
sweet potato starch

Encapsulation efficiency reached 90%. The prepared
microcapsules had a high degree of functional properties, defined
morphology, and modal size distribution.

[52]

Spray drying Monascus
pigments

NaAlg, CaCO3 Spray-dried Monascus red pigments microcapsules had lower
degradation constant and longest half-life under the treatments
of heating, light and in vitro simulated gastrointestinal digestion

[48]

Spray drying Betalains Maltodextrin,
cladode mucilage from O.
ficus-indica

The addition of cladode mucilage from O. ficus-indica in the
formulation increased the encapsulation efficiency, diminished
the moisture content, and allowed to obtain more uniform size
and spherical particles, with high dietary fiber content.

[47]

Spray drying Lutein Maltodextrin, gum arabic,
modified starch

Encapsulation efficiency ranged from 64.79% to 98.82%. The
stability of Lutein was improved.

[49]

Spray drying Curcumin Porous starch,
gelatin

The microencapsules had good encapsulation efficiency. The
stability of microencapsulation curcumin against light, heat, and
pH was effectively improved and its solubility was increased
greatly.

[53]

Freeze drying Anthocyanins Black glutinous rice
maltodextrins

Freeze dried anthocyanin powders showed the good properties in
terms of bulk density, angle of repose, process yield and
anthocyanin retention.

[54]

Freeze drying Betalains Guar gum, gum arabic,
pectin, xanthan gum

Encapsulation showed a higher recovery of betalains during
freeze drying by 1.3 times than during spray drying. Freeze dried
samples has a* (redness) higher than the spray dried samples.

[55]

Freeze drying Anthocyanins Soy protein isolate, gum
arabic

The microencapsulation rate reached 93.05%~98.87%, and the
thermal stability of all treatment groups was improved in the
range of 80~114 °C.

[56]

Freeze drying Thyme essential
oil

Whey protein The microcapsules demonstrated strong antibacterial activity
against Salmonella ser. Enteritidis and Staphylococcus aureus. The
thermal stability of encapsulated oil was effectively enhanced.

[57]

Ionic gelation Betalains Calcium alginate,
bovine serum albumin

The stability and antioxidant activity of the encapsulated betalains
during processing and storage were improved in a lower humidity
environment.

[58]

Ionic gelation Anthocyanins Curdlan, pectin and sodium
alginate

Encapsulation efficiency ranged from 80.3% to 96.7%. The release
curves followed first order kinetics, with a strong burst effect,
80% to 100% of the anthocyanins released in solution at
pH 1 after 20 min.

[59]

Ionic gelation Epigallocatechin
gallate (EGCG)

Debranched starch,
carboxymethyl debranched
starch

The highest encapsulation efficiency was 84.4%. The nanoparticles
provided a controlled release of EGCG.

[60]

Complex
coacervation

Astaxanthin Gelatin, gum arabic Encapsulation efficiency reached 93.5%, Encapsulation reduced
the characteristic odor, improved the coloring capacity effectively.

[61]

Complex
coacervation

Anthocyanins Gelatin, gum arabic The selected method significantly increased the stability of
anthocyanins up to 23.66% after 2 months of storage at 37 ± 2 °C.
The selected optimal microcapsules revealed intense red color
over the time of storage.

[62]

Complex
coacervation

Carotenoids Whey proteins isolate, gum
acacia

Encapsulation efficiency reached 56%, the water solubility of the
carotenoid was improved, and the encapsulated carotenoid
showed good stability and microbiological properties during
accelerated storage.

[63]

Complex
coacervation

Betacyanin Maltodextrin, gum arabic,
xanthan gum, and gelatin
were mixed with sodium
alginate

Encapsulation efficiency ranged from 80.53% to 92.27%. All of the
wall material compositions provided protection against high
temperatures and pH variations.

[64]

Complex
coacervation

Betanin Amaranth protein isolate,
carboxymethylcellulose
(CMC)

The encapsulation efficiency of betanin was high, ranging from
61% to 87%. The microcapsules protected betanin from thermal
degradation (50 °C), increasing its half-life by approximately
2.92-fold. After gastrointestinal digestion, the bioaccessibility of
encapsulated betanin was approximately 84%.

[65]

Supercritical
anti-solvent

Astaxanthin Polylactic acid (PLLA) Encapsulation efficiency reached 91.5%. Astaxanthin/PLLA
microspheres greatly enhanced the stability of astaxanthin during
storage, and the levels of residual solvents were far lower than the
ICH limits.

[66]

Supercritical
anti-solvent

Astaxanthin Polyhydroxy-butyrate-co-
valerate

Encapsulation efficiency reached 48.25%. Encapsulation enhanced
the stability of astaxanthin during storage.

[67]

Supercritical
anti-solvent

Lutein Hydrogenated
phosphatidylcholine

Encapsulation efficiency reached 90.0%. Encapsulation improved
solubility, stability and bioavailability of lutein.

[68]

(to be continued)
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three encapsulant agents provided better protection to lutein
than gum arabic alone after 20 d of storage at 40 °C, probably
because  the  presence  of  starch  increased  the  film-forming
capacity  of  the  carrier.  Maltodextrin  may  have  enhanced
antioxidant activity, thus improving the stability of lutein and
maximizing its  protection from the storage environment.  Pal

et al.[50] encapsulated lutein by spray dried maltodextrin and
gum arabic, and improved the stability of lutein. The degrada-
tion  rate  decreased  from  58.41%  to  21.68%.  It  can  be  seen
that the encapsulation efficiency is  an important indicator in
the spray drying process as it directly determines the protec-
tion and preservation of the encapsulated bioactives.

Table 2.    (continued)
 

Stabilization
technique Core material Wall material Results Reference

Ultrasonic Curcumin Zein, sodium caseinate With an encapsulation efficiency of 90.19 ± 0.33%, the sensitivity
of curcumin to temperature was reduced, and the treatment
improved the stability of storage.

[69]

Ultrasonic Betalains Maltodextrin The encapsulation efficiency of the betalains were above 79%.
Therefore, modest ultrasound treatment can be used for
microcapsulation to improve the stability of betalains.

[70]

Ultrasonic Anthocyanins Soy protein isolate (SPI),
gum arabic (GA)

Encapsulation efficiency ranged from 93.05% to 98.87% for all
microcapsules. All microcapsules enhanced the thermal stability
of anthocyanin in the temperature range 80~114 °C. In addition,
SPI and GA combination presented good release behavior under
simulated gastrointestinal conditions compared with
unencapsulated anthocyanin.

[56, 71]

Self-assembly Lycopene β-lactoglobulin The results suggested that nanomicelles effectively improved the
stability and bioavailability of hydrophobic bioactives lycopene.

[72]

Self-assembly Curcumin Hydroxypropylated
debranched starch (HPDS)

After encapsulation, the water solubility and physical stability of
curcumin could be increased up to 226-fold and 6-fold,
respectively. The HPDS nanospheres also exhibited good safety
(including hemolysis and cytotoxicity) and sustainable release of
curcumin.

[73]

Self-assembly Curcumin Lactoferrin peptides The encapsulation efficiency was 93.44%. Nano-micelles have
been shown to improve thermal stability, dilution stability, storage
stability, the transformation rate and bioaccessibility of curcumin.

[74]

Self-assembly Curcumin Acylated ovalbumin (AOVA) Curcumin encapsulated in AOVA nanogels displayed higher
encapsulation efficiency (93.64%) and slower sustained release
under simulated gastrointestinal conditions.

[75]

Self-assembly β-carotene Rapeseed peptides Encapsulation efficiency > 80%, encapsulation improved
solubility, stability, flavor and bioavailability of β-carotene.

[76]

Liposome Vitamin C,
β-carotene

Yolk lecithin, cholesterol The co-encapsulation of Vitamin C and β-carotene could
significantly improve the storage stability of β-carotene.
Liposomes could protect bioactives from damage in the stomach
and release them in the small intestine, where they can be
absorbed.

[77]

Liposome β-carotene Hydrogenated
phosphatidylcholine and
sucrose

The liposome was highly solubility, and capable of preserving
more than 90% of the incorporated beta-carotene for 60 d of
refrigerated storage under vacuum. After 60 d, the color of the
dispersions was preserved.

[78]

Liposome Epigallocatechin
gallate (EGCG),
quercetin

Lecithin, cholesterol,
Tween 80

The liposomes were homogeneous with a narrow size distribution
and both the encapsulation efficiency for EGCG and quercetin
were higher than 60%. High stability of the system was exhibited
during the 30 d storage.

[79]

Liposome Betalains Lecithin The results showed that the color and stability of betalains
increased to 76%.

[80]

Wall material

Core material

Emulsion

Drying chamber

Spray

Nozzle

Hot Air

Dry particles

Exhuast air

 
Fig. 2    Schematic representation of the microencapsulation process by spray drying.
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However,  the disadvantages  of  this  method are  that  heat-
ing will  lead to the degradation of heat-sensitive substances.
The  temperatures  required  during  the  atomization  of  the
dispersion is as high as 140−180 °C. Such a high temperature
will lead to the loss of heat-sensitive bioactives such as antho-
cyanins  and  betalains[54].  Ersus  &  Yurdagel[81] observed  that
the process parameters during spray drying had a great influ-
ence  on  the  stability  of  anthocyanins  extracted  from black
carrots,  in  which  a  higher  inlet  temperature  (160−180  °C)
caused the loss of anthocyanins. Studies have also shown that
when  maltodextrin  and  natural/modified  starch  are  used  to
encapsulate  betalains,  a  higher  inlet  temperature  (>  180  °C)
will lead to a decrease in the preservation rate of pigments by
at least 4%. However, compared with betalains before encap-
sulation,  the  encapsulated  betalains  had  better  stability[82].
These two examples underscore the importance of tempera-
ture during spray drying. Drying air flow, feed flow, and pres-
sure will affect the yield and activity of bioactives[45,50]. There-
fore,  it  is  of  great  significance  to  rationally  optimize  the
process parameters of spray drying.

 Freeze drying method
The  same  as  spray  drying,  the  preparation  method  of

microcapsules is generally to first use high-pressure homoge-
nization, microjet homogenization and other methods to mix
the  core  materials  and  wall  materials  to  prepare  emulsion,
and  then  use  drying  technologies  to  remove  water  to  form
microcapsules.  Different  from  spray  drying,  freeze  drying  is
carried out at low temperature (< 0 °C) and in vacuum condi-
tions,  and its  lower temperature can effectively  maintain the
activity  of  bioactives[83].  Compared  with  spray  drying,  it  can
resist  oxidation  and  effectively  stabilize  heat-sensitive
compounds. Freeze drying is the best choice for drying heat-
sensitive bioactives[55].

Laokuldilok & Kanha[54] used freeze drying and spray drying
to  encapsulate  anthocyanins  respectively.  The  antioxidant
activity  and  stability  of  anthocyanin  particles  obtained  by
freeze  drying  were  higher  than  spray  drying.  It  had  been
reported  that  the  recovery  of  betaine  obtained  by  freeze
drying  encapsulation  was  higher  than  spray  drying[55],
because  the  conditions  of  freeze  drying  do  not  affect  the
color and nutritional values of bioactives. Microencapsulation
of  anthocyanins  extracted  from red  raspberries using  freeze-
dried  soy  protein  isolate  (SPI),  gum  arabic  (GA)  and  their
combination,  the  microencapsulation  rate  reached
93.05%−98.87%,  and  the  thermal  stability  of  all  treatment
groups  was  improved  in  the  range  of  80−114  °C,  the  treat-

ment groups were stored at 37 °C for 60 d, and the preserva-
tion rate reached 48%[56].

However,  freeze  drying  is  time-consuming  and  energy-
intensive,  causing  a  cost  30~50  times  higher  than  spray
drying[84]. Therefore, spray drying is still a better choice when
drying substances with better thermal stability.

 Ionic gelation method
Ionic gelation is one of the most commonly used encapsu-

lation methods. As shown in Fig. 3, it refers to the process of
polyelectrolyte (usually alginate) forming a gel through ionic
crosslinking  with  multivalent  cations[58].  The  ionic  gelation
method  usually  uses  biodegradable  hydrophilic  polymers
(sodium  alginate,  gelatin,  chitosan,  etc.)  as  raw  materials.  In
order to avoid the miscibility of core materials and wall mate-
rials, ionic gelation method is generally used for the encapsu-
lation  of  hydrophobic  substances.  In  the  encapsulation
process, it does not need to use organic solvents and perform
at high temperatures, it has the advantages of good stability,
low cost,  good hydrogel sustained release,  and the encapsu-
lation  efficiency  is  up  to  99%[42].  Some  studies  had  used
calcium  alginate  and  bovine  serum  albumin  to  cross-link  to
form a gel  to encapsulate betalains.  The results  showed that
the  stability  and  antioxidant  activity  of  the  encapsulated
betalains  during processing and storage were improved in  a
lower  humidity  environment[58].  Ferreira  et  al.[59] used  ionic
gelation  method  to  encapsulate  anthocyanins.  In  the  pres-
ence  of  ions,  sodium  alginate  and  pectin  form  a  gel,  curd
polysaccharide plays a role in inducing hypercoagulation. The
results  showed  that  the  encapsulation  rate  of  anthocyanins
reached 80.3% − 96.7%, and the controlled release of antho-
cyanins could be achieved.

However, the ionic gelation method has limitations in parti-
cle size control, and the obtained capsules need to be stored
in  a  closed  environment,  because  in  an  open  environment,
the  aqueous  solution  inside  the  hydrogel  will  gradually
volatilize, and then the gel can not be stored for a long time.
Due  to  the  limitations  of  equipment  and  technology,  the
method is still at the small-scale or laboratory stage, it is diffi-
cult to realize large-scale production at an acceptable cost[42].

 Complex coacervation method
As shown in Fig. 4a, complex coacervation is based on the

complex  interactions  between  two  oppositely  charged  poly-
mers in aqueous solution that are used as wall materials, poly-
mers  are  incompatible  with  each  other  in  the  state  of  ordi-
nary  aqueous  solution.  Then,  two  oppositely  charged  poly-
mers  interact  and  wrap  around  the  core  material  by  chang-

 
Fig. 3    Schematic representation of the microencapsulation process by ionic gelation.
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ing the pH, temperature of the aqueous solution, the prepara-
tion of microcapsules of bioactives is completed[85].  Complex
coacervation  has  been  widely  used  for  the  encapsulation  of
bioactives,  mainly for  encapsulating lipophilic  materials  such
as  carotenoids  and  curcumin.  The  complex  coacervation
method does not require the use of organic solvents and high
temperatures,  and  it  has  large  loading  capacity,  high  encap-
sulation  efficiency  and  good  stability[86],  but  it  is  time-
consuming  and  costly,  not  suitable  for  large-scale  industrial
production[87].

Commonly used polymer materials can be divided into two
categories:  proteins  and  polysaccharides.  As  amphiphilic
molecules, proteins can interact with anionic polysaccharides
to  condense  and  encapsulate  bioactives[45].  Among  them,
gelatin  and  gum  arabic  can  be  used  in  combination.  At  low
pH  values,  positively  charged  gelatin  interacts  with  nega-
tively  charged  gum  arabic  to  form  an  insoluble  complex,
which  can  be  used  to  encapsulate  liquid  or  solid[88].  Gomez-
Estaca et al.[61] used the interaction between gelatin and gum
arabic  to  microencapsulate  astaxanthin  extracted  from
shrimp  fat,  and  the  encapsulation  efficiency  was  as  high  as
93.5%.  The  results  showed  that  the  stability  and  tinting
strength  of  the  microencapsulated  astaxanthin  were  greatly
improved.  Whey protein  and gum arabic  are  also  commonly
used  as  encapsulant  agents  to  encapsulate  carotenoids.
Ursache et al.[63] used whey protein isolate and gum arabic to
form  coagulation  and  freeze-drying  technology  to  encapsu-
late  carotenoids.  The  encapsulation  efficiency  was  56%.
Microencapsulation improved the hydrophilic of carotenoids,
and the encapsulated carotenoids showed good stability and
microbiological  properties  during  accelerated  storage.
Furthermore, chitosan and sodium alginate are often used as
encapsulant  agents  for  bioactives.  Sodium  alginate  refers  to
an anionic  polysaccharide extracted from brown  algae,  while
chitosan  is  a  positively  charged  polymer.  Interactions  at
specific  sites  to  form  microencapsulated  wall  materials[89].
Deladino  et  al.[90] used  calcium  alginate  and  chitosan  to
microencapsulate yerba  mate lyophilized  extract,  and  the
results showed that calcium alginate combined with chitosan
to  encapsulate yerba  mate extract  is  a  promising  natural
antioxidant  food  supplement  technology.  In  addition,  some
studies had used ovalbumin and κ-carrageenan complexes to
encapsulate  curcumin,  which  not  only  had  high  encapsula-

tion  efficiency,  but  also  improved  the  water  solubility  of
curcumin  after  encapsulation,  and  encapsulated  curcumin
had  high  antioxidant  activity[91].  More  importantly,  the
complex  coacervation  method  can  not  only  protect  the
bioactives, but also reduce the unpleasant odor and flavor of
the  bioactives.  Studies  had  shown  that  it  could  reduce  the
astringency of the cinnamon extract[92].

 Ultrasound-assisted method
Ultrasound is an acoustic wave that vibrates at frequencies

greater  than  20  kHz  and  exceeds  the  upper  limit  of  human
hearing,  and it  has  been widely  used in  food industry.  Ultra-
sound does not work directly with substances, it increases the
mass  transfer  and  contact  area  between  two  phases  mainly
through  the  cavitation  of  liquids[93].  As  shown  in Fig.  4b,
magnetic  stirrer  and  high-speed  homogenizer  are  usually
used  to  pre-emulsify  the  two  phases,  and  then  put  it  in  the
ultrasound system to emulsify,  the final  microcapsule can be
obtained. In order to obtain microcapsule powder, the emul-
sion  can  be  spray  dried  or  freeze  dried.  Ultrasound  technol-
ogy  has  shown  good  performance  in  microencapsulation
studies,  in  addition  to  being  an  emerging  technology  for
bioactives extraction.  It  was found that  ultrasound can facili-
tate  the  interaction  between  compounds  and  assist  the
synthesis  of  shell-core structures  with specific  functions,  and
the  applications  of  ultrasound  to  encapsulate  bioactives  are
increasingly being studied[70,71].

The ultrasound-assisted encapsulation process  is  relatively
simple  and  rapid,  and  the  particles  prepared  have  a  narrow
and  uniform  size  distribution  and  high  encapsulation  effi-
ciency.  Chen  et  al.[69] used  the  multi-frequency  ultrasound-
assisted dialysis method to regulate the self-assembly encap-
sulation  of  zein-sodium  caseinate  to  encapsulate  curcumin.
With an encapsulation rate of 90.19 ± 0.33%, the sensitivity of
curcumin  to  temperature  was  reduced,  and  the  treatment
improved the stability during storage.

Some studies had used ultrasonic technology and soybean
isolate  protein,  gum arabic  and their  mixture  to  encapsulate
anthocyanins  separately  to  improve  their  stability,  and  the
results showed that the encapsulation rate of microencapsu-
lation  was  93.05%−98.87%.  The  thermal  stability  of  antho-
cyanins was all enhanced under the effect of high temperatu-
res, and the anthocyanin microcapsules showed good release
behavior  under  simulated  gastrointestinal  conditions[56].

a b

 
Fig. 4    Schematic representation of the microencapsulation process by (a) complex coacervation and (b) ultrasound.
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Microencapsulation of betalains using ultrasound technology
and maltodextrin can improve the environmental  stability  of
betalains, especially the high temperature resistance, with an
encapsulation efficiency of not less than 79%[70].

It  is  thus  evident  that  ultrasound  is  one  of  the  promising
techniques  to  overcome  the  difficulty  of  preparing  stable
core-shell  materials  with  controllable  physical  and  biological
functions  by  conventional  methods.  However,  the  use  of
ultrasound-assisted encapsulation is more demanding for the
selection of core and wall materials, because the cavitation of
the liquid is accompanied by high temperature and pressure,
which  may  cause  the  destruction  of  the  structure  of  bioac-
tives that are extremely sensitive to temperature. At present,
it  can  be  improved  by  ice  bath  treatment  or  adjusting  the
ultrasonic  time  and  frequency  during  the  preparation
process,  but  the  specific  parameters  of  ultrasound-assisted
encapsulation  of  different  bioactives  need  to  be  further
explored.

 Supercritical anti-solvent method
Compared with the traditional encapsulation technologies,

supercritical  anti-solvent  method  is  suitable  for  heat-sensi-
tive substances,  and it  has simpler  steps and lower cost.  The
prepared microcapsules  are  not  only  small  but  also  uniform.
In the past decade, the study of supercritical fluids for encap-
sulation  of  bioactives  has  attracted  increasing  interest
because of its advantages.

The  supercritical  anti-solvent  method  refers  to  dissolving
the bioactives to be encapsulated in an organic solvent,  and
selecting  supercritical  CO2 as  the  anti-fluid,  and  then  mixing
the  supercritical  CO2 with  the  above  solution,  which  makes
the volume of the solution swell quickly and makes the solu-
tion  soluble  so  the  encapsulated  compound  decreases
quickly  and  crystallizes[94].  The  particles  produced  by  this
method  are  of  high  purity,  small  size  and  uniformity.  Super-
critical  CO2 is  not  only  safe,  low-cost,  but  also  the  tempera-
ture  at  which  the  supercritical  state  occurs  is  close  to  the
ambient temperature (Tc = 304.2 K, Pc = 7.38 MPa), which can
protect  heat-sensitive  substances  from  degradation[95].
Machado  et  al.[67] used  supercritical  CO2 as  the  anti-solvent,
and  dissolved  astaxanthin  from Haematococcus  pluvialis in
dichloromethane  and  encapsulated  it  in  polyhydroxy-
butyrate-co-valerate  (PHBV),  which  improved  the  stability  of
astaxanthin  from Haematococcus  pluvialis to  environmental
factors expanded its applications in the food and pharmaceu-
tical  industry.  In  order  to  protect  the  color  and  activity  of β-
carotene,  Priamo  et  al.[96] also  used  supercritical  CO2 as  the
anti-solvent  and  dichloromethane  as  the  organic  solvent  to
encapsulate β-carotene in PHBV.

Supercritical CO2 can be easily removed by decompression
operations.  Although  supercritical  CO2 is  able  to  take  away
most  of  the  organic  solvent,  there  is  still  a  small  amount  of
organic  solvent  in  the  final  particles[97].  At  present,  there  are
also studies that propose solutions to this problem. However,
there  are  relatively  few  studies  on  this  aspect,  further  work
should be conducted.

 Others
In  addition  to  the  techniques  introduced  above,  tech-

niques  such  as  self-assembly  and  liposomes  have  also  been
used  to  encapsulate  bioactives.  Self-assembly  is  a  process  in

which  amphiphilic  polymers  spontaneously  form  thermody-
namically stable aggregates based on the interaction of non-
covalent  bonds,  aggregates  have  certain  regular  geometric
appearance structures, which are very favorable for encapsu-
lating  lipid-soluble  components.  Hu  et  al.[75] prepared
acylated ovalbumin nanogels  for  curcumin encapsulation by
heat-induced self-assembly, which significantly improved the
stability  of  curcumin  to  pH  changes  and  metal  ions,
prolonged storage time, and improved the controlled release
of  curcumin.  Liposomes are  tiny  vesicles  composed of  phos-
pholipid  bilayers  that  contain  both  hydrophilic  and
hydrophobic  domains,  so  they  can  encapsulate  both
hydrophilic  and  hydrophobic  components.  In  recent  years,
liposome  technology  has  been  widely  used  to  encapsulate
high-value  hydrophilic  and  hydrophobic  ingredients,  with
high  encapsulation  efficiency,  and  significant  effects  in
improving  the  bioavailability  of  bioactives,  however,  due  to
the  high  fluidity  of  the  phospholipid  bilayers,  it  is  easy  to
cause  vesicle  aggregation  and  membrane  fusion,  which  can
reduce  the  storage  stability[98].  Sravan  Kumar  et  al.[80]

improved  the  stability  of  betalains  by  encapsulating  it  in
lecithin nanoliposomes, and the results showed that the color
and stability of betalains increased to 76%. The color of beta-
lains  was  observed only  at  121 °C (20 min)  while  the control
group had already faded at 100 °C (20 min).

 Application of natural pigments in meat
products

In  recent years,  there has been a growing trend of  natural
pigments as substitutes for synthetic pigments in food due to
the increasing health concerns of consumers.  The protection
of  natural  pigments  with  microencapsulation  has  been  a
research  hotspot  in  recent  years,  but  the  applications  of
encapsulated  natural  pigments  as  colorants  are  mainly
focused  on  yogurt,  ice  cream,  drinks,  candy,  etc.  Accessible
data on the use of encapsulated natural pigments as coloring
agents in meat products is still rare. According to the research
on natural  pigments,  sausages and pork/beef  patties  are  the
most  studied  products,  because  their  special  processing  is
suitable  for  addition  of  natural  pigments.  Therefore,  this
section mainly summarizes the applications of non-stabilized
and  stabilized  pigments  in  meat  products,  and  summarizes
the  results  of  these  studies,  with  the  aim  to  provide  a  refer-
ence for their application.

Betanin  is  one  of  the  pigments  approved  for  use  in  food
products as a natural red colorant.  It  is  widely used in frozen
or  refrigerated  foods,  such  as  pork/beef  products  and
sausages. It was added to meat not only as an antioxidant to
inhibit lipid oxidation, but also as a natural pigment to confer
meat  an  attractive  color[99].  Red pitaya is  rich  in  polyphenol
and  betacyanin.  Red pitaya extract  is  commonly  used  as  a
food colorant in the food industry. Bellucci et al.[100] added it
to  pork  patties,  when  its  concentration  was  greater  than  or
equal  to  0.1%,  the  redness  (a*,  belongs  to  the  CIE  Lab  color
space)  of  the  patties  was  the  best,  the  acceptance  of
consumer  in  pork  patties  was  improved.  Sucu  &  Turp[101]

mixed a certain amount of beetroot powder with other ingre-
dients  to  prepare  fermented  beef  sausages,  then  sausages
were stored at 4 °C for 84 d. The results showed that beetroot
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powder could increase the a* values of  sausages,  and the a*
values  of  the  sausages  did  not  change  significantly  during
storage.  Aykın-Dinçer  et  al.[102] diluted  carmine  and beetroot
extracts in the water used in the formulation and mixed into
the  batter  to  prepare  fermented  sausages  and  heat-
processed sausages, the a* values, sensory appearance, flavor
and  overall  acceptance  of  fermented  sausages  and  heat-
processed  sausages  were  all  improved.  Due  to  the  presence
of betalains and phenolic compounds in beetroot extract, the
degree of lipid oxidation was significantly lower than for the
control  and  the  carmine  group.  However,  the a* values  of
heat-processed  sausages  was  lower  than  that  of  fermented
sausages,  the  reason  is  that  a  portion  of beetroot extracts  in
the  sausages  are  degraded  by  heating.  The  results  showed
that the natural beetroot extract can effectively take the place
of  carmine  in  sausages.  Lycopene  is  widely  found  in  toma-
toes,  tomato  products  and  watermelon  and  other  fruits.
García et al.[103] added 0~6.0% (w/w) dry tomato peel (DTP) to
the  ground  meat,  mixed  well  and  made  the  beef  patties  of
hamburger.  The  addition  of  DTP  increased  the a* values  of
the  beef  patties,  and  the  overall  acceptability  of  the  beef
patties is  the highest when the addition of  DTP to 4.5%. The
content of lycopene was 4.9 mg/100 g of cooked hamburger.
Botella-Martinez  et  al.[104] used  fresh beetroot juice  rich  in
betalains  as  a  colorant  ingredient  and  then  added  it  to  the
plant-based  burgers,  it  was  found  that  the  color  of  the
prepared plant-based burgers was similar to traditional meat
burgers,  and  the  overall  acceptability  of  the  plant-based
burgers was high. However, in the plant-based burgers, more
intense  color  changes  would  occur  than  in  the  traditional
meat burgers during cooking, which was caused by the sensi-
tivity of betalains to temperature, so it would affect the desire
of  consumers  to  buy  and  reduce  the  commercial  value  of
products. Black  mulberry water  extract  (BMWE)  has  remark-
able  potential  as  a  natural  colorant  due  to  its  high  phenolic
and  anthocyanin  content.  It  has  been  used  to  maintain  the
color  stability  of  beef  patties[105].  BMWE  reduced  the  light-
ness (L*) and yellowness (b*) and increased the redness (a*) of
beef patties. As the storage time progressed, the a* values of
the BMWE containing groups decreased slowly.

Red raspberries are rich in phenolic compounds, especially
anthocyanins and ellagitannins. Raspberry juice and maltodex-
trin  were  used  as  core  material  and  wall  material,  they  were
mixed  (2:3,  w/v)  for  high-speed  homogenization,  and  then
the  mixture  entered  the  spray  dryer  to  prepare  spray-dried
raspberry powder  (SDRP).  SDRP,  1.0%.  2.0%  and  3.0%  were
dissolved in an equal volume of distilled water and added to
the ground beef and mixed manually with gloves. The results
showed that SDRP treatment had higher a* values, and SDRP
treatment  could  inhibit  lipid  oxidation  and  discoloration,
prolong the shelf  life  of  the ground beef.  When the addition
of SDRP to 2% or 3%, the ground beef could effectively over-
come the problem of discoloration. The extracts of red radish
and hibiscus are rich in anthocyanins, the extracts of red beet-
root are rich in betalains, but the stability of natural pigments
is  low.  Therefore,  Dias  et  al.[106] used  soybean  lecithin  lipo-
somes and maltodextrin microcapsules to encapsulate those
extracts,  and  then  used  freeze  drying  method  to  prepare
powder,  finally,  the powder was added as  ingredients  to the
meat  to  prepare  cooked  ham.  The  E120  from  the  cochineal

insect was used for comparison. The results showed that the
color  of  cooked  ham  prepared  from  red beetroot extracts
(0.88 g/kg cooked ham) was closest to the expected effect, it
proved  that  red beetroot extracts  were  very  promising  in
processed  meat  products  such  as  cooked  ham.  Consumers
are  increasingly  demanding  healthy  meat  products  due  to
health  problems  associated  with  a  high-fat  diet.  In  order  to
reduce  the  content  of  fat  in  meat  products,  Zheng  et  al.[107]

used Monascus pigments as the internal aqueous phase, then
prepared Monascus pigments  W/O/W  emulsions  by  a  two-
step  emulsification  procedure.  The  purpose  of  this  research
was  to  prepare  meat  products  using Monascus pigments
W/O/W  emulsions  instead  of  pork  fat.  The  addition  of
Monascus pigments  W/O/W  emulsions  reduced  the  content
of lipids, improved the level of protein, and did not affect the
hardness  and  color  of  the  meat  system,  even  after  heating,
the  emulsions  could  still  maintain  a  substantial  amount  of
their  red  color.  It  can  be  seen  from  the  above  literature  that
the a* values of non-stabilized pigments decrease after heat-
ing, the stabilized pigments can still maintain an excellent red
color  after  heating,  which  indicates  that  encapsulation  can
effectively protect and stabilize pigments.

 Summary

Natural pigments have received attention due to their high
safety  and  wide  sources.  However,  the  development  and
applications  of  natural  pigments  are  restricted.  Compared
with  synthetic  pigments,  natural  pigments  have  higher  cost,
lower  tinting  strength,  and  poor  stability.  Environmental
factors  (such  as  pH,  temperature,  light,  metal  ions,  etc.)  may
cause  degradation  of  natural  pigments.  In  addition,  some
natural pigments have poor water solubility,  and are difficult
to use in low-fat foods.

At  present,  the  methods  for  improving  the  stability,
hydrophilicity and bioavailability of natural pigments are still
relatively  limited,  including  adding  antioxidants,  modifying
the molecular structure of pigments and microencapsulation.
Among  them,  microencapsulation  has  been  a  potential
method for the protection of bioactives, and it has significant
advantages in protecting bioactives. Spray drying is the most
commonly  used  encapsulation  method,  but  heating  will
cause  the  degradation  of  heat-sensitive  substances,  while
freeze  drying,  ionic  gelation,  and  complex  coacervation  can
effectively  protect  heat-sensitive  substances,  but  they  are
expensive and not suitable for large-scale production. There-
fore,  it  is  necessary  to  consider  many factors  when choosing
encapsulation  technologies  and  encapsulation  materials,
such as chemical stability, matrix compatibility and economic
feasibility. Appropriate encapsulation technologies and mate-
rials can not only improve the performance of bioactives but
also  has  a  health-promoting effect.  However,  the  wise  selec-
tion of encapsulation technologies and encapsulant agents is
still a big problem. Future work will focus how to improve the
encapsulation efficiency and reduce the cost, the bioavailabil-
ity  of  the capsules  in  the body.  In  addition,  it  is  necessary  to
evaluate the impact of various methods on the sensory qual-
ity of products.

By  using  different  encapsulation  technologies  to  protect
natural  pigments,  the  stability  of  natural  pigments  is
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improved  and  the  application  range  of  them  in  meat  prod-
ucts  is  expanded.  Therefore,  it  is  necessary  to  analyze  the
physical  and  chemical  properties  of  the  encapsulated
pigments and investigate the behavior of them in meat prod-
ucts, so as to better solve the possible problems of the encap-
sulated  pigments  and  alleviate  consumers'  concerns  about
such processed foods.
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