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Abstract
Milk protein concentrate (MPC) is used as an ingredient in processed cheese product (PCP) formulations. However, its use can result in texture

defects such as a soft body and restricted melting characteristics. The use of micellar casein concentrate (MCC), which has a higher level of casein

and less serum protein, improves the texture of PCP. Further improvement in PCP products may be possible using transglutaminase (TGase), an

enzyme that can crosslink proteins. This study aimed to determine the effect of TGase treatment of MPC and MCC retentates on the functionality

of  MPC  and  MCC  when  used  in  a  PCP  slice  formulation.  Three  lots  of  MCC  and  MPC  retentate  were  produced  using  microfiltration  and

ultrafiltration, respectively. Each replicate of retentate was divided into three equal portions and treated with transglutaminase enzyme at three

different levels: 0.3 U/g of protein, 3.0 U/g of protein, and no TGase addition. The retentates were spray-dried, and powders were used in PCP slice

formulation. Functional properties of PCP were analyzed using a penetration test, Dynamic stress rheology (DSR) for transition temperature (TT),

and Schreiber melt test. As the TGase addition increased, there was a significant (p ≤ 0.05) increase in TT and a significant (p ≤ 0.05) decrease in the

Schreiber melt area. The PCP made from MCC had higher TT and Schreiber melt area values than that made from MPC as an ingredient (TGase or

no TGase). It was concluded that TGase treatment modifies the melt characteristics of MCC and MPC in PCP applications.
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 Introduction

Processed cheese product (PCP) is manufactured in various
forms  such  as  loaves,  slices,  shreds,  or  spreads.  Code  of
Federal Regulations (CFR) in the USA has described five major
categories  of  processed  cheese,  namely  pasteurized  pro-
cessed  cheese,  pasteurized  processed  cheese  food,  pasteur-
ized  processed  cheese  spread,  pasteurized  blended  cheese,
and  processed  cheese  analogs,  which  differ  in  fat,  moisture,
pH,  and  ingredients  that  can  be  used[1−4].  PCP  is  an  unde-
fined category of processed cheese (PC) in the USA[1] and can
further  be  subcategorized  into  substitute  or  imitation
cheese[2]. Ingredients such as milk protein concentrate (MPC),
micellar  casein  concentrate  (MCC),  and  rennet  casein,  which
are not legally allowed under CFR, are utilized in the formula-
tion[4].  Since the PCP formulation can use various ingredients
not legally allowed under the CFR, many companies prefer to
tailor the functionality of PCP by using a combination of non-
cheese  ingredients.  However,  with  the  inclusion  of  non-
cheese  dairy  ingredients,  the  manufacturing  and  chemical
reactions occurring in PCP remain the same. Depending upon
the type of PCP to be manufactured, the type of ingredients,
emulsifying  salt  or  protein  content  change,  provide  the
specific and required functionality to the PCP. Most PCPs are
manufactured  using  trisodium  citrate  (TSC),  disodium  phos-
phate (DSP), or a combination of both. TSC is primarily used in

slice  or  slice-on-slice  (SoS)  applications  in  which  the  PC  is
cooled  on  a  chill  belt[3,4] as  it  provides  a  desirable  firmer
texture,  better  flexibility,  gloss,  and reduced adhesiveness as
compared to DSP. The TSC when used in PCP shows no oiling
off  and  has  better  melting  properties  compared  to  other
emulsifying salts[5].

Milk  proteins  are  essential  for  all  structural  networks  and
textural properties of almost all dairy products and play a crit-
ical  role  in  their  functional  properties.  Heterogeneous  milk
proteins  can  be  fractionated  into  individual  fractions  using
various  membrane  separation  techniques.  However,  tradi-
tionally  cheese  or  rennet  casein  powder  made  using
chymosin has been a primary source of casein or intact casein
used in PCPs. From a product and technological point of view,
caseins are by far the most essential and valuable component
of  milk[6].  Most  of  the  functional  properties  of  the  casein
micelle  depend  on  its  surface  properties[7,8] and  molecular
structure[9].  Standard  processing  and  drying  techniques  do
not  change  the  casein  micellar  structure  and  preserve  the
native properties of the micelles[8].

Milk  protein  concentrate  (MPC)  is  produced  industrially
using  ultrafiltration.  This  process  concentrates  milk  proteins
(casein and serum proteins) in the same ratio as found in the
milk  from  which  it  is  manufactured[10].  However,  lactose  is
removed  by  adding  diafiltration  water  during  processing  to
increase  the  protein  content.  Hence  MPC has  the  advantage
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of  low  lactose  and  a  high  amount  of  soluble  milk  proteins.
However,  in  certain products,  such as  high heat  stable prod-
ucts,  some  emulsions,  etc.,  the  amount  of  MPC  that  can  be
utilized  in  a  formulation  is  limited  by  the  level  of  serum
(whey)  protein  present  in  MPC.  Using MPC in  these formula-
tions can result in defects, including precipitation and floccu-
lation, resulting in undesirable product characteristics such as
coagulation,  poor  heat  stability,  etc.  In  some  applications,
protein  ingredients  with  a  reduced  level  of  serum  proteins
may be preferred.

The level of serum (whey) protein in skimmed milk can be
reduced using microfiltration (MF) to produce micellar casein
concentrate (MCC)[10−12] with altered casein-to-total  nitrogen
ratio.  However,  MPC and MCC alone cannot  deliver  the  criti-
cal  functional  properties  required  in  products  such  as  high
heat stability, emulsions, yogurt, and PCPs. The reason is that
the  membrane  system  separation  involves  fractionation
through physical means and produces a soluble protein prod-
uct;  hence,  the casein and serum proteins are in the micellar
and native state. The casein micelles are intact, and the κ-CN,
which provides steric  stability  to the casein micelles,  still  has
the  glyco-macro  peptide  (GMP)  attached,  providing  a  nega-
tive charge on its surface. This negative charge interferes with
network  formation  in  the  presence  of  emulsifying  salts  and
impacts product functionality[13−17].

One of the methods used to alter the functional and struc-
tural  properties  of  milk  proteins  at  the  molecular  level  is  by
crosslinking proteins with enzymes, particularly the transglu-
taminase (TGase, EC 2.3.2.13) enzyme. It is used in many foods
to  crosslink  proteins  to  enhance  the  functional  properties  of
products.  The  protein  crosslinking  can  change  food's  chemi-
cal, structural, textural, functional, and nutritional characteris-
tics.  Crosslinking  is  described  as  the  covalent  bonding  of  a
protein  to  itself  or  other  proteins  in  a  system[13−16,18,19].
Crosslinking  of  proteins  may  help  change  or  improve  food
proteins'  solubility,  foaming,  rheological,  and  emulsifying
characteristics[19].  The  cross-linking  can  be  intramolecular
(between polypeptide chains within a protein) or intermolec-
ular  (between  proteins)[13−16,20] or  among  CNs  and  whey
proteins  or  any  different  proteins[13−17].  The  application  and
utilization of TGase and its basics have been reviewed[19−28].

Using  a  crosslinking  enzyme  can  potentially  modify  the
physical  properties  of  casein,  which  may  prevent  the  detri-
mental  properties  of κ-CN  that  are  typically  observed  when
MPC  or  MCC  is  used.  TGase  catalyzes  the  acyl  transfer  reac-
tion between protein-bound glutaminyl residues and primary
amines[29] and  forms  a  covalent  bond  between  a  free  amino
group  (i.e.,  lysine)  and  peptide-bound  glutamine.  It  forms  a
framework  of  additional  iso-peptide  bonds  that  impact  the
food's  functional  properties,  such  as  gelation  capability,
viscosity, or water binding capacity[29,30]. Caseins have a flexi-
ble  open  structure,  and  they  are  an  excellent  substrate  for
TGase[31,32] as  compared  to  undenatured  globular  whey
proteins[31,33].  The  high  susceptibility  of κ-CN  towards
crosslinking is  likely  due to  its  peripheral  position on the CN
micelles, and the high susceptibility of β-CN is due to its ease
of  accessibility  in  the  micelle  structure  and  dynamic
nature[34,35].  However,  in  the  absence  of  amine  substrates,
TGase is  capable of  catalyzing the deamidation of  glutamine

residues[14,24,34,36,37].  The  deamidation  reaction  can  cause
partial  hydrolysis  of  proteins  at  high  TGase  levels[14,24,36−38].
The  authors  used  TGase  in  MPC  and  MCC  to  assess  the
changes in functionality[16] and theorized that it is possible to
use  transglutaminase  to  create  a  casein-based  protein
network from the native casein micelles  in  MPC or  MCC that
has improved functionality in various products[13−17].

Changes  in  functionality  after  TGase  addition  in  skimmed
milk  or  sodium  caseinate  solutions  have  been  reported.
Changes in heat and alcohol stability[16,35,39−46], and emulsify-
ing  capacity[16,34,35,39,46−48] have  been  reported  in  milk  and
sodium  caseinate  solutions  after  TGase  addition.  Changes  in
the  properties  of  yogurt,  including  water  holding  capacity,
syneresis,  texture,  and  firmness  viscosity  after  TGase-added
milk was used for yogurt manufacture, have been reported by
various researchers[16,23,49−55]. TGase treatment has been used
in  fresh  cheeses[56],  PCP[13,17],  and  imitation  mozzarella
cheeses[14,15,57].

Conflicting  reports  on  the  impact  of  TGase  on  casein
micelle  structure  and  functionality  may  be  related  to  the
differing  conditions  (i.e.  temperature,  TGase  concentration,
micelle  concentration,  pH)  utilized  during  the  TGase  treat-
ments. Recently, in our laboratory PCP loaf formulation using
DSP  was  manufactured,  and  changes  in  the  functionality  of
PCP,  especially  melted  characteristics,  were  observed[17].
Since the market for SoS is also much bigger, our experiment
was  planned  to  use  TGase-treated  MPC  and  MCC  in  a  SoS
formulation  and  see  the  impacts  on  melted  and  unmelted
characteristics of PCP.

 Materials and methods

 Experimental design
Three replicates of MCC and MPC were produced using MF

and UF, respectively, from three different lots of milk. Each lot
of  retentate was divided into three equal  portions,  and each
one  was  subjected  to  TGase  treatment  which  included:
control (C, no TGase), low (L, 0.3 U/g protein), and high (H, 3.0
U/g protein).  TGase levels were selected to cover wide cross-
linking possibilities and how this will impact the functionality
of PCP, compared to our previous study[13], which used seven
TGase  units  per  gram  of  protein.  Each  treated  retentate  was
spray-dried  separately  to  obtain  powders.  These  individual
powder samples obtained were used as ingredients in a PCP
SoS formulation manufactured in a rapid visco analyzer (RVA).
A  2  x  3  factorial  design  experiment  with  two  product  types
(MPC  and  MCC)  and  three  TGase  enzyme  levels,  namely
control  (C),  low  (L),  and  high  (H),  were  used.  Details  of  the
experimental design are given in Fig. 1.

 Manufacture of TGase-treated MCC and MPC powders
Raw  milk  received  was  cold  separated  (6  °C)  at  the  SDSU

Dairy  Pilot  plant,  and  the  skimmed  milk  obtained  was  batch
pasteurized (63 °C for 30 min) and cooled to 4 °C. The pasteur-
ized skimmed milk (SM) was divided into two equal lots. Each
SM  lot  was  used  for  pilot-scale  production  of  MCC  and  MPC
using  spiral  wound  membranes  in  an  MF/UF  unit  with  two
single  long housings arranged in  parallel.  Three replicates  of
MCC  and  MPC  were  produced  using  three  different  lots  of
milk. MF (0.5 µ polyvinylede fluoride) and UF (10 kD polyether
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sulfone  spiral  wound  membranes)  were  procured  from
Dominick  Hunter  Filtration  Divison  –  N.A  (Parker  Hannifin
Corporation,  Oxnard,  CA,  USA).  The  MF  and  UF  operations
were  performed  at  23.3  °C  with  a  final  retentate  volume  of
45.4 L resulting in a volume reduction ratio (VRR) of approxi-
mately 5 (on a feed volume basis). The MF was performed at a
TMP of 86.2 kPa with DF water added at six different intervals
totaling 100% (on a  feed volume basis)  to  control  the reten-
tate  viscosity  and  maximize  serum  protein  removal.  The  UF
was performed at  276 kPa TMP with DF water  added at  four
different  intervals  totaling  40%  (on  a  feed  volume  basis)  to
control  the  retentate  viscosity  and  remove  soluble  solutes.
Details of the process are discussed in our previous paper[10].

After  dividing  each  lot  of  MCC  and  MPC  retentate  into
three equal portions, they were treated with TGase, (Activa TI,
Ajinomoto Food Ingredients LLC, Chicago, IL,  USA, activity of
100 units/g). For each TGase treatment, the required quantity
TGase  enzyme  was  weighed  and  mixed  with  100  mL  of

distilled  water,  with  details  of  the  procedure  given  in  our
previous paper[14]. After enzyme addition to the retentate and
thorough mixing,  each treatment was incubated at  50 °C for
25  min.  The  retentates  were  heated  to  72  °C  for  10  min  to
inactivate the enzyme and then cooled to 4 °C. All retentates
were  then  spray  dried  (ASO  412E,  Niro  Inc.,  Columbia,  MD,
USA)  with  inlet  air  temperature  maintained  at  205  °C  and
outlet  temperature  maintained  at  90  °C.  Powders  were
collected  in  plastic  bags  (Associated  Bag  Company,  Milwau-
kee,  WI,  USA)  and  stored  at  room  temperature  until  further
analysis was completed.

 Processed cheese product formulation
The  MPC  and  MCC  powders  were  used  as  ingredients  in

SoS PCP formulations.  The PCP formulations  for  all  the  repli-
cates  were  developed  and  balanced  using  Techwizard  (an
Excel-based  formulation  software  program  by  Owl  Software,
Columbia, MO, USA) to have 20.0% total fat,  48.0% moisture,
1.26%  salt,  and  17.5%  protein  with  the  treatment  powders

 
Fig. 1    Experimental design for the manufacture of treatment powders. Processed cheese product (slice) treatment: MCC-C = micellar casein
concentrate powder, control; MCC-L = micellar casein concentrate powder, low TGase level; MCC-H = micellar casein concentrate powder, high
TGase  level;  MPC-C  =  milk  protein  concentrate  powder,  control;  MPC-L  =  milk  protein  concentrate  powder,  low  TGase  level;  MPC-H  =  milk
protein concentrate powder, high TGase level.
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utilized  contributing  15.0%  protein  to  the  formulation.  The
other ingredients included extra sharp premium natural aged
cheddar  cheese  (Cabot  Creamery  Cooperative,  Cabot,  VT,
USA),  enzyme-modified  cheese  (Bongards'  Creameries,
Bongard,  MN,  USA),  salted  butter  (Great  Value,  Wal-Mart
Stores, Inc, Bentonville, AR, USA), trisodium citrate (KIC Chem-
ical  Inc.,  New  Paltz,  NY,  USA),  dibasic  sodium  phosphate
(Rhodia Inc., Cranbury, NJ, USA), sorbic acid (KIC chemical Inc,
New  Peltz,  NY,  USA),  deproteinized  whey  powder  (Agropur
Inc., Le Sueur, MN, USA), lactic acid 85% w/w (Fisher Scientific,
Fair  Lawn,  NJ,  USA),  and  iodized  salt  (Great  Value,  Wal-Mart
Stores,  Inc,  Bentonville,  AR,  USA).  The  cheddar  cheese  had  a
composition  of  fat  (31.5%),  moisture  (42.0%),  lactose  (0.8%),
salt  (1.8%),  and  total  protein  (25.01%  with  intact  CN  16.47%
and 4.6 pH soluble N 8.54%). The final selected detailed ingre-
dient blend formulations are shown in Table 1.

 Processed cheese product manufacture
Each formulation was used to prepare a  pre-blend (200 g)

by weighing and mixing all the ingredients (except disodium
phosphate) in a mixer (Kitchen Aid, St. Joseph, MI, USA) for 30
min  (Table  1).  Each  formulation  was  then  manufactured  in  a
Rapid  Visco  Analyzer  (RVA-4,  Newport  Scientific,  New  South
Wales,  Australia)[13,17].  The  required  amount  of  disodium
phosphate was weighed in  each RVA canister  (Perten Instru-
ments Inc, NA, Springfield, IL, USA) along with 15 g of the pre-
blend and 0.5 g of water. The blend of ingredients was mixed
at 1,000 rpm at 95 °C for 2 min and then mixed at 160 rpm for
1 min. Twelve batches of PCP were produced from each pre-
blend,  and  the  continuous  viscosity  profile  obtained  from
each batch was collected. The apparent viscosity at the end of
manufacture  (VAM) was  measured as  the average of  the last
five  points  on  the  viscosity  profile.  The  12  batches  were
divided into various subsamples for analysis (four for penetra-
tion  hardness,  three  for  DSR,  and  the  remainder  for  other
analysis).  For  the  penetration  test,  molten  PCP  immediately
after  manufacture  in  RVA  was  poured  into  a  plastic  X-plate
(100  ×  15  mm,  Fisherbrand,  Fisher  Scientific,  Pittsburgh,  PA,
USA)  and  cooled  at  4  °C  until  further  analysis  was
completed[17].  For  DSR  analysis  and  the  modified  Schreiber
melt  test,  the  PCP  samples  were  poured  into  plastic  molds

(30  mm  diameter).  They  were  cooled  to  room  temperature
and  then  transferred  to  4  °C  until  further  analysis  was
completed.

 Chemical analysis of PCP
The  pH  of  each  sample  was  measured  in  duplicate  with  a

pH meter  (Corning pH meter  340,  Corning Incorporated,  NY,
USA)  with  an  Accumet® -  gel-filled  glass  electrode  with  a
spear tip (Fisher Scientific, NJ, USA). The proximate analysis of
the  PCP  samples,  including  moisture,  fat,  and  total  protein,
was carried out using standard methods[58].

 Functional analysis (unmelted textural properties)
The  penetration  hardness  test  was  performed  using  a

TA.XT2  Texture  Analyzer  (Texture  Technologies  Corp.,  Scars-
dale,  NY,  USA;  Stable  Microsystems,  Godalming,  UK)  as
described  by  Salunke  et  al.[17].  In  this  test,  the  sample  (15  g
and  10  mm  thick)  of  PCP  in  an  X-plate  was  placed  directly
under  the  probe,  and  each  quarter  of  the  plastic  X-plate
served  as  a  replicate.  The  samples  were  tempered  to  15  °C,
and  a  uniaxial  penetration  was  performed  with  a  TA-8,  6.35
mm diameter stainless steel ball, and a penetration depth of 3
mm with a crosshead speed of 0.8 mm/s.

 Functional analysis (melted textural properties)

 Dynamic stress rheology (DSR)
For DSR analysis,  the PCP samples were removed from the

plastic  mold,  and  the  DSR  test  was  carried  out[15].  PCP
samples were prepared by cutting a thin slice (2.0 mm) using
a  food  slicer  (Model  1042W,  The  Rival  Co.  Kansas  City,  MO,
USA) and wire cutter.  Cylindrical  cheese samples 28.3 mm in
diameter  were  cut  with  a  cork  borer.  The  cheese  samples
were  tempered  to  20  °C  prior  to  DSR  analysis.  DSR  analysis
was performed using a rheometer (Viscoanlyser, ATS Rheosys-
tems, Rheologica Instruments Inc., NJ, USA) with parallel plate
geometry  of  30  mm  diameter.  The  maximum  stress  limit  for
the linear viscoelastic region was obtained as 400 Pa from the
stress sweep experiment. Subsequently, a temperature sweep
was  performed  using  the  same  rheometer  (parallel  plate
geometry)  at  1.5  Hz frequency and constant  stress  of  400 Pa
(linear  viscoelastic  region).  The  exposed  cheese  surface  was
coated with vegetable oil  (Crisco pure vegetable oil,  The J M

Table 1.    Ingredient blend formulations utilized to manufacture the six Process cheese product (slice) treatment.1

Ingredient
MCC-C MCC-L MCC-H MPC-C MPC-L MPC-H

% (Wt./Wt.)

Water 40.63 40.55 40.62 40.50 40.45 40.72
Salt 1.25 1.25 1.25 1.25 1.25 1.25
Tri sodium citrate 2.00 2.00 2.00 2.00 2.00 2.00
Whey deproteinized 6.98 7.07 6.86 6.02 6.08 5.75
Lactic acid 1.00 1.00 1.00 1.00 1.00 1.00
Butter (salted) 21.49 21.48 21.55 21.66 21.64 21.65
Sodium phosphate, Dibasic 0.50 0.50 0.50 0.50 0.50 0.50
EMC paste 0.75 0.75 0.75 0.75 0.75 0.75
Sorbic acid 0.20 0.20 0.20 0.20 0.20 0.20
Cheddar cheese 5.00 5.00 5.00 5.00 5.00 5.00
Treatment powder 20.21 20.20 20.27 21.13 21.12 21.18
Total 100.00 100.00 100.00 100.00 100.00 100.00

1 Processed cheese product (slice) treatment: MCC-C = micellar casein concentrate powder, control; MCC-L = micellar casein concentrate powder, low TGase
level; MCC-H = micellar casein concentrate powder, high TGase level; MPC-C = milk protein concentrate powder, control; MPC-L = milk protein concentrate
powder, low TGase level; MPC-H = milk protein concentrate powder, high TGase level.
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Smucker Co., OH, USA) to minimize drying during the temper-
ature  sweep.  A  temperature  ramp  from  20  to  90  °C  at  a  1
°C/min rate was completed to measure the rheological prop-
erties.  Each  sample's  measurements  were  taken  in  triplicate
and  included  the  elastic  modulus  (G′)  and  viscous  modulus
(G″). The transition temperature (TT) and tangent angle (tan δ)
were  calculated.  The  TT  was  defined  as  the  lowest  tempera-
ture during the temperature gradient experiment, where tan
δ equaled 1 (G′ = G″).
 Modified Schreiber melt test

The meltability of  each PCP sample was measured using a
modified  Schreiber  test[15].  Each  PCP  sample  was  cut  into  a
28.5  mm  diameter  and  7  mm  height  cylinder  and  tempered
to 20 °C for 10 min prior to analyses. Four samples from each
treatment  were  placed  on  four  0.95  mm  thick  aluminum
plates (100 mm × 100 mm) and immediately transferred to a
forced draft  oven (Fisher  Scientific)  at  90 °C.  After  7  min,  the
plates with the melted cheese were cooled to room tempera-
ture. The diameter of the melted cheese was measured using
a Vernier  caliper  at  four  locations  and the  average recorded.
Meltability of the PCP was reported as the change in the area
of  the  melted  cheese  in  millimeters  squared  relative  to  the
original area.

 Statistical analysis
Collected  data  was  analyzed  using  the  Proc  GLM  factorial

analysis of SAS (SAS Institute Inc., Cary, NC, USA) with a Type I
error rate (α)  of 0.05 to test for significant differences among
treatments.  This  study  utilized  a  2  ×  3  factorial  design  with
two  products  (MCC  or  MPC)  and  three  TGase  enzyme  levels
(control,  low  and  high).  In  addition,  the  product  x  enzyme
level  interaction  was  also  tested.  Mean  value  comparisons
were  made  at  a  0.05  level  of  significance  using  least  signifi-
cance  difference  (LSD),  and  results  were  considered  signifi-
cant at p < 0.05.

 Results

 PCP composition
Mean  PCP  composition,  including  moisture,  fat,  protein,

and pH of the six PCP treatments, are shown in Table 2. Minor
differences  were  observed  in  moisture,  fat,  protein,  and  pH,
however, the differences were not statistically significant (p >
0.05).  These  results  were  expected  because  all  the  replicates
used  in  this  study  were  balanced  for  moisture,  fat,  salt,
protein,  and  lactose  using  various  ingredients  mentioned  in
Table 1.

 Functional properties
The  functional  properties  of  PCP  were  analyzed  using  an

RVA  for  viscosity  after  manufacture  (VAM),  penetration  test
for  penetration  hardness,  dynamic  stress  rheology  (DSR)  for
transition  temperature  (TT),  and  Schreiber  melt  test  for
change in melt area. Mean squares and P values (in parenthe-
ses) of VAM, penetration hardness, TT, and melt area of the six
PCP manufactured using MPC and MCC are shown in Table 3.
There  was  a  significant  replicate  effect  in  TPA-hardness  (p <
0.05), which may have resulted from variations in manufactur-
ing  conditions  among  the  replicates.  There  was  a  significant
(p <  0.05)  effect  of  product  type and enzyme level  in  all  PCP
functional  properties  (VAM,  melt  area,  TPA-hardness,  and
DSR-melt temperature) (Table 3). There was also a significant
(p < 0.05) interaction effect of product type x enzyme level in
all  PCP  functional  properties  except  penetration  hardness
(Table 3). The product type and enzyme level significance (p <
0.05)  indicates  a  change  in  all  PCP  functional  properties.  In
contrast,  the  significance  (p <  0.05)  of  the  interaction  term
product  type  x  enzyme  level  indicates  that  these  changes
were not linear.

 VAM
The  apparent  viscosity  is  continuously  measured  during

PCP manufacture  in  the RVA,  and the VAM can be used as  a
measure  of  cheese  viscosity  during  manufacture.  The  mean
values of the VAM of the six PCP are indicated in Table 4. PCP
manufactured  using  MPC-C  or  MPC-L  had  significantly  (p <
0.05)  higher  VAM  than  the  MCC-C  and  MCC-L  treatments.  In
both the MCC and MPC treatments,  there  was  no significant
(p < 0.05) difference in manufacturing viscosity between PCP
made  using  the  low  level  of  TGase  and  control  (MCC-C  vs.
MCC-L  and  MPC-C  vs.  MPC-L).  PCP  manufactured  with  high
TGase levels (MCC-H or MPC-H) had a significantly higher (p <
0.05)  VAM  as  compared  to  their  respective  control  and  low
TGase  treatments.  However,  there  was  no  significant  differ-
ence  (p <  0.05)  between  the  MPC-H  and  MCC-H  treatments.

Table 2.    Mean (n = 3) composition of Processed cheese product (slice)
treatments.1

Parameters MCC-C MCC-L MCC-H MPC-C MPC-L MPC-H

pH 5.70 5.64 5.69 5.70 5.74 5.66
Fat (%) 19.93 19.94 19.97 19.99 19.95 19.97
Protein (%) 17.52 17.49 17.49 17.49 17.51 17.55
Moisture (%) 47.95 47.96 47.94 47.96 47.95 47.98

1 Processed  cheese  product  (slice)  treatment:  MCC-C  =  micellar  casein
concentrate  powder,  control;  MCC-L  =  micellar  casein  concentrate
powder,  low  TGase  level;  MCC-H  =  micellar  casein  concentrate  powder,
high TGase level; MPC-C = milk protein concentrate powder, control; MPC-
L  =  milk  protein  concentrate  powder,  low  TGase  level;  MPC-H  =  milk
protein concentrate powder, high TGase level.

Table  3.    Mean  squares  and p values  (in  parentheses)  of  RVA  viscosity,  melt  area,  hardness,  and  tan  delta  of  the  PCP  manufactured  from  treatment
powders.

Factors Df RVA viscosity Change in area Hardness Tan delta

Replication 2 771,444.57 (0.085) 56,935.00 (0.089) 5,511.35 (0.002)* 16.71 (0.328)
Product type 1 308,265.16 (0.005)* 405,215.28 (0.0008)* 22,552.99 (<0.0001)* 317.24 (<0.0001)*
Enzyme level 2 14,197,912.72 (<0.0001)* 565,898.42 (<0.0001)* 2,740.38 (0.021)* 417.53 (<0.0001)*
Product type x Enzyme level 2 139,446.25 (0.022)* 262,920.46 (0.001)* 775.23 (0.239) 142.79 (0.003)*
Error 10 24,246.61 18,276.87 466.97 13.37

* Statistically significant at p < 0.05.
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Both products (MCC and MPC) and enzyme levels (C, L,  or H)
affected VAM.

 Penetration hardness
The penetration hardness measures unmelted cheese firm-

ness  using  a  texture  analyzer.  The  mean  values  of  penetra-
tion  hardness  of  the  six  PCP  are  shown  in Table  4.  The  PCP
manufactured using MCC had a significantly higher (p < 0.05)
hardness  than  the  respective  MPC  treatment.  As  the  level  of
TGase  enzyme  increased,  there  was  an  increase  in  penetra-
tion  hardness.  However,  PCP  made  from  high  TGase  levels
(MCC-H  and  MPC-H)  showed  lower  penetration  hardness
values  even  though  they  seemed  to  be  hard  visually  and
physically. This may be due to the formation of tiny spherical
particles  and  possibly  because  it  had  higher  interstitial  air
pockets  causing  the  penetration  probe  to  penetrate  at  a
lower force. In addition, MCC-H and MPC-H had higher levels
of  crosslinking,  and  the  MCC-H  sample  also  had  hydrolyzed
peptides[14,16].  Both  products  (MCC  and  MPC)  and  enzyme
levels (C, L, or H) affected the firmness of the PCP.

 Melt area
The  modified  Schreiber  melt  test  measures  the  melt  and

flow (spread) behavior  of  PCP.  The mean values of  melt  area
(change in the area) of the six PCP are shown in Table 4. PCP
manufactured using MCC-C or MCC-L had a significantly (p <
0.05) higher melt area than that of MPC-C and MPC-L. MCC-C
had  the  highest  melt  area  and  was  significantly  (p <  0.05)
higher than the other samples. The addition of TGase (MCC-L)
significantly  (p <  0.05)  reduced  melt  area,  but  it  still  had  a
higher  melt  area  than  MCC-H  and  all  MPC  samples.  PCP
having higher  meltability  will  have more melt  area and vice-
versa.  At  the  higher  TGase  level,  MCC-H  showed  very  little
melt  and  was  significantly  (p <  0.05)  lower  than  MPC-H.
However,  melt  area decreased with TGase treatment in  both
MPC and MCC.

 Rheology
The  rheological  characteristics  of  PCP  samples,  G',  G",  G*,

and viscosity obtained by dynamic stress rheology are shown
in Figs 2 & 3. The MCC-C sample had higher G' and G" values
as compared to the MPC-C sample (Fig. 2), with similar results
observed  for  the  G*  and  viscosity  results  (Fig.  3).  The  MCC-C
being higher in casein showed lower G',  G",  G*, and viscosity
values  after  80  °C  whereas  MPC-C  having  more  serum
proteins  melted  at  70  °C.  The  samples  with  higher  TGase
(MCC-H  and  MPC-H)  showed  higher  G',  G",  G*,  and  viscosity
than  other  samples,  indicating  TGase  crosslinking  affected
the viscoelastic properties of cheese. The samples with lower
TGase  (MCC-L  and  MPC-L)  had  rheological  characteristics
between the control and higher TGase samples.

 Transition temperature (TT)
The  mean  values  of  DSR-melt  temperature  (TT)  of  the  six

PCP are shown in Table 4. The PCPs manufactured with MCC
had higher TT values than the corresponding MPC. The MPC-
H,  MPC-L,  and  MCC-L  had  similar  TT  values.  The  PCP  made
using  control  (MCC-C  and  MPC-C)  showed  the  lowest  TT
values.  The  TT  of  the  MPC-L  was  between  the  MCC-C  and
MCC-L. Similar to the melt area data, the MCC-H significantly
differed  from  the  other  treatments.  The  PCP  made  using
MCC-H did not melt  at  90 °C as it  was crosslinked too much.
Both products (MCC and MPC), as well as enzyme levels (C, L,
or H), affected the melt area and TT.

 Discussion

After  TGase  treatment  and  drying,  MCC  and  MPC  were
used  as  ingredients  for  manufacturing  PCP  using  the  SoS
formulation  (Table  1).  Differences  in  the  product  (MPC  and

Table 4.    Mean (n = 3) RVA viscosity, melt area, hardness, and tan delta of the PCP manufactured from treatment powders at 3 levels (C, L, and H).

Parameter MCC-C MCC-L MCC-H MPC-C MPC-L MPC-H

RVA viscosity (cP, n = 36) 728.7c ± 47.2 725.5c ± 72.5 3653.1a ± 143.3 1204.3b ± 269.8 1122.4b ± 144.7 3565.7a ± 276.9

Change in area (mm, n = 12) 1081.9a ± 203.4 708.4b ± 29.3 61.3e ± 26.7 412.0c ± 44.8 323.4cd ± 104.4 215.8d ± 241.0

Hardness (g, n = 12) 402.1b ± 33.4 456.5a ± 54.3 398.0b ± 50.4 340.7c ± 35.1 359.8c ± 21.9 343.8c ± 14.7

Tan delta (°C, n = 9) 65.97c ± 3.77 69.60b ± 3.78 90.00a ± 0.00 61.97d ± 2.94 67.99bc ± 4.88 70.42b ± 4.75

a –e Means  in  a  row  with  common  superscripts  do  not  differ  (p ≥ 0.05).  Processed  cheese  product  (slice)  treatment:  MCC-C  =  micellar  casein  concentrate
powder, control; MCC-L = micellar casein concentrate powder, low TGase level; MCC-H = micellar casein concentrate powder, high TGase level; MPC-C = milk
protein concentrate powder, control; MPC-L = milk protein concentrate powder, low TGase level; MPC-H = milk protein concentrate powder, high TGase level.

0
5,000

10,000
15,000
20,000
25,000
30,000
35,000
40,000

20 30 40 50 60 70 80 90

G
' (

Pa
)

Temperature (℃)

0

2,000

4,000

6,000

8,000

10,000

12,000

20 30 40 50 60 70 80 90

G
" (

Pa
)

Temperature (℃)

MCC-C MCC-L MCC-H
MPC-C MPC-L MPC-H

 
Fig. 2    Rheological characteristics of PCP (G' and G") of process
cheese  samples.  Processed  cheese  product  (slice)  treatment:
MCC-C  =  micellar  casein  concentrate  powder,  control;  MCC-L  =
micellar  casein  concentrate  powder,  low  TGase  level;  MCC-H  =
micellar  casein  concentrate  powder,  high  TGase  level;  MPC-C  =
milk protein concentrate powder, control;  MPC-L = milk protein
concentrate  powder,  low  TGase  level;  MPC-H  =  milk  protein
concentrate powder, high TGase level.
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MCC)  and  TGase  level  had  a  significant  effect  on  the
unmelted  (hardness)  and  melted  (VAM,  melt  area,  rheology,
and TT) characteristics of PCP.

The  MCC  and  MPC  formulations  were  balanced  for  total
protein  content  (Tables  1 & 2);  hence  the  MCC  provided  a
higher level of intact CN and less serum protein, whereas MPC
had  a  lower  level  of  intact  CN  and  a  higher  level  of  serum
protein.  The  difference  in  the  constituents  was  because  of
inherent  processing  differences  between  MF  and  UF  to
produce  MCC  and  MPC,  respectively[10].  Compared  to  MPC,
the MCC retentate was significantly (p < 0.05) higher in TN/TS
ratio[10].  In  addition,  MCC  powder  protein  and  calcium
contents  were  higher  than  the  MPC  powder,  whereas  the
lactose  content  was  almost  50%  less  than  that  of  MPC
powder[14].

Both  product  type  and  enzyme  level  affected  the  VAM
(Tables 3 & 4). The PCP manufactured using MPC had a higher
viscosity  than  those  manufactured  using  MCC  (Table  4).  The
PCP VAM was affected by the level of intact casein and serum
proteins.  The  VAM  results  from  various  protein  interactions
with protein and fat[59].  These interactions are dependent on
the  characteristics  of  the  protein  that  forms  the  structure  of
the  PCP[60],  and  the  presence  of  intact  (unhydrolyzed)  CN
which  results  in  a  fibrous  CN  network[3,4,13,17,61,62].  The  addi-
tional  serum  protein  in  the  MPC  treatments  can  aggregate
due  to  the  high  cook  temperature  (95  °C)  used  during  PCP
manufacture. This aggregate can cause an increase in viscos-
ity[4,13,17,62].  Similar  observations  were  noted  by  other

researchers and concluded that the denaturation of serum or
whey protein during PCP manufacture forms a  heat-induced
irreversible gel and produces a PCP with restricted melt char-
acteristics[3,4,61,62]. Even though the MPC had higher VAM than
the MCC samples, the hardness and meltability were lower.

Post-manufacturing melt characteristics were measured by
a  modified  Schreiber  melt  test,  rheology,  and  TT,  whereas
unmelted characteristics were measured using a penetration
test. The cheese melt is defined as cheese's ability to flow and
spread[15,63],  and  a  modified  Schreiber  melt  test  can  be  used
to  measure  the  meltability.  Additionally,  DSR  was  used  to
measure the rheological parameters (G', G", G*, and viscosity)
given in Figs 2 & 3. The TT was calculated where tan δ (G″/G′)
= 1 and is a convenient measure of the melting point of PCP
because  this  is  the  lowest  temperature  where  a  material
changes from primarily  elastic  to  primarily  viscous[4] and has
been used to quantify the melting characteristic of PCP[15].  A
cheese  that  melts  easily  and  quickly  will  have  a  low  TT  and
vice-versa[15].

The  extensive  crosslinking  of  SP  and  casein  at  higher
temperatures[4,64],  during  PCP  manufacture  in  formulations
having MPC causes restricted melt characteristics. The melta-
bility[4,15,62,65] and  firmness[4,14,62,65] of  PC  foods  decreased
significantly  with  an  increased  amount  of  WP  and  were
attributed to the emulsification and denaturation of SP[4,62,65].
However, others found similar results but concluded that the
SP  inhibits  meltability  but  is  not  the  only  cause  of  the  melt
defect[66].  As  SP  concentration  increased,  the  fibrous  struc-
tures  became  apparent,  responsible  for  the  loss  of  cheese
meltability[66].

Penetration  hardness  is  a  direct  indication  of  the  firmness
of PCP. Even though the VAM was higher for PCP containing
MPC,  its  penetration  hardness  values  were  less,  indicating  a
soft  body.  The  use  of  high  intact  CN  cheese  in  PCP  formula-
tion has been shown to increase the hardness of PCP[3,4,14,62].
The  higher  hardness  in  samples  having  MCC  in  the  formula-
tion  has  been  reported,  and  the  differences  were  attributed
to higher intact CN and lower serum protein content in MCC
used[14,62].  The  use  of  MPC  resulted  in  a  soft  body  and
restricted  melting  characteristics  (Table  4).  It  was  because  of
the  difference  between  intact  casein  and  serum  protein  in
MPC and MCC powders used in the PCP formulation.

The  MCC  and  MPC  retentates  were  treated  with  TGase
before drying[14,15],  which significantly changed the function-
ality of the SoS PCP. The TGase action caused a high amount
of  inter-and  intra-protein  crosslinking  in  MCC  and  MPC
samples, contributing to these changes[13−16]. The treatments
with  TGase  addition  at  high  levels  (MCC-H  and  MPC-H)
crosslinked  protein  fractions  via  covalent  bonding[14,16].  As  a
result,  they  changed  the  surface  properties  of  CN  micelle,
causing  changes  in  viscosity,  emulsification  capacity,  and
water holding capacity[14,16], which in turn caused an increase
in  VAM.  We theorize  that  the  strong covalent  crosslinking at
the  high  TGase  level  in  MCC-H  and  MPC-H  caused  a  signifi-
cant  increase  in  VAM.  This  covalent  interaction  is  difficult  to
break and may have caused different protein-protein interac-
tions  and  network  formation,  affecting  VAM.  Authors  have
reported changes in VAM after TGase treatment in PCP[13] and
loaf-type  PCP[17].  Other  researchers  have  also  reported
increased  viscosity  after  TGase  treatment  in  other  product
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Fig.  3    Rheological  characteristics  of  PCP  (G*  and  viscosity)  of
process  cheese  samples.  Process  cheese  product  (slice)
treatment: MCC-C = micellar casein concentrate powder, control;
MCC-L  =  micellar  casein  concentrate  powder,  low  TGase  level;
MCC-H = micellar  casein concentrate powder,  high TGase level;
MPC-C = milk protein concentrate powder, control; MPC-L = milk
protein  concentrate  powder,  low  TGase  level;  MPC-H  =  milk
protein concentrate powder, high TGase level.
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matrices,  such  as  yogurt,  because  of  TGase
crosslinking[51,52,55].

Similarly,  higher covalent crosslinking due to TGase action
modifies  CN and SP at  the molecular  level  causing restricted
melt  characteristics[13,15,17].  The  casein  molecules  (their
number,  strength,  and type of  bond)  are fundamental  build-
ing  blocks  of  rheological  properties[15,63],  and  the  melting  of
cheese  is  primarily  determined  by  the  number  and  strength
of CN-CN interactions above 50 °C[15,67].  The covalent bond is
the  most  robust  bond  linkage,  which  is  very  difficult  to
destroy  in  the  conditions  encountered  during  PCP  manufac-
ture.  The  MCC-H  and  MPC-H  had  higher  levels  of
crosslinking[13−16] and low meltability, while MCC-L and MPC-
L had a low level of crosslinking and hence had more melta-
bility as measured by melt tests.

The PCP made using MCC-H did not melt at 90 °C as it was
crosslinked too much[14,15]. These results are supported by the
Schreiber  melt  test  (Table  4)  and  rheology  (Figs  2 & 3),  as
described above.  As  expected,  samples  with a  low melt  area
had a  high TT,  and samples  with a  high melt  area had a  low
TT. The CN-CN interactions were so strong in MCC-H that the
matrix  showed  no  signs  of  melting,  even  at  the  highest
temperature.  MCC,  primarily  intact  CN,  could  be  the  reason
for high TT in PCP. At elevated temperatures (> 40 °C), the CN-
CN  interaction  (the  number  and  strength)  determines  melt-
ing  behavior[63,67].  Hydrophobic  interactions,  electrostatic
repulsion,  hydrogen  bonds,  CCP  crosslinks,  and  disulfide
bonds all  play a critical  role in cheese melt  characteristics[63];
the TGase covalent bonding role needs further investigation.
A  further  detailed  study  is  required  at  a  molecular  level  to
determine the effect of such covalent bonds.

Overall, the use of MCC and MPC in SoS formulation affects
viscosity  during  manufacture,  texture,  and  melt  characteris-
tics.  TGase  treatment  changes  the  functionality  of  MCC  and
MPC  in  SoS  PCP  formulation  with  an  increase  in  viscosity
during manufacture at higher levels of TGase usage and also
restricts melt.

 Conclusions

The  unmelted  and  melted  functional  properties  of  PCP
were  affected  by  TGase  treatment.  The  MPC  samples  had
higher  viscosity  during  manufacture  as  compared  to  MCC
samples. The MPC samples showed restricted melt and softer
texture  compared  to  MCC  samples.  As  the  TGase  addition
increased, there was a significant (p ≤ 0.05) increase in TT and
a  significant  (p ≤ 0.05)  decrease  in  the  Schreiber  melt  area.
Rheological studies also confirmed the results. The PCP made
from MCC had higher TT and Schreiber melt area values than
that made from MPC as an ingredient (TGase or no TGase). It
was concluded that TGase treatment modifies the melt char-
acteristics  of  MCC  and  MPC  in  PCP  slice  formulations.  By
controlling the crosslinking new PCP products can be manu-
factured that meet specific functional requirements.
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