
 

Open Access https://doi.org/10.48130/fmr-0023-0043

Food Materials Research 2024, 4: e008

Biocatalytic β-glucosylation/β-galactosylation of Rebaudioside C by
glycosynthases
Ye-Yang Yu1, Si-Yu Zhang1, Jia-Hui Sun1, Yu-Yang Li1, Yao-Yao Zhang1, Ai-Min Lu2, Li Liu1 and
Josef Voglmeir1* 
1 Glycomics and Glycan Bioengineering Research Center (GGBRC), College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR

China
2 College of Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
* Corresponding author, E-mail: josef.voglmeir@njau.edu.cn

Abstract
Extracts of Stevia rebaudiana Bertoni plant leaves contain a mixture of diterpene glycosides which possess high sweetness and are used as non-
caloric sweeteners in foods and beverages.  One of the most abundant of these steviol  glycosides is  Rebaudioside C (Reb C),  which bears one
esterified β-D-glucose and one glycosidically linked α-L-rhamnosyl-(1→2)-[β-D-glucosyl-(1→4)]-D-glucose trisaccharide. In this work, we isolated
Reb C from commercial Stevia extracts using an orthogonal normal-phase × reversed-phase purification strategy. We then demonstrated that
Reb C could be used as a donor substrate for enzymatic trans glycosylation reactions using chemically synthesized 1-deoxy-1-fluoro-D-glucose
and 1-deoxy-1-fluoro-D-galactose donors and two engineered glycosynthases derived from Agrobacterium and Streptomyces β-glycosidases. This
chemoenzymatic  glucosylation/galactosylation  strategy  may  be  of  use  to  extend  the  current  repertoire  of  steviol  glycosides  analogues  for
analysis or the sensory evaluation of these novel steviol glycosides.
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Steviol  glycosides  are  a  group  of  glycosylated  diterpenes
that can be isolated from the plant leaves of Stevia rebaudiana
Bertoni ('sweet herb'), native to Paraguay and Brazil, where it is
used  to  sweeten  yerba  mate  tea[1−3].  Besides  South  America,
the Stevia rebaudiana plant is now also grown commercially in
countries  including  China,  Japan,  the  USA,  Korea,  India,  and
Vietnam[4].  The  mixture  of  extracted  steviol  glycosides
possesses  an  overall  100−150-fold  sweetness  compared  with
sucrose[5] and its current market value of US  ~700 M (2022) is
expected  to  surpass  a  market  volume  of  US  1B  in  2027
(www.imarcgroup.com/stevia-market).  The  main  constituents
of Stevia extracts are steviol glycosides, which are steviol diter-
penes  with  a  series  of  mono-,  di-,  and  trisaccharide  moieties
(Fig. 1).

The  carbohydrate  heterogeneity  of  steviol  glycosides
isolated from Stevia leaves has also affected the overall  sweet-
ness  of  the  extract,  given  that  the  sweetness  of  each  type  of
glycoside varies significantly when compared to sucrose[6].  For
example, the most abundant steviol glycoside present in stevia
leaves is stevioside, which possesses 210-fold the sweetness of
sucrose,  whereas  other  glycosides  such  as  Rebaudioside  A  or
Rebaudioside B have a slightly lower sweetness of 200 and 150,
respectively.  Another  main  steviol  glycoside  present  in  stevia
leaves  is  Rebaudioside  C  (Reb  C).  Reb  C  possesses  a  relatively
low  sweetness  of  30  and  contains  a  bitter  aftertaste,  as  few
studies  have  been  conducted  on  it,  we  believe  that  changing
the  glycosylation  of  Reb  C  is  a  strategy  to  increase  its  sweet-
ness,  enhance  its  application,  and  extend  the  range  of  steviol
glycosides analogues.

Several genetic and chemoenzymatic approaches have been
developed  to  improve  the  sweetness  of  stevioside  glycosides.
The  application  of  physical  and  chemical  mutagenesis  tech-
niques  as  well  as  transgenic  tools  allowed  the  generation  of
Stevia plant variants with increased and/or altered levels of the
individual  types  of  steviol  glycosides[7−11].  Modifications  of
steviol  glycosides  were  also  described  using  metabolically
engineered  yeast  and  bacteria  in  whole-cell  biotransfor-
mation[12−16].  However,  the  majority  of  reported  research  on
changing  the  glycosylation  of  steviol  glycosides  uses  enzyme
preparations  was  comprehensively  reviewed[17] and  can  be
divided into the use of recombinant glucosyltransferases[18−22],
fructofuranosidases[23−26],  cyclodextrin  glucanotrans-
ferases[27−31], glucosidases[32−36], and galactosidases[37−39]. Inter-
estingly,  no  attempts  to  perform  biotransformation  of  steviol
glycosides using glycosynthases have been reported yet.

Glycosynthases are mutant variants of glycosidases, in which
a catalytically relevant nucleophile in the substrate binding site
(usually aspartic acid or glutamic acid residues), is replaced with
a  small  non-nucleophilic  amino  acid  residue  (commonly
alanine or serine)[40]. While these mutant variants are inactive in
hydrolyzing the glycosidases' native carbohydrate substrates in
the  presence  of  water.  However,  in  the  presence  of  alcohols
which  possess  good  leaving  groups  (i.e.,  1-fluoryl  or  1-aryl
sugar  donors),  glycosynthases  can  catalyze  glycosidic  linkages
at high yields but are void of hydrolase activity. In this work, we
chemically synthesized α-glucosyl and α-galactosyl fluorides as
donor  substrates  and  applied  two  previously  described
glycosynthases  derived from Streptomyces sp.  (StspBGlcE383A,
UniProt  ID  A0A0N6ZTF1)[41] from Agrobacterium sp.
(AgtuBGlcE358S,  UniProt  ID  P12614)[42] to  synthesize  Reb  C
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bearing  additional  glucosylated  and  galactosylated  moieties.
Given  that  Reb  C  is  one  of  the  most  abundant  steviol  glyco-
sides  present  in  Stevia  extracts,  but  has  a  significantly  lower
sweetness  compared  to  other  Rebaudiosides,  the  addition  of
glucose or galactose moieties may be of use for increasing the
overall sweetness of Stevia extracts.

 Materials and methods

 Materials
Pyridine,  acetic  anhydride  ((CH3CO)2O),  sodium  sulfate

(Na2SO4),  magnesium  sulfate  (MgSO4)  and  dichloromethane
(CH2Cl2)  were obtained from Sinopharm Chemical Reagent Co.
(Shanghai,  China).  Ethyl  acetate  (EtOAc),  petroleum  ether  and
methanol  (MeOH)  were  obtained  from  General-Reagent  Co.
(Shanghai,  China).  Stevia  leaves  extract,  HF-pyridine  and
sodium methoxide were obtained from Macklin Co. (Shanghai,
China).  Thin-layer  chromatography  (TLC)  was  performed  on
Merck  60  F254 HPTLC  silica  gel-coated  aluminum  sheets.  Flash
chromatography was performed with silica  gel  with a  300-400
mesh  size.  Carbohydrates  were  visualized  using  an  orcinol
staining  solution  (consisting  of  40  mg  orcinol  monohydrate
dissolved  in  20  mL  of  aqueous  H2SO4 (3.6  M)).  The
StspBGlcE383A  and  AgtuBGlcE358S  glycosynthase  genes  were
synthesized by Tsingke (Nanjing, China), and E. coli BL21 (Invit-
rogen,  Shanghai,  China)  was  used as  an expression system for
the production of the recombinant glycosynthases. Kanamycin
and  isopropyl-β-D-1-thiogalactopyranoside  (IPTG)  were
purchased  from  Sigma-Aldrich  (Shanghai,  China).  LCMS-grade
acetonitrile  and  formic  acid  were  purchased  from  Merck
(Nanjing, China) and Aladdin Ltd. (Shanghai, China).

 Expression and purification of StspBGlcE383A and
AgtuBGlcE358S

StspBGlcE383A  and  AgtuBGlcE358S  (Supplemental  File  S1)
were  subcloned  into  a  pET-30a  expression  vector  and  trans-
formed into E.  coli BL21 (DE3)  competent cells,  then plated on
LB  agar  supplemented  with  50  mg/L  kanamycin.  A  5  mL  LB
medium containing 50 mg/L kanamycin was inoculated with a
single colony and cultivated at 37 °C overnight. One mL of the
cell  suspension  was  then  transferred  into  400  mL  LB  medium
(37 °C, 200 rpm), and grown in log phase until an OD600 value of

0.6 was reached. The recombinant protein expression was then
conducted for 16 h at 18 °C in the presence of 1 mM IPTG. The
cells were then pelleted by centrifugation at 4,000 g for 15 min
and  resuspended  in  10  mL  lysis  buffer  (50  mM  Tris,  100  mM
NaCl,  1%  Triton  X-100  and  1  mM  PMSF,  pH  =  8.0).  The  cell
suspension  was  lysed  by  sonication  for  20  min  on  ice  and
centrifuged  at  12,000  g  at  4  °C  for  20  min.  The  cleared  super-
natant  was  purified  by  Ni2+-nitrilotriacetate  (Ni2+NTA)  agarose
affinity  chromatography  using  five  column  volumes  of  wash-
ing  buffer  (50  mM  NaCl,  50  mM  Tris,  pH  =  8.0)  before  the
elution  of  the  recombinant  proteins  with  imidazole  buffer  (50
mM  NaCl,  50  mM  Tris,  500  mM  imidazole,  pH  =  8.0).  Fractions
showing  the  high  absorbance  at  280  nm  were  collected  and
stored  at  −80  °C  after  the  addition  of  20%  (v/v)  glycerol.
Samples  of  recombinant  protein  were  analyzed  by  SDS-PAGE
after Coomassie Brilliant G-250 staining.

 Synthesis of glycosyl fluorides
1-F-glucose  (4a)  and  1-F-galactose  (4b)  were  synthesized

from glucose (1a)  and galactose (1b)  according to the acetyla-
tion/fluorination/deacetylation  scheme  shown  in Fig.  2.  In  a
first step, per-acetylated monosaccharides (2a, 2b) were gener-
ated by using acetic anhydride/pyridine. The resulting O-acety-
lated sugars were converted into the corresponding glycosyl 1-
fluorides  using  70%  hydrogen  fluoride-pyridine  (HF-Py).  After
purification, the acetylated glycosyl fluorides (3a, 3b) were then
deacetylated  using  sodium  methoxide,  yielding  the  desired
products  1-F-glucose  (4a)  and  1-F-galactose  (4b).  Product
formation  was  monitored  by  TLC  and  MALDI-ToF-MS  analysis
using  a  Bruker  Autoflex  Speed  instrument  (equipped  with  a
1000  Hz  Smartbeam-II  laser)  using  6-aza-2-thiothymine  as  a
crystallization matrix.

 Glycosylation of Reb C and product analysis
Enzymatic  glycosylation  reactions  were  performed  in

volumes of 200 µL which consisted of 5 mM of Reb C, 50 mM of
glycosyl  fluoride 4a or 4b,  and  recombinant  glycosynthases
StspBGlcE383A  or  AgtuBGlcE358S  (5  mg/mL)  sodium  phos-
phate buffer (100 mM, pH 7.0). After 24 h at 37 °C, the reactions
were terminated by heating at 95 °C for 10 min.

Reactants  were  analyzed  using  a  LC-ESI-MS  method  which
was based on an RP-HPLC method for steviol glycosides recom-
mended  by  the  Joint  FAO/WHO  Expert  Committee  on  Food

 
Fig. 1    Stevia rebaudiana Bertoni plant and the structure of relevant steviol glycoside (Reb) variants.

  Enzymatic Rebaudioside C glycosylation
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Additives[26]. The analytes were separated on a Shimadzu LCMS
8040  system  (Shimadzu  Corporation,  Kyoto,  Japan)  using  a
Cosmosil  reversed-phase  C18  column  (Nacalai  Tesque  Co.,
Kyoto,  Japan,  250  mm  ×  4.6  mm;  5 µm  pore  size)  with  a  flow
rate  at  0.5  mL/min.  Water  acidified  with  formic  acid  (0.1%v/v)
and 100% acetonitrile were used as mobile phases for the grad-
ual  elution  of  the  analytes  (Supplemental  Table  S1).  Analytes
were  detected  by  LC-ESI-MS  analysis  using  scan  mode  detec-
tion in the m/z range between 500−2,000.

 Results and discussion

 Protein expression and purification
The  expression  and  purification  of  StspBGlcE383A  and

AgtuBGlcE358S  were  evaluated  by  SDS-PAGE  (Fig.  3).  Protein
bands corresponding to the expected molecular weight of the
recombinant  proteins  were  observed  after  induction  by  IPTG
and  could  also  be  observed  in  the  soluble  elution  fraction
nickel-chelation affinity chromatography.

 Synthesis of 1,2,3,4,6-penta-O-acetyl-glucose (2a)
and 1,2,3,4,6-penta-O-acetyl-galactose (2b)

Two mmol glucose 1a or galactose 1b was added in 2 mL dry
pyridine.  After  the  addition  of  1.5  mL  acetic  anhydride,  the
mixture  was  stirred in  a  round-bottom flask  at  room tempera-
ture  for  4  h.  TLC  analysis  (2:1  petroleum  ether-ethyl  acetate)
and  MALDI-ToF  mass  spectrometry  were  used  to  judge  the
completion  of  the  per-acetylation  reaction  (Supplemental  Fig.
S1). After adding 80 mL of ice-cold water, compounds 2a or 2b
were  extracted  in  60  mL  dichloromethane.  The  organic  layer
was collected and washed with 80 mL water and 80 mL of satu-
rated sodium hydrogen carbonate.  After  the addition of  anhy-
drous  sodium  sulfate,  the  suspension  was  filtered  and  the
resulting  clear  solution  dried  under  reduced  pressure  (2a:  735
mg, 94%; 2b: 711 mg, 91%).

 Synthesis of 1-F-2,3,4,6-tetra-O-acetyl-glucose
(3a) and 1-F-2,3,4,6-tetra-O-acetyl-galactose (3b)

The per acylated monosaccharides 2a and 2b were dissolved
in 6 mL 70% HF-Py in a 50 mL falcon tube at 0 °C,  then gently
stirred for 30 h. The completion of the reaction was judged by
TLC analysis (2:1 petroleum ether-ethyl acetate) and MALDI-ToF
mass  spectrometry  (Supplemental  Fig.  S2).  The  reaction  was
stopped by adding 20 mL of saturated aqueous sodium hydro-
gen  carbonate.  After  adding  60  mL  of  dichloromethane,  the
organic  phase was washed once with 80 mL saturated copper
sulfate solution and washed twice with 80 mL saturated sodium
chloride  solution.  After  the  addition  of  anhydrous  magnesium
sulfate, the suspension was filtered and the resulting clear solu-
tion dried under reduced pressure. The brown residue was puri-
fied  by  silica  column  chromatography  (2:1  petroleum  ether-
ethyl acetate), and the acetylated glycosyl 1-fluorides 3a and 3b
were obtained.  Concentration under reduced pressure yielded
a  pale-yellow  powder  (3a: 154  mg,  21%; 3b: 132  mg,  18%).
These compounds were stored in methanol at a concentration
of 200 mM.

 Synthesis of 1-F-α-glucose (4a) and 1-F-α-
galactose (4b)

Due  to  the  instability  of  components  4a  and  4b,  the  depro-
tection  reactions  were  only  performed  in  the  aliquoted
amounts required for the subsequent enzymatic reaction. Typi-
cally, 10 µL of acetylated glycosyl fluoride 3a or 3b (200 mM in
methanol)  were  mixed  with  980 µL  of  methanol  and  10 µL  of
methanolic  0.3  M  sodium  methoxide.  The  progress  of  the
deacetylation  reaction  was  completed  after  4  h  at  room
temperature  as  judged  by  TLC  (7:2:1  ethyl  acetate-methanol-
water)  and  MALDI-ToF  mass  spectrometry  (Supplemental  Fig.
S3).  Methanol was removed under reduced pressure to yield a
pale-yellow  powder,  which  was  then  dissolved  in  10 µL  of
distilled  water  and  immediately  used  as  an  acceptor  for  the
glycosynthase reactions of Reb C.
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Fig.  2    Synthesis  scheme  for  1-F-glucose  (4a)  and  1-F-galactose  (4b)  from  glucose  (1a)  and  galactose  (1b).  Reagents  and  conditions:  (i)
pyridine, acetic anhydride; (ii) 70% hydrogen fluoride-pyridine, 0 °C; (iii) sodium methoxide, methanol.
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Fig. 3    SDS-PAGE analysis of recombinant (a) StspBGlcE383A and (b) AgtuBGlcE358S protein expressed in E. coli BL21 (DE3) cells. M: Protein
marker,  Lane  1:  cell  suspension  before  induction,  Lane  2:  cell  suspension  after  induction,  Lane  3:  supernatant  of  cell  lysis,  Lane  4:  purified
recombinant protein, Lane 5: precipitate of cell lysis.
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Fig.  4    Extracted ion masses  of  Reb C and its  enzymatically  glycosylated reaction products.  The analytes  were  separated using a  reversed-
phase C18 column and detected using a m/z range between 500−2,000.
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 Enzymatic Reb C glycosylation
Reb  C  is  one  of  the  main  steviol  glycoside  present  in  Stevia

leaves.  Compared  to  other  Rebaudiosides,  it  possesses  a  rela-
tively  low  sweetness,  therefore  glycosidic  decorations  with
glucose and galactose may be a way to modulate its sweetness.
The glycosynthases StspBGlcE383A and AgtuBGlcE358S,  which
were  previously  used  to  glycosylate para-nitrophenyl  gluco-
side  in  high  yield  in  the  presence  of  1-F-α-galactose  or  1-F-α-
glucose[41,42],  were  also  considered  for  this  study.  However,
given that Reb C has three terminal glucose moieties, we antici-
pated that these biocatalysts  could be also used for glycosyla-
tion reactions of this natural sweetener.

Initial enzymatic reaction trials using para-nitrophenyl-α- and
β-glucosides as  acceptor  substrates and 1-F-α-glucose showed
moderate  glycosylation  efficiency  (between  8%−35%  product
formation, Supplemental  Fig.  S4)  and  encouraged  us  to  apply
Reb C as  acceptor  substrate.  Using LC-ESI-MS in  scan mode of
Reb  C  (Supplemental  Fig.  S5)  and  the  enzymatic  reaction
mixtures containing Reb C in the presence of 1-F-α-galactose or
1-F-α-glucose  allowed  the  observation  of  additional  mass
signals  corresponding  to  the  addition  of  up  to  three  extra
galactose  or  glucose  moieties  on  Reb  C  (Fig.  4a−e).  Interest-
ingly,  StspBGlcE383A  showed  similar  glycosylation  abilities  in
reaction  mixtures  containing  1-F-α-galactose  or  1-F-α-glucose,
and allowed to add up to two hexose units to Reb C (Fig. 4b, c).

According to a previous study, StspBGlcE383A is able to form
both β-1,3-  and β-1,4-glycosylation,  on  the  other  hand,  there
are more than one hexose that can accept the glycosyl fluoride
donor on Reb C, we believe this resulted in a diversity of glyco-
sylated  Reb  C  products.  AgtuBGlcE358S  was  a  more  efficient
biocatalyst  and  resulted  in  a  quantitative  glycosylation  of  the
acceptor  substrate  (no  observable  Reb  C  mass  signal  present
after  the  reaction)  and  allowed  the  addition  of  up  to  two
glucose  or  up  to  three  galactose  units  to  Reb  C  (Fig.  4d, e).
Although  the  feasibility  of  glycosylating  Reb  C  with  glycosyn-
thases  could  be  demonstrated,  further  optimization  of  this
process may be required. By adding more enzyme to the reac-
tion  mixtures,  higher  glycosylation  yields  in  shorter  reaction
times  are  expected  as  less  glycoside  fluoride  donor  is  sponta-
neously degraded[41,43].

 Conclusions

We  demonstrated  that  chemically  synthesized  1-deoxy-1-
fluoro-D-glucose  and  1-deoxy-1-fluoro-D-galactose  could  be
used  for  the  enzymatic  transglycosylation  of  Reb  C.  The  two
applied  glycosynthases  were  able  to  further  glucosylate  or
galactosylate  Reb  C,  and  therefore  allow  the  expansion  of  the
current  repertoire  of  steviol  glycoside analogues.  We envisage
that  both  StspBGlcE383A  and  AgtuBGlcE358S  may  be  also
useful glycosynthases for glycosylating a variety of other natu-
ral products bearing terminal glucose moieties.
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