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Abstract
Proteases are among the most important classes of hydrolytic enzymes and occupy a key position due to their applicability in both physiological

and  commercial  fields.  They  are  essential  constituents  of  all  forms  of  life,  including  plants,  animals,  and  microorganisms.  However,

microorganisms represent an attractive source for protease secretion due to their high productivity in a relatively short time and limited space

requirements for cultivation, amongst others. Microbial proteases are produced by submerged or solid-state fermentation process during post-

exponential  or  stationary  growth  phase.  The  production  of  these  biocatalysts  by  microbes  is  influenced  by  nutritional  and  physicochemical

parameters.  Downstream  recovery  of  high-value  enzyme  products  from  culture  supernatant  using  suitable  techniques  is  imperative  prior  to

further use of the biocatalysts. Immobilization of these enzymes in appropriate matrices permits reusability, reclamation, enhanced stability and

cost-effectiveness  of  the  biocatalysts.  The  catalytic  properties  of  microbial  proteases  help  in  the  discovery  of  enzymes  with  high  activity  and

stability,  over  extreme  temperatures  and  pH  for  utilization  in  large-scale  bioprocesses.  This  review  provides  insights  into  microbial  proteases

taking  cognizance  of  the  bioprocess  parameters  influencing  microbial  proteases  production  coupled  with  methods  employed  for  protease

purification as well as the immobilization and biochemical properties of the biocatalysts for potential biotechnological applications.
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 Introduction

Enzymes  are  biomolecules  that  consist  of  amino  acid
subunits  linked  together  by  amide  bonds.  They  are  highly
discerning biocatalysts that accelerate the rate and specificity
of  biological  reactions  by  reducing  the  activation  energy
without  any  structural  modification[1−3].  The  active  site  of
these macromolecules is domiciled within hydrophobic pock-
ets,  which  determines  their  specificity  for  substrate[4].
Enzymes are secreted by living organisms and are required to
sustain life. Enzymes play a crucial role in numerous biotech-
nological  applications.  Currently,  the  most  commonly  used
(more  than  75%)  enzymes  for  commercial  applications  are
hydrolases,  which  catalyze  the  hydrolysis  of  various  natural
molecules[5].  However,  proteases  are  recognized as  the  lead-
ing enzyme due to their versatility in biotechnology[2,6].

Proteases  are  the  largest  and  the  most  complex  group  of
enzymes that catalyze the breakdown of proteins by cleaving
of peptide bonds that exist between amino acid residues in a
polypeptide chain[7,8]. They constitute one of the most impor-
tant groups of enzymes, accounting for more than 65% of the
total  industrial  enzyme  market[9−14].  They  are  ubiquitous  in
nature  and  obtained  from  a  wide  variety  of  sources,  includ-
ing  plants[15−20],  animals[21−23] and  microorganisms[24].

However,  the  failure  of  plant  and  animal  proteases  to  meet
global  demands has led to an increased interest in microbial
proteases.

Microbial  proteases  are  among  the  most  important  and
extensively  studied  hydrolytic  enzymes  since  the  beginning
of enzymology[24]. They constitute more than 40% of the total
worldwide  production  of  enzymes[25,26].  They  are  produced
by a large number of microbes, including bacteria, fungi, and
yeasts (Table 1)[27,28]. The microorganisms represent an excel-
lent  source  of  proteases  due  to  their  rapid  growth,  broad
biochemical  diversity,  ease  of  genetic  manipulation,  and
limited  space  requirements  for  cultivation.  In  addition,  the
microorganisms can be cultivated in large amounts in a rela-
tively  short  time  by  an  established  fermentation  process  for
mass  production  of  the  enzymes[61].  Microbial  proteases  are
secreted  directly  into  the  fermentation  medium  by  the
producing  organisms,  thus  shortening  the  downstream
processing of the enzyme[24]. They have a longer shelf life and
can be preserved for a long period of time without significant
loss  of  activity.  However,  of  all  microbial  sources,  bacterial
proteases are of particular interest due to their high catalytic
activity  and  stability  at  optimal  pH  and  temperature  and
broad  substrate  specificity[62−66].  Furthermore,  microbial
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proteases  are  employed  in  various  biotechnological  applica-
tions,  including  detergent,  chemical,  pharmaceutical,  textile,
food and feed and leather industries, as well as in silver recov-
ery  and waste  management  (Fig.  1)[11−14,27,67−76].  This  review,
therefore, focuses on microbial proteases with special empha-
sis  on  bioprocess  parameters  influencing  microbial  protease
production coupled with techniques for downstream purifica-
tion of proteases. In addition, strategies employed for immo-
bilization  of  the  biocatalysts  in  or  on  appropriate  support
materials  as  well  as  the  biochemical  properties  of  the
enzymes  were  also  discussed  for  a  proper  understanding  of
the potential of the biocatalysts for industrial, environmental,
and biomedical applications.

 Fermentative production of microbial proteases

Microbial proteases are produced by submerged fermenta-
tion  and  to  a  lesser  extent  by  solid-state  fermentation
processes  during  the  post-exponential  or  stationary  growth
phase[77−79].  However,  submerged  fermentation  is  mostly
preferred  due  to  its  easy  engineering  and  improved  process
control. In addition, submerged fermentation permits ease of
enzyme reclamation for  downstream processing,  even distri-
bution of microbial cells in the culture medium, and reduced
fermentation  time[77,78].  Protease  production  from  microor-
ganisms  is  constitutive  or  partially  inducible  in  nature,  and
the  type  of  substrate  utilized  in  the  fermentation  medium
mostly  influences  their  synthesis.  The  selection  of  appropri-
ate  inducible  substrates  and  microbial  strains  is  paramount
for the production of the desired metabolite[30,80−84].

 Influence of culture conditions on microbial
protease production

Various  bioprocess  parameters  (such  as  carbon  and
nitrogen  sources,  pH,  temperature,  metal  ions,  inoculum
volume,  incubation  period,  agitation  speed,  etc.)  affect
protease secretion by microorganisms. Each microbe requires
optimum  conditions  of  the  parameters  for  maximum

Table 1.    Some protease-producing microorganisms.

Microorganism Reference

Bacteria
Bacillus sp. CL18 [29]
Bacillus aryabhattai Ab15-ES [30]
Bacillus stearothermophilus [31]
Bacillus amyloliquefaciens [32]
Geobacillus toebii LBT 77 [33]
Pseudomonas fluorescens BJ-10 [34]
Streptomyces sp. DPUA 1576 [35]
Vibrio mimicus VM 573 [36]
Lactobacillus helveticus M92 [37]
Microbacterium sp. HSL10 [38]
Serratia marcescens RSPB 11 [39]
Listeria monocytogenes [40]
Brevibacterium linens ATCC 9174 [41]
Alteromonas sp. [42]
Halobacillus blutaparonensis M9 [43]
Staphylococcus epidermidis [44]
Yersinia ruckeri [45]
Geobacillus stearothermophilus [46]
Stenotrophomonas sp. [47]
Aeromonas veronii OB3 [48]

Fungi
Alternaria solani [49]
Aspergillus niger DEF 1 [50]
Penicillium sp. LCJ228 [51]
Fusarium solani [52]
Rhizopus stolonifer [53]
Trichoderma viridiae VPG12 [54]
Mucor sp. [55]
Moorella speciosa [56]
Beauveria sp. [7]
Cephalosporium sp. KSM 388 [57]

Yeasts
Wickerhamomyces anomalus 227 [58]
Metschnikovia pulcherrima 446 [58]
Candida spp. [13]
Yarrowia lipolytica [59]
Rhototorula mucilaginosa KKU-M12C [60]
Cryptococcus albidus KKU-M13C [60]
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Fig. 1    Schematic diagram showing some potential biotechnological applications of microbial proteases.
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protease production[30].  These nutritional  and physicochemi-
cal parameters are discussed below.

 Carbon sources
Extracellular  protease  production  by  microorganisms  is

strongly  influenced  by  the  presence  of  suitable  carbon
sources  in  the  culture  medium.  Enhanced  yields  of  protease
synthesis  by  addition  of  different  carbon  sources  have  been
reported  by  different  authors[30,85].  For  instance,  Sharma  et
al.[86] recorded  maximum  protease  production  by  a  bacterial
strain AKS-4 when glucose was used as a carbon source in the
growth  media  at  a  concentration  of  1%  (w/v),  resulting  in  a
maximum activity of 59.10 U/ml. In another study, Adetunji &
Olaniran[30] investigated  the  influence  of  different  carbon
sources  including  fructose,  galactose,  mannose,  maltose,
sucrose,  lactose,  and  soluble  starch  on  protease  production
by Bacillus  aryabhattai Ab15-ES.  Maximum  protease  produc-
tion (67.73 U/ml) was recorded in the presence of maltose.

 Nitrogen sources
Microbial  protease production is  greatly  influenced by the

presence of a variety of nitrogen sources in the fermentation
medium[24].  Although  complex  nitrogen  sources  are
commonly  utilized  for  protease  secretion  by  most  microor-
ganisms,  the  requirement  for  a  particular  nitrogen  supple-
ment  differs  from  one  organism  to  another[13,27].  In  most
microorganisms, both organic and inorganic nitrogen sources
are  metabolized  to  produce  amino  acids,  nucleic  acids,
proteins and other cell wall components[27,67]. Several authors
have  employed  organic  (simple  or  complex)  and  inorganic
nitrogen  sources  for  enhancement  of  protease  production.
These  nitrogen  sources  have  regulatory  effects  on  protease
synthesis.  Kumar  et  al.[87] studied  the  effect  of  organic  and
inorganic  nitrogen  sources  on  protease  production  by Mari-
nobacter sp. GA CAS9. Results obtained revealed that organic
nitrogen  sources  induced  higher  protease  production  than
inorganic nitrogen sources,  with maximum protease produc-
tion  (249.18  U/ml)  recorded  in  the  presence  of  beef  extract.
Badhe  et  al.[88] studied  the  influence  of  nitrogen  sources
namely,  ammonium  nitrate,  ammonium  chloride,  ammo-
nium  sulphate,  yeast  extract,  potassium  nitrate,  and  sodium
nitrate  on  extracellular  protease  production  by Bacillus
subtilis.  Yeast  extract  was  found  to  be  the  best  nitrogen
source to stimulate maximum protease production. Urea and
sodium  nitrate  have  been  reported  as  the  best  organic  and
inorganic  nitrogen  sources,  respectively  for  extracellular
protease production by Bacillus licheniformis ATCC 12759[89].

 Physicochemical parameters
Several physicochemical parameters including pH, temper-

ature,  agitation  speed,  incubation  period,  metal  ions,  inocu-
lum  volume  etc.  influence  protease  secretion[90−92].  These
parameters  are  essential  to  promote  the  growth  of  microor-
ganisms for protease production.  For instance,  slightly acidic
medium  with  pH  range  of  6.3−6.5  has  been  found  as  opti-
mum for protease production by Bacillus sp. MIG and Bacillus
cereus SIU1[93,94].  Maximum  protease  production  by Bacillus
subtilis NS  and Pseudomonas  fluorescens was  recorded  when
the initial  pH of the fermentation media was 9.0[95,96].  Higher
initial pH values of 12.0 (Bacillus cereus S8), 10.5 (Bacillus circu-
lans), and 10.7 (Bacillus sp. 2-5)[97−99] have also been reported
for maximum protease production.

In  addition,  incubation  temperature  is  a  crucial  environ-
mental  parameter  for  the  production  of  proteases,  since  it
affects  microbial  growth  and  synthesis  of  the  enzyme  by
changing  the  properties  of  the  cell  wall[100].  Optimum
temperatures of 30, 37, 40, and 60 °C for protease production
by Pseudomonas  aeruginosa MCM  B-327[101], Bacillus  subtilis
AKRS3[102], Bacillus sp.  NPST-AK15[100],  and Bacillus
polymyxa[103],  respectively  have  been  reported.  Agitation
speed influences the degree of mixing of fermentation media
in  shake  flasks  or  bioreactor  for  the  supply  of  dissolved
oxygen  needed  for  the  growth  of  microorganisms  for
protease  production[104,105].  Maximum  protease  production
has been reported at agitation speed of 150 rpm (Bacillus sp.
CR-179; Aspergillus  ochraceus BT21)  and  200  rpm  (Bacillus
mojavensis SA)[106−108]. Incubation period considerably affects
microbial  protease  production,  and  varies  (24  h  to  1  week),
based on the microorganism type and culture conditions[109].
Metal  ions  promote  microbial  protease  production.  For
instance,  Ca2+,  Mg2+,  Na+,  and  Ba2+ enhance  protease  secre-
tion by Bacillus cereus BG1, Bacillus subtilis NS, Brevibacillus sp.
OA30,  and Bacillus sp.  NPST-AK15,  respectively[95,100,110,111].
However, metal ions can render inhibitory effects on protease
production by microorganisms[112].

 Purification of microbial proteases

After  fermentative  production  of  enzymes,  the  cell-free
culture supernatant (regarded as crude enzyme) is purified for
the  reclamation  of  value-added  enzyme  products  using  a
variety of techniques[61,113].  The selection of suitable purifica-
tion  methods  is  dependent  on  the  source  of  the  biocatalyst
(extracellular  or  intracellular).  Such  techniques  should  be
cost-effective  and  efficient  for  high-value  enzyme  purifica-
tion[114,115]. The advantages and disadvantages of these tech-
niques are highlighted in Table 2 and described below.

 Ultrafiltration
Because  of  the  low  amounts  of  enzyme  in  the  cell-free

supernatant, excess water is usually removed for the recovery
of  the  enzyme.  This  is  achieved via membrane  separation
processes  such as  ultrafiltration.  This  pressure-driven separa-
tion  process  is  inexpensive  and  leads  to  a  slight  loss  of
enzyme activity. It is used for purification, concentration, and
diafiltration of  enzyme,  or  for  changing the salt  composition
of a given sample[27,116,117].  However, the major drawbacks of
this  technique  include  fouling  or  clogging  of  membranes,
resulting from precipitates formed by the final product[118].

 Precipitation
Precipitation is the most frequently used technique for the

separation of enzymes from crude culture supernatants[31,119].
It  is carried out by the addition of inorganic salt (ammonium
sulphate)  or  organic  solvent  (acetone  or  ethanol),  which
reduces  the  solubility  of  the  desired enzymes in  an  aqueous
solution[120,121].

 Ion exchange chromatography
Ion exchange chromatography is employed for the produc-

tion of purified proteases. The enzymes are positively charged
biomolecules  and  are  not  bound  to  anion  exchangers[27,122].
As a result, cation exchangers are a rational choice for the elu-
tion  of  the  bound  molecules  from  the  column  by  increasing
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the salt or pH gradient[24]. The commonly employed matrices
for  ion-exchange  chromatography  include  diethyl  amino
ethyl  and  carboxy  methyl,  which,  upon  binding  to  the
charged enzyme molecules, adsorb the proteins to the matri-
ces. Elution of the adsorbed protein molecule is achieved by a
gradient  change  in  pH  or  ionic  strength  of  the  eluting
buffer[24,123].

 Affinity chromatography
The most commonly used adsorbents for protease purifica-

tion  by  affinity  chromatography  include  hydroxyapatite,
immobilized  N-benzoyloxycarbonyl  phenylalanine  agarose,
immobilized  casein  glutamic  acid,  aprotinin-agarose,  and
casein-agarose[124,125]. However, the ultimate disadvantage of
this  technique is  the  high costs  of  enzyme supports  and the
labile nature of some affinity ligands, thus reducing its use on
a large scale[24,27,126].

 Hydrophobic interaction chromatography
Hydrophobic  interaction  chromatography  is  based  on  the

variation  of  external  hydrophobic  amino  acid  residues  on
different proteins, resulting in protein interaction[127]. In aque-
ous solvents,  hydrophobic patches on proteins preferentially
interrelate  with  other  hydrophobic  surfaces[128].  These
hydrophobic interactions are reinforced by high salt  concen-
trations  and  higher  temperatures  and  are  weakened  by  the
presence  of  detergents  or  miscible  organic  solvents[129].  The
degree of  binding of  a  hydrophobic protein depends on the
type  and  density  of  substitution  of  the  matrix  as  well  as  on
the nature of buffer conditions[24].

 Immobilization of microbial proteases

Enzyme immobilization refers to the physical  confinement
of  enzymes in a  defined region (matrix)  to retain the activity
of  the  biocatalysts[130,131].  Immobilization  of  enzymes  in
appropriate  insoluble  supports  is  a  vital  tool  to  fabricate
biomolecules with a variety of  functional  properties[132,133].  It
offers  many  distinct  advantages,  including  reusability  of
immobilized  biocatalysts,  rapid  termination  of  reactions,
controlled  product  formation,  and  ease  of  reclamation  of
insolubilized  enzymes  from  reaction  mixture[134−136].  In  addi-
tion,  insolubilization  of  enzymes  by  attachment  to  a  matrix
provides  several  benefits,  such  as  enhanced  stability,  possi-
ble  modulation  of  the  catalytic  properties,  reduction  in  the
cost  of  enzymes  and  enzyme  products,  and  adaptability  to
various engineering designs[137−142].

The  characteristics  of  a  matrix  are  crucial  in  determining
the effectiveness of the immobilized enzyme system[130].  The
characteristics  of  a  good  matrix  include  hydrophilicity,  non-
toxicity, biodegradability, resistance to microbial invasion and
compression,  biocompatibility,  inertness  towards  enzymes,
and  affordability[143].  The  selection  of  appropriate  support
materials influences the immobilization process. The support
materials can be grouped into two categories namely, organic
and inorganic based on their chemical components, or natu-
ral  and  synthetic  polymers.  These  include  porous  glass[144],
aluminium  oxide,  titanium,  hydroxyapatite,  ceramics,
celite[130,134,145,146],  carboxymethyl  cellulose,  starch,  collagen,
sepharose, resins, silica[147], agarose[148,149], clay[150], and some
mesoporous polymers[151].

The choice of  a  suitable  immobilization technique is  para-
mount  for  the  immobilization  process,  as  it  determines  the
activity  and  characteristics  of  the  enzyme  in  a  particular
biochemical  reaction[56,130].  Methods  such  as  entrapment,
adsorption,  cross-linking,  and  covalent  bonding  are
commonly  used  for  enzyme  immobilization[152−155].  Immobi-
lization  of  protease  from Bacillus  amyloliquefaciens SP1  by
entrapment in various matrices, including alginate, agar, and
polyacrylamide  has  been  reported[156].  The  immobilized
enzyme  showed  enhanced  protease  activity  and  reusability
with  beads  prepared  with  different  polymers.  In  addition,
Bacillus  subtilis M-11  protease  immobilized  on  polysulfone
membrane  (containing  silica  gel-3  aminopropyltriethoxysi-
lane) by physical adsorption displayed improved stability and
retention  of  its  activity  (77.3%)  after  ten  consecutive
batches[155].  Ibrahim  et  al.[157] immobilized  protease  from
Bacillus sp.  NPST-AK15  onto  hollow  core-mesoporous  shell
silica  nanospheres  by  covalent  attachment  and  physical
adsorption.  The  immobilized  enzyme  recorded  significant
thermal  and  organic  solvent  stability  with  a  considerable
catalytic  activity  for  12  consecutive  batches.  Silva  et  al.[158]

studied  the  immobilization  of  protease  (Esperase)  by  cove-
lent  bonding  to  Eudragit  S-100  through  carbodiimide
coupling. The immobilized enzyme exhibited a good thermal
and  storage  stability  and  reusability  in  comparison  to  the
native enzyme.

 Biochemical properties of microbial proteases

Proteases from different microorganisms have been exten-
sively  studied  for  suitability  for  various  specific  applications
based on their properties[27,159]. For biotechnological applica-
tions,  proteases  must  possess  higher  activity  and  stability  at

Table 2.    Advantages and disadvantages of protease purification methods.

Purification method Advantage Disadvantage

Ultrafiltration High product throughput; lower
complexity; economical; low maintenance;
requires no chemicals

Clogging of membrane hinders purification process

Precipitation Simple; reduces enzyme solubility in
aqueous solution

Not efficient for complete enzyme purification; time
consuming; difficult to use for large-scale enzyme
purification

Ion-exchange chromatography High separation efficiency; simple;
controllable

Buffer requirement; pH dependence; inconsistency in
columns; expensive columns

Affinity chromatography High sensitivity and specificity; gives high
degree of enzyme purity

Difficult to handle; requires limited sample volume; low
productivity; uses expensive ligands; non-specific
adsorption

Hydrophobic interaction chromatography Versatile; non-denaturing Requirement for non-volatile mobile phase
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relatively extreme temperatures, pH, and in organic solvents,
oxidizing agents,  detergents,  etc.[48,160].  The essential  proper-
ties of some microbial proteases are presented in Table 3 and
discussed below.

 Effect of pH on activity and stability of microbial
proteases

A significant level of proteolytic activity over a broad range
of  pH  is  required  for  protease  to  be  employed  for  various
biotechnological  applications[46,171].  In  general,  microbial
proteases  exhibit  high  activity  at  an  optimum  pH  range  of
between  8.0  and  12.0[28].  Optimum  pH  and  stability  of  pro-
tease  from Aeribacillus  pallidus C10  have  been  reported[168].
The enzyme was found to be active within a broad pH range
of  7.0−10.0,  with  maximum  activity  recorded  at  pH  9.0.  The
protease retained its  activity by more than 70% in the range
of pH 6.0−10.5 after 2 h of incubation. Proteases from Bacillus
pumilus CBS, Bacillus strain  HUTBS71,  and Bacillus  licheni-
formis with  similar  pH  stability  profiles  have  been
reported[172−174]. Ibrahim et al.[8] assessed the influence of pH
on  the  activity  and  stability  of  the  protease  produced  by
Bacillus sp.  NPST-AK15.  The  enzyme  was  active  in  a  wide  pH
range (7.0−12.0), with maximum activity recorded at pH 10.5.
The protease was 100% stable at  pH 9.0−10.5,  retaining 96.6
and 92.3% of its activity at pH 8.0 and 11.0, respectively, and
more than 80% of  its  initial  activity  retained at  pH 12.0  after
2  h.  Protease  from Bacillus  circulans MTCC  7942  exhibited
activity  in  the  range  of  8.0−13.0  with  optimum  activity
recorded at pH 10.0. The enzyme maintained its stability in a
wide range of pH (7.0−12.0) for 24 h, retaining 90% activity in
the  pH  range  (8.0−12.0)[165].  Similar  results  have  also  been
reported  for  proteases  from Bacillus  tequilensis P15[175],

Bacillus  subtilis AP-MSU6[176], Bacillus  circulans[177], Bacillus
lehensis[178], and Bacillus alveayuensis CAS 5[179] showing opti-
mal  pH  in  the  range  of  8.0−12.0.  Maximum  activity  of
protease from Bacillus  pumilus MCAS8 at pH 9.0 and stability
in the range of 7.0−11.0 after 30 min have been observed[164].
Remarkably,  protease  from Bacillus  circulans M34  showed
maximum activity at an optimum pH of 11.0 and was found to
be  active  over  a  broad  pH  range  (4.0−12.0)[166].  The  enzyme
was stable over a wide pH range, maintaining 97% of its origi-
nal activity at pH 8.0−11.0 after 1 h.

 Effect of temperature on activity and stability of
microbial proteases

Most  of  the  microbial  proteases  are  active  and  stable  at  a
broad  range  of  temperatures  (50-70  °C).  The  activity  of
proteases  at  broad  temperatures  and  thermostability  form  a
crucial  feature  required  for  employability  of  the  enzyme  in
industries[32]. Proteases from Bacillus sp., Streptomyces sp., and
Thermus sp.  are  stable  at  high  temperatures;  the  addition  of
calcium chloride further improves the enzyme’s thermostabil-
ity[180]. In addition, some proteases possess exceptionally high
thermostability with no decrease in activity at 60−70 °C for up
to  3  h[171].  Ahmetoglu  et  al.[181] investigated  the  characteris-
tics of protease from Bacillus sp. KG5. The enzyme was found
to be active at 40−45 °C and stable at 50 °C in the presence of
2  mM  CaCl2 after  120  min.  Thebti  et  al.[33] characterized  a
haloalkaline  protease  from Geobacillus  toebii LBT  77  newly
isolated  from  a  Tunisian  hot  spring.  The  enzyme  was  active
between 70 and 100 °C with an optimum activity recorded at
95  °C.  The  protease  was  extremely  stable  at  90  °C  after  180
min. Similar results have also been reported for protease from
Bacillus sp.  MLA64[182].  This  activation  and  stability  at  higher
temperatures  were  probably  due  to  the  partial  thermal

Table 3.    Biochemical properties of some microbial proteases.

Microorganism pH optima Temperature
optima (°C)

Kinetics parameter
(Km and Vmax) Substrate specificity Reference

Bacillus sp. CL18 8.0 55 − Casein and soy protein [29]
Bacillus caseinilyticus 8.0 60 − Casein, bovine serum albumin,

gelatin and egg albumin
[161]

Bacillus licheniformis A10 9.0 70 0.033 mg/ml & 8.17 µmol/ml/min Casein [162]
Bacillus licheniformis UV-9 11.0 60 5 mg/ml & 61.58 µM/ml/min Casein, haemoglobin and bovine

albumin
[163]

Bacillus pumilus MCAS8 9.0 60 − Bovine serum albumin, casein,
haemoglobin, skim milk, azocasein
and gelatin

[164]

Bacillus pseudofirmus 10 50 0.08 mg/ml & 6.346 µM/min Casein [26]
Bacillus circulans MTCC 7942 10 60 3.1 mg/ml & 1.8 µmol/min Casein [165]
Bacillus circulans M34 11 50 0.96 mg/ml & 9.548 µmol/ml/min Casein, ovalbumin and bovine

serum albumin
[166]

Bacillus amyloliquefaciens SP1 8.0 60 0.125 mg/ml & 12820 µg/ml Casein [156]
Bacillus sp. NPST-AK15 10.5 60 2.5 mg/ml & 42.5 µM/min/mg Gelatin, bovine serum albumin and

casein
[8]

Stenotrophomonas maltophilia SK 9.0 40 − Bovine serum albumin, casein and
gelatin

[167]

Stenotrophomonas sp. IIIM-ST045 10.0 15 − − [47]
Aeribacillus pallidus C10 9.0 60 0.197 mg/ml & 7.29 µmol/ml/min Casein [168]
Geobacillus toebii LBT 77 13.0 95 1 mg/ml & 217.5 U/ml − [33]
Streptomyces sp. M30 9.0 80 35.7 mg/ml & 5 × 104 U/mg Casein, bovine serum albumin,

bovine serum fibrin
[169]

Alternaria solani 9.0 50 − − [49]
Beauveria bassiana AM-118 8.0 35−40 0.216 and 0.7184 mM & 3.33 and

1.17 U/mg
− [170]
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inactivation of the protease. Protease from Bacillus caseinilyti-
cus was found to be active at 30−60 °C, with maximum activ-
ity attained at  60 °C,  indicating the thermotolerant nature of
the  enzyme[161].  Maximum  proteolytic  activity  of Bacillus
strains HR-08 and KR-8102 isolated in the soil of western and
northern  parts  of  Iran  has  been  recorded  at  65  and  50  °C,
respectively[183].  Protease  from Bacillus  subtilis DR8806
showed the highest activity at 45 °C and was stable up to 70
°C[184]. Bacillus  cohnii APT5 protease has been reported to be
active at  a broad range of  temperatures,  between 30 and 75
°C  with  maximum  activity  attained  at  50  °C[185].  The  enzyme
was found to be stable from 40 to 70 °C.

 Kinetics properties of microbial proteases

Since  enzymes  are  natural  catalysts  that  accelerate  che-
mical  reactions,  the  speed  of  any  fastidious  reaction  being
catalyzed  by  a  particular  enzyme  can  only  reach  a  certain
maximum  value.  This  is  known  as  the  maximum  velocity
(Vmax)  whereas  the  Michaelis-Menten  constant  (Km)  is  the
concentration of substrate at which half of the maximal veloc-
ity  was  attained[31,186].  The  relationship  between  the  rate  of
reaction  and  the  concentration  of  substrate  depends  on  the
affinity  of  the  enzyme  for  its  substrate;  this  is  usually
expressed  as  the  Km

[186].  An  enzyme  with  a  low  Km has  a
greater affinity for its  substrate.  Both Km and Vmax are impor-
tant  for  developing  an  enzyme-based  process[187].  Know-
ledge  of  such  parameters  is  essential  for  assessing  the
commercial  applications  of  protease  under  different  condi-
tions[24,188].  Substrates  including  casein,  azocasein,  etc.  are
employed  to  determine  the  kinetic  properties  of  proteases.
Different  Km and  Vmax values  have  been  reported  for
proteases.  The  Km and  Vmax values  of  protease  from Bacillus
licheniformis A10  were  determined  to  be  0.033  mg/ml  and
8.17 µmol/ml/min,  respectively in the presence of  casein[162].
This Km value was found to be lower when compared to that
of proteases from Bacillus licheniformis UV-9[163], Bacillus circu-
lans[189] and Bacillus sp.[190],  suggesting  a  high  affinity  of  the
enzyme  for  the  substrate.  In  another  study,  Km and  Vmax

values  of  0.626  mM  and  0.0523  mM/min,  respectively  were
recorded for protease from Bacillus licheniformis BBRC 100053
using casein[191].  Protease from Bacillus amyloliquefaciens SP1
showed  Km and  Vmax values  of  0.125  mg/ml  and  12,820
µg/min, respectively in the presence of casein, indicating high
affinity and efficient catalytic activity of the enzyme[156].

 Potential applications of microbial proteases

Microbial  proteases  are  robust  enzymes  with  significant
biotechnological  applications  in  detergents,  leather  process-
ing, silver recovery, pharmaceutical, dairy, baking, beverages,
feeds,  and chemical industries,  as well  as in several  bioreme-
diation  processes,  contributing  to  the  formation  of  high
value-added products (Fig. 1)[28,192]. In addition, the proteases
are employed in degumming of silk and biopolishing of wool
in  the  textile  industry  and  as  an  essential  tool  in  peptide
synthesis  as  well  as  in  molecular  biology  and  genetic  engi-
neering  experiments[193].  The  various  applications  of  micro-
bial  proteases  are  elucidated  in Table  4 and  discussed
explicitly below.

 Detergent industry

The detergent industry forms the largest industrial applica-
tion of enzymes, accounting for 25%−30% of the total world-
wide markets for  enzymes[194].  Microbial  proteases are domi-
nant  in  commercial  applications,  with  a  substantial  share  of
the market utilized in laundry detergent[27,195].  They are used
as  additives  in  detergent  formulations  for  the  removal  of
proteinaceous stains from clothes, resulting from food, blood,
and  other  body  secretions  as  well  as  to  improve  washing
performance  in  domestic  laundry  and  cleaning  of  contact
lenses or dentures[19,196,197]. The use of proteases in detergent
products  offers  colossal  advantages  since  these  products
contain  fewer  bleaching  agents  and  phosphates,  thus,
rendering  beneficial  effects  on  public  and  environmental
health[198,199].  Generally,  an  ideal  protease  used  as  detergent
additives should have a long shelf life as well as high activity
and stability  over a  wide range of  pH and temperature[48].  In
addition, the enzymes should be efficient at low amounts and
compatible  with  various  detergent  components  along  with
chelating  and  oxidizing  agents[19,27,61].  This  is  noteworthy
because  proteases  from Bacillus  cereus, Bacillus  pumilus CBS,
Bacillus  licheniformis, Bacillus  brevis,  and Bacillus  subtilis AG-1
have been reported to exhibit robust detergent compatibility
in  the  presence  of  calcium  chloride  and  glycine  (used  as
stabilizers)[200−204].

 Leather industry
Leather  processing  involves  a  series  of  stages  including,

curing,  soaking,  liming,  dehairing,  bating,  pickling,  degreas-
ing,  and  tanning[205,206].  Conventional  approaches  of  leather

Table 4.    Some potential biotechnological applications of microbial proteases

Industry Application Product

Detergent Remove proteinaceous stains from clothes
Improve washing performance in domestic laundry

Clean fabrics

Leather Soaking, dehairing and bating
Enhance leather quality
Reduce or eliminate dependence on toxic chemicals

Soft, supple and pliable leather

Food Meat tenderization; modification of wheat gluten; cheese-making;
preparation of soy hydrolysates; improves extensibility and strength
of dough

Protein hydrolysate; cheese; soy sauce and soy
products; meat products; enhanced dough volume

Waste management Solubilize (degrade) proteinaceous wastes Additives in feeds and fertilizer
Biomedicine Antimicrobial agents, anti-inflammatory agents, anti-cancer agents,

anti-tumor agents, thrombolytic agents
Therapeutics and pharmaceuticals

Photographic Recover silver from X-ray films Secondary silver
Textile Silk degumming High strength silk fibre; sericin powder

  Biotechnological applications of microbial proteases
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processing involving the use of hazardous chemicals such as
sodium  sulfide,  lime,  and  amines  generate  severe  health
hazards  and  environmental  pollution[207,208].  As  a  result,  the
use  of  biodegradable  enzymes  as  substitutes  for  chemicals
has proved successful in enhancing leather quality and reduc-
ing  environmental  pollution[19,209−211].  Enzymatic  dehairing
processes are attractive for preserving the hair and contribute
to a fall  in the organic load discharged into effluent.  In addi-
tion,  it  minimizes  or  eliminates  the  dependence  on  toxic
chemicals[212,213].  Due  to  their  elastolytic  and  keratinolytic
activity,  proteases  are  employed  for  selective  breakdown  of
non-collagenous constituents  of  the skin and for  elimination
of  non-fibrillar  proteins  during  soaking  and  bating,  thus
producing  soft,  supple,  and  pliable  leather[69].  Furthermore,
microbial  proteases  are  employed  for  quick  absorption  of
water thus, reducing soaking time[214]. Proteases from Bacillus
sp.  with  keratinolytic  activity  have  been  reported  for  dehair-
ing properties[29,215−217].

 Food industry
In  the food industry,  proteases  are  usually  employed for  a

variety  of  purposes,  including  cheesemaking,  baking,  the
preparation of  soya hydrolysates,  meat  tenderization,  etc.[61].
The  catalytic  function  of  these  enzymes  is  utilized  in  the
preparation  of  high  nutritional  value  protein  hydrolysate,
used as components of dietetic and health products; in infant
formulae  and  clinical  nutritional  supplements,  and  as  flavor-
ing  agents[24,46,218].  However,  the  bitter  taste  of  protein
hydrolysate  formed  a  crucial  barrier  to  its  use  in  food  and
health  care  products.  Therefore,  proteases  (carboxypep-
tidases  A)  have  a  high  specificity  for  debittering  protein
hydrolysates.  A  key  application  of  protease  in  the  dairy
industry  is  in  cheese  manufacturing,  where  the  primary  role
of  the enzymes is  to  hydrolyze specific  peptides  to  generate
casein  and  macropeptides[19,219,220].  In  addition,  proteases
play  a  significant  role  in  meat  tenderization (e.g.,  beef)  since
they  possess  the  potential  to  hydrolyze  connective  tissue
proteins  as  well  as  muscle  fiber  proteins[27,221].  Endo-  and
exoproteinases  are  used  in  the  baking  industry  to  modify
wheat  gluten.  The  addition  of  proteases  reduces  the  mixing
time,  improves  extensibility  and  strength  of  dough,  and
results  in  enhanced  loaf  volume[19,222].  Proteases  are  also
employed  in  the  processing  of  soy  sauce  and  soy  products
and  in  the  enzymatic  synthesis  of  aspartame  (sweetening
agent)[61,223].

 Waste management
Proteases are used in the treatment of  waste from various

food processing industries and household activities[224]. These
enzymes  solubilize  proteinaceous  wastes via a  multistep
process for the recovery of liquid concentrates or dry solids of
nutritional value for fish or livestock[225,226]. This is achieved by
initial  adsorption  of  the  enzyme  on  the  solid  substrates
followed  by  cleavage  of  polypeptide  chain  that  is  loosely
bound  to  the  surface.  Thereafter,  the  solubilization  of  the
more compact core occurs at a slower rate, depending on the
diffusion  of  the  enzyme  surface  active  sites  and  core
particles[227]. Enzymatic degradation of waste using proteases
with  keratinolytic  activity  is  an  attractive  method[228,229].
Among  microbial  species,  some  members  of  the  genus
Bacillus are  regarded  as  keratinase  producers  for  feather
degradation[230−233].  Enzymatic  treatment  of  waste  feathers

from  poultry  slaughterhouses  using  protease  from Bacillus
subtilis has  been  reported[234].  Pretreatment  with  NaOH,
mechanical disintegration, and enzymatic hydrolysis resulted
in  complete  solubilization  of  the  feathers,  releasing  a  heavy,
grayish powder with high protein content that could be used
as  an  additive  in  feeds,  fertilizers,  etc.  In  addition,  proteases
with  keratinolytic  activity  are  used  for  the  degradation  of
waste material in household refuse, and as a depilatory agent
for  the  removal  of  hairs  in  bathtub  drains  which  cause
unpleasant odors[235−237].

 Biomedicine
The diversity and specificity of proteases are utilized for the

development of a broad range of therapeutic agents[223]. The
involvement  of  these  biocatalysts  in  the  life  cycle  of  patho-
gens characterizes them as a possible target for the develop-
ment  of  antimicrobial  agents  against  acute  diseases[238].  For
instance, elastoterase from Bacillus subtilis 316M immobilized
on  a  bandage  is  used  for  the  treatment  of  burns,  purulent
wounds,  carbuncles,  furuncles,  and  deep  abscesses[239].  In
addition,  fibrinolytic  protease  is  employed  as  a  thrombolytic
agent[240]. Serratiopeptidase, a protease produced by Serratia
sp.,  is the most effective protease for treatment of acute and
chronic  inflammation  and  as  an  antimicrobial  agent  against
acquired immune deficiency syndrome (AIDS), hepatitis B and
C etc.[241,242]. In addition, serrazime, a proteolytic enzyme from
Aspergillus sp.  is  utilized  in  dietary  supplements  as  anti-
inflammatory; cardiovascular or immune support[243]. Collage-
nases with alkaline protease activity are used for the prepara-
tion  of  slow-release  dosage  forms  as  well  as  in  wound  heal-
ing, the treatment of sciatica in herniated intervertebral discs,
the treatment of retained placenta, and as a pretreatment for
enhancing  adenovirus-mediated  cancer  gene  therapy[244,245].
Furthermore,  lysostaphin,  an  extracellular  protease  from
Staphylococcus simulans exhibited therapeutic activity against
a  broad  spectrum  of  infections  such  as  endocarditis,
abscesses, septicaemia, and septic emboli, caused by Staphy-
lococcus sp. This is achieved by secreting toxins, which cause
puncture  of  the  Staphylococcal  cell  wall,  resulting  in  cell
death[246−248].  More  so,  L-asparaginase  from Escherichia  coli
and Erwinia  chrysanthemi is  used for  the treatment  of  malig-
nant  tumours,  lymphoblastic  lymphoma,  and  lymphoblastic
leukaemia  in  children[238,249].  Streptokinases  (Streptococcus
sp.) and collagenases (Clostridium histolyticum and Aspergillus
oryzae)  are  employed  as  therapeutic  agents  against  myocar-
dial infection, coronary thrombosis; supplements in the treat-
ment  of  lytic  enzyme  deficiency  syndromes,  burns,  and
wounds[238].  The cytotoxic  nature of  several  proteases allows
the  enzymes  to  be  used  as  efficient  antimicrobial  agents  for
clinical purposes[250].

 Conclusions and recommendations

Microbial  proteases  are  leading  catalysts  with  a  tremen-
dous increase in global demand in the last few decades. They
are produced by bacteria,  fungi,  and yeasts.  However,  bacte-
rial proteases are mostly preferred due to their high catalytic
activity  and  stability  at  broad  pH  and  temperature  ranges.
The  production  of  these  biocatalysts  is  influenced  by  nutri-
tional  and  physicochemical  parameters.  Insolubilization  of
the  purified  enzymes  in  appropriate  support  materials  is  a
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very useful  approach for  efficient  bicatalysis.  It  enhances the
recovery  and  reuse  potential  of  the  enzymes,  thus  reducing
overall  costs.  The  robust  versatility  and  specificity  of  micro-
bial  proteases  warrant  their  employability  as  green  catalysts
in the detergent, food, leather, and pharmaceutical industries,
as well as in waste management.

Due  to  the  growing  and  multi-functional  applications  of
microbial  proteases,  further  discovery  and  engineering  of
novel  enzymes  with  robust  catalytic  efficiency  suitable  for
commercial  applications  should  be  carried  out  through
metagenomics,  site-directed  mutagenesis,  or in  vitro evolu-
tionary  modification  of  protein  primary  structures.  More
research  should  be  carried  out  on  the  use  of  microbial
proteases  as  an  alternative  to  classical  antibiotics  for  the
development  of  novel  therapeutic  agents  against  emerging
infectious diseases.
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