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Abstract
With the continuous development of spectroscopy technology, surface enhanced Raman spectroscopy (SERS) has been widely used as a fast and

sensitive analysis method for the qualitative and quantitative analysis of trace analytes in foods. At present, SERS has been widely used in various

fields  such  as  food  safety,  materials  and  biomedicine.  However,  the  advances  of  SERS  in  meat  safety  and  quality  detection  have  not  been

summarized.  In  this  review,  we  introduced  the  development  history  and  detection  principles  of  SERS,  and  evaluated  the  advantages  and

potential  of  SERS  applied  in  the  field  of  meat  safety  and  quality  detection.  Then,  we  compared  two  classical  SERS  detection  modes,  namely

labeled detection and label-free detection, in terms of the advantages, disadvantages and application scopes. Furthermore, we presented the

specific applications of SERS in detecting bacteria, viruses, veterinary drug residues, food additives, illegal additives, and biotoxin in meat and

meat products. In addition, we summarized the development of SERS in meat adulteration and freshness identification. At last, we prospected the

future  development  of  SERS  in  meat  safety  and  quality  assessment  will  be  involved  with  multiple  methods  integration,  new  material

development and artificial intelligence. It is expected that this review will not only provide a comprehensive summary and exploration of SERS in

meat safety and quality assessment but also shed a light on the future innovation and continued development of SERS in food and meat industry.
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Introduction

Meat  and  meat  products  occupy  a  prominent  place  in  the
human diet. With the economic recovery from pandemic, meat
consumption is  constantly increasing.  A report jointly released
by  the  Organization  for  Economic  Cooperation  and  Develop-
ment (OECD) and the Food and Agriculture Organization of the
United Nations (FAO) shows that  meat  supply will  continue to
increase in next ten years. During this period, it is expected that
global per capita meat demand will  increase by 2% until 2032,
especially,  the  production  of  pork  and  poultry  is  significantly
increased[1].  At  present,  plant-based  meat  analogues  are
continuously  expanding  their  market  share,  but  further  explo-
ration of their nutritional functions is needed[2]. Meat and meat
products have high nutritional value and unique flavor charac-
teristics,  compared  with  plant-based  proteins,  animal  derived
proteins  have  higher  bioavailability,  and  their  types  and
proportions  of  amino  acids  are  closer  to  human  needs[3].  The
balanced  intake  of  polyunsaturated  fatty  acids  and  saturated
fatty  acids  can  maintain  the  nutritional  balance  of  the  body[4].
Therefore,  they  are  more  easily  absorbed  by  the  human  body
and  meet  the  nutritional  and  health  needs  of  consumers.
Reasonable intake of meat and meat products is crucial for the
growth,  development,  and  health  of  the  body[5].  However,
richer  nutrients  of  meat  and  meat  products  also  cause  several
safety issues, including foodborne pathogens (bacteria, viruses,
parasites),  chemical  substances  (heavy  metal  elements,  illegal
additives, etc.)[6]. In addition, the authenticity identification and
freshness evaluation of meat are also important owing to grow-

ing  requirements  for  meat  quality.  Therefore,  monitoring
hazard  residues,  authenticity  and  freshness  is  necessary  to
ensure meat safety and quality.

Meat  and  meat  products  are  highly  susceptible  to  contami-
nation  during  processing,  transportation,  storage,  and  sales.
For  small  molecule  pollutants,  traditional  detection  methods
include  gas  chromatograph  (GC),  high-performance  liquid
chromatography  (HPLC)  and  liquid  chromatography-mass
spectrometry (LC-MS)[7−9]. For microbial contamination, cultiva-
tion methods combined with molecular  biology techniques or
biochemical reactions are adopted[10,11].  Although these meth-
ods  are  of  high  accuracy,  restrict  experimental  conditions  and
long  experimental  cycles  cannot  meet  the  needs  of  the  meat
industry[12].  With  the  continuous  development  of  detection
technology, immunological techniques based on specific bind-
ing  between  antigen  and  antibody,  including  lateral  flow
immunochromatography  assay  (LFIA),  enzyme  linked
immunosorbent  assay  (ELISA)  and  electrochemical  biosensor
technologies  using nucleic  acids,  enzymes,  and other  recogni-
tion  elements,  develop  rapidly[13−15].  In  recent  years,  with  the
application of chemometrics and machine learning technology,
the  spectroscopy  technology  for  food  safety  detection  is
becoming  increasingly  widespread,  which  can  achieve  the
goals  of  predicting  and  classifying  food  samples[16].  Among
them,  Raman  spectroscopy,  as  a  representative  technique  for
detecting trace molecules, can quickly achieve non-destructive
testing  of  biological  samples,  promoting  rapid  detection  in
food safety  analysis[17].  Raman scattering is  inelastic  scattering
of  object  molecules  under  light  radiation,  in  which  the

REVIEW
 

© The Author(s)
www.maxapress.com/fmr

www.maxapress.com

Acce
pte

d &
 U

n-e
dit

ed

http://orcid.org/0000-0001-6345-6353
mailto:huihe22@njau.edu.cn
https://doi.org/10.48130/fmr-0024-0018
https://doi.org/10.48130/fmr-0024-0018
https://doi.org/10.48130/fmr-0024-0018
https://doi.org/10.48130/fmr-0024-0018
https://doi.org/10.48130/fmr-0024-0018
http://orcid.org/0000-0001-6345-6353
mailto:huihe22@njau.edu.cn
https://doi.org/10.48130/fmr-0024-0018
https://doi.org/10.48130/fmr-0024-0018
https://doi.org/10.48130/fmr-0024-0018
https://doi.org/10.48130/fmr-0024-0018
https://doi.org/10.48130/fmr-0024-0018
http://www.maxapress.com/fmr
http://www.maxapress.com


frequency  of  light  waves  would  shift  compared  with  incident
light wave. By measuring this deviation, molecular information
about  the vibration and rotation of  relevant  molecules  can be
obtained, thereby achieving detection and identification of the
target. Although Raman spectroscopy technology has achieved
simple,  rapid  and  fingerprinting  detection,  it  still  faces  prob-
lems such as weak Raman signals[18,19]. Researchers have always
been  committed  to  enhancing  Raman  detection  signals  and
exploiting  other  strengths.  Surface  enhanced  Raman  spec-
troscopy  (SERS)  has  been  emerged  as  a  predominant  strategy
to solve such problems by virtue of surface plasmon-resonance
induced high signal enhancement effect and various enhance-
ment  manners[20].  The  application  of  SERS  in  the  detection  of
meat and meat products is shown in Figure 1.

The complexity of matrices often leads to poor repeatability
of  Raman  signals.  In  order  to  improve  the  repeatability  and
sensitivity  of  this  technology,  it  is  necessary  to  develop  SERS
substrates  with  stable  plasmonic  enhancement.  Various  SERS
substrates have been developed. If classified by substrate prop-
erties,  they  can  be  divided  into  noble  metal  substrates  and
noble-free metal  substrates[21].  From the view of  practicability,
the  existing  SERS  substrates  can  be  divided  into  colloidal

substrates  and  solid  substrates[22].  Colloidal  substrates  gener-
ally include single or multiple metal nanoparticles[23−25]], show-
ing better  signal  stability,  while  solid  substrates  exhibit  higher
signal amplification ability due to good morphology controlla-
bility[26].  Common forms of solid substrates include membrane
substrate and self-assembled substrate[27,28]. The size, morphol-
ogy,  and material  of  SERS substrates  have a  significant  impact
on  the  enhancement  of  Raman  signals[29].  For  any  SERS
substrate,  the widely accepted mechanisms for SERS enhance-
ment effect are electromagnetic enhancement (EM) and chemi-
cal enhancement (CM), as shown in Figure 2. The EM is excited
by the strong electromagnetic field generated by surface plas-
mon  resonance  on  ultrathin  or  nanostructured  surfaces,  thus
enhancing  the  electromagnetic  signal.  The  CM  is  induced  by
the formation of charge transfer complexes between adsorbed
molecules  and  metal  substrates,  thereby  achieving  enhance-
ment effects[30]. Due to its fast response speed, high sensitivity,
and  non-destructive  detection  ability,  SERS  has  been  widely
applied in fields such as food safety analysis[31],  environmental
monitoring[32], and material science[33].

SERS can be used in combination with various technologies,
such  as  immunochromatography[35],  molecular  imprinting
technology[36],  colorimetric  technology[37],  etc.,  to  improve
selectivity,  sensitivity  and  detection  efficiency.  General  SERS
detection strategies are labeled and label-free detection modes
in  terms  of  detection  of  indirect  and  direct  detection  of  the
target. The former can detect Raman signals of targets without
labeling or special  processing, not only providing the inherent
molecular  information  but  also  making  the  detection  process
simpler.  However,  it  is  limited  by  the  concentration  and
complexity  of  the  detection  system[38,39].  The  latter  can  reflect
the analyte by strong Raman characteristic signals of SERS tags.
With  the  aid  of  recognition  elements  like  antibodies[40],
aptamers[41] and molecularly imprinted polymers (MIPs)[36],  the
labeled method can achieve the detection of various targets.

Different  from  other  spectroscopy  techniques,  SERS  can
provide  a  highly  sensitive  fingerprint  analysis,  amplify  the
Raman signal  of  the analyte  without  fluorescence background
interference,  and  match  various  laser  conditions  and  different
types  of  instruments  including  large  high-resolution  worksta-
tion  and  portable  device.  Therefore,  SERS  has  now  developed

 

Meat freshness

Amine

M
et

al
 io

n Parasite
VFA

H2S

M
eat safety

D
rug

Additive

Ba
ct

er
ia

Ingredient
Viru

s

Adulteration

Foo
db

or
ne

 p
at

ho
ge

nsSERS

H
2 N

H
2 N NH

2

NH
2

CH
3C

OOH

CH 3C
H 2C

OOH

Fig. 1    Schematic application of SERS analysis in meat and meat
products.
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Fig. 2    Enhancement mechanisms of SERS[34].
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into a  powerful  platform for  quickly  detecting trace extrinsical
or  harmful  substances  in  meat  and  meat  products.  Compared
with previous reviews mentioned above, this review focuses on
two SERS detection modes and related application in meat and
meat  products.  We  divide  SERS  detection  into  labeled  detec-
tion and label-free detection to compare their advantages and
disadvantages.  Then,  we  summarize  the  research  progress  of
SERS in detecting several hazards such as foodborne pathogens
and  veterinary  drug  residues,  and  discuss  the  practicability  of
this  technology  in  identifying  meat  adulteration  and  spoilage.
Finally, we intend to provide a perspective of SERS to more effi-
ciently  and  sensitively  meet  the  requirements  of  rapid  and
high-throughput detection in meat industry. 

Detection strategy of SERS
 

Label-free detection
In the label-free SERS detection mode, the active substrate of

SERS can directly bind to the analyte without additional signal
indicators  to  assist  detection[42].  The  spectral  information
provided  by  this  method  can  not  only  be  used  for  the  detec-
tion  of  the  substance  under  test,  but  also  for  analyzing  the
structural  information  or  fingerprinting  of  biomolecules[43,44].
Arabi  et  al[45] proposed  a  mussel-inspired  surface  imprinted
capillary sensor that can quickly and sensitively detect proteins.
The  universal  sensor  was  not  limited  by  pre-processing  and
operator  skills.  Xu  et  al[46] used  iodide-modified  Ag  nanoparti-
cles  (Ag  IMNPs)  to  achieve  label-free  detection  of  single

stranded  DNA  molecules.  This  detection  strategy  not  only
significantly  improved  Raman  signals,  but  also  reduced  the
probability  of  biological  molecule  denaturation  during  the
detection process. Wang et al[47] combined chemometric meth-
ods  to  achieve  label-free  detection  of  methicillin-sensitive
Staphylococcus  aureus (MSSA)  and  methicillin-resistant Staphy-
lococcus  aureus (MRSA),  which played an important role in the
detection  of  bacterial  resistance  and  identification  of  resistant
strains. In order to detect antibiotic residues in serum, Wang et
al[48] modified nanoparticles with bromide ions and used peak
intensity  changes as  a  basis  for  distinguishing different  antibi-
otic  molecules.  This  method  is  of  great  significance  in  drug
detection. Zhang et al[49] designed a SERS microfluidic chip for
drug  detection,  providing  a  new  platform  for  efficient  detec-
tion of 6-thioguanine (6-TG) in human serum.

In  label-free  SERS  detection,  the  binding  mode  and  interac-
tion  mechanism  between  the  tested  substance  and  the  SERS
substrate  are  worth  exploring  in  depth,  which  often  deter-
mines the sensitivity and signal of the detection system[42] The
strategies  for  anchoring  the  tested  molecule  mainly  include
biomolecular  recognition[47],  non  covalent  bonding[50],  and
electrostatic  and  hydrophobic  interactions[51].  Zhang  et  al[52]

used  single-molecule  surface  enhanced  Raman  spectroscopy
(SM-SERS)  to  investigate  the  phenomenon  of  signal  fluctua-
tions  caused  by  the  adsorption  and  desorption  of  molecules
near  hot  spots.  They  utilized  active  nanoshells  to  confine  and
anchor  molecules  onto  the  surface  of  plasmon  nanoparticles,
significantly  improving  the  sensitivity  and  reproducibility  of
single-molecule  detection  (Figure  3a).  Meanwhile,  combining
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the  detected  spectral  data  with  chemometrics  and  machine
learning  methods  enables  to  analyze  the  data  more
effectively[53].  Raman  spectroscopy  data  is  rich  and  complex.
With  the  assistance  of  machine  learning  and  chemometric
methods, data processing, including noise reduction and inter-
ference  elimination,  can  be  quickly  achieved[54,55] (Figure  3b).
There  is  a  wide  range  of  applications  in  food  analysis[56]and
biomedicine[57]. 

Labeled detection
When the composition of the matrix to be tested is complex

or physical characteristics such as temperature and pH need to
be  monitored,  label-free  detection  has  significant  limitations
compared to  labeled detection[58].  The  labeled SERS detection
method  relies  on  functionalizing  Raman  reporters  with  high
sensitivity,  specificity  and  selectivity.  By  observing  the  Raman
shift and intensity changes of characteristic peaks in the Raman
spectrum,  the  presence  and  amount  of  the  tested  substance
can  be  reflected  by  Raman  reporters[59].  Although  the  labeled
mode cannot reflect rich intrinsic biological information, multi-
ple SERS tags might have a potential in multiplex analysis[34].

SERS tags need to have ultra-high sensitivity,  specificity and
photostability[60]. Typically, SERS tags consist of four parts: plas-
monic  nanoparticles,  Raman  reporters,  coating  layers,  and
targeting ligands[61] (Figure  4a).  As  SERS substrates,  plasmonic
nanoparticles  are  activated  by  localized  surface  plasmon  reso-
nance  (LSPR)  to  enhance  the  signal.  Raman  reporters  with
excellent  properties  are  adsorbed  on  the  surface  of  the  SERS
substrate,  and  then  encapsulated  with  a  protective  layer  to
make  the  particles  more  stable.  Finally,  targeting  ligands  such
as  antibodies  and  aptamers  are  connected  to  form  SERS
tags[62]. Raman reporters can be mainly divided into three cate-
gories,  specifically  including  dye  molecules  containing  nitro-
gen or  sulfur  like crystal  violet  (CV)[63] (Figure 4b and 4c),  thiol
molecules  like  4-mercaptobenzoic  acid  (4-MBA)[64] and  4-
mercaptophenylboronic  acid  (4-MPBA)[65].  Alkyne  molecules
possessing  unique  peaks  in  Raman  silent  regions  that  attract
emerging  attention  on  SERS  due  to  largely  reduced  back-
ground  interference[66].  In  order  to  enhance  the  stability  and

signal  strength  of  SERS  tags,  dual  signal  molecules  for  the
detection of biomolecules are used[67]. The dual signal method
can not only reduce the influence of external  interference and
improve  the  repeatability  of  detection  but  also  is  suitable  for
the  detection  of  low  concentration  analytes  in  complex
samples[68].  In  terms  of  dual  signal,  one  serves  as  an  internal
standard  signal  and  the  other  as  a  response  signal,  which  can
reduce  detection  errors  and  have  higher  detection  accuracy
compared  with  single  signal  systems.  Tan  et  al[69] used  5,5  '-
dithiobis  (2-nitrobenzoic  acid)  (DTNB)  as  the  internal  standard
signal,  6-carboxyl-Xrhodamine  (ROX)  as  the  response  signal,
and the double signal  based SERS sensor detected the miR-21
of human serum samples, with the detection limit of 0.046 pM.
It  has  broad  application  prospects  in  the  early  diagnosis  of
breast cancer.

Liu et al[70] combined SERS with LFIA and proposed a biosen-
sor  for  detecting  anti-SARS-CoV-2  IgM/IgG.  This  sensor  used
DTNB  as  a  Raman  reporter  modified  on  silica  nanosphere
coated with Ag shell,  to  provide a  sensitive  detection strategy
for  rapid  screening  of  SARS-CoV-2  infection.  Jiang  et  al[71]

synthesized  Fe3O4@TiO2-based  SERS  tags  using  DTNB  as  the
Raman  reporter,  achieving  in  situ  detection  of  exosomal
miRNAs. Zhu et al[72] embedded 4,4'- dipyridyl (DP) into AuNPs
and  silica  shell  to  prepare  SERS  probes  with  excellent  stability
and  specificity,  achieving  ultrasensitive  detection  of E.  coli
O157:  H7.  Combined  with  hybridization  chain  reaction  (HCR),
Peng et al[73] used 4-ethynylbenzaldehyde (EBA) and two differ-
ent  structures  of  HCR  sequences  as  SERS  tags,  developing  a
novel  SERS  sensing  method  and  achieving  sensitive  detection
of hepatitis C virus (HCV) nucleic acid. 

Application of SERS in the detection of meat
and meat products
 

Safety assessment 

Foodborne pathogenic bacteria
According  to  statistics  from  the  World  Health  Organization

(WHO),  approximately  600  million  people  are  infected  with
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foodborne  every  year  after  consuming  contaminated  food,
which not only increases the burden on the healthcare system
but  also  causes  huge  food  waste[76].  Meat  and  meat  products
are  important  sources  of  high-quality  protein  for  the  human
body,  and  due  to  rich  nutritional  content,  meat  is  often
contaminated by foodborne pathogens bacteria[77].  The bacte-
ria pollution sources of meat products can be divided into two
categories:  endogenous  and  exogenous  pollution.  The  former
usually refers to pollution caused by microorganisms carried by
livestock and poultry themselves, while the latter often refers to
microbial  pollution  present  in  the  processing  and  circulation
process[78].  Common  foodborne  pathogenic  bacteria  in  meat
and  meat  products  include L.  monocytogenes, Salmonella, E.
coli,  etc.[79].  Consuming  meat  contaminated  with  foodborne
pathogenic  bacteria  poses  a  serious  threat  to  human  life  and
health.  Therefore,  in  order  to  control  the  occurrence  of  food-
borne diseases and protect development of the meat industry,
it  is  crucial  to establish sensitive and rapid methods for  detec-
tion.

At  present,  foodborne  pathogenic  bacteria  can  be  detected
through three following strategies. Physiological and biochemi-
cal  testing  can  indicate  the  presence  of  pathogens  through
chemical  signals,  such  as  ATP  bioluminescence  method[80].
Immunological  testing is  based on specific  binding of  bacteria
antigens followed by signal amplification, such as ELISA[81]. And
molecular  testing  relies  on  nucleic  acid-based  hybrid  and
amplification,  such  as  PCR[82].  Compared  with  traditional  plate
culture  method,  these  methods  have  achieved  sensitive  and
accurate  detection  of  pathogens,  however,  they  still  face
several  drawbacks  including  slower  detection  speed,  longer
detection cycles and more operation steps[83]. Due to the multi-
ple  advantages  of  SERS,  the technology has  been widely  used
in  the  detection  of  foodborne  pathogens.  Yang  et  al[84]

reported a surface cell imprinting (SCIS) method to capture the
target  pathogens  followed  by  SERS  mapping  detection  with  a
nanosilver  modified  by  4-MPBA  (4-MPBA@AgNPs)  as  the  SERS
tag.  It  has  achieved specific  and quantitative determination of
E. coli in chicken breast samples, with a linear range of 102-108

CFU/mL and a detection limit as low as 1.35 CFU/mL. By chang-
ing  the  bacterial  cell  imprinting  substrate,  this  platform  can
also  be  used  for  the  detection  of  other  bacteria.  Cho  et  al[85]

proposed  using  membrane  filtration  and  immunomagnetic
separation  techniques  to  capture  and  enrich  target  bacteria.
Using 4-MBA modified AgNPs as SERS tags, 10 CFU/mL of E. coli
O157: H7 were detected in ground beef within 1 hour. In label-
free  detection  mode,  the  Raman  signal  of  the  analyte  mainly
comes from the surface chemical composition and metabolites,
but some bacteria have similar cell  wall  components, resulting
in high similarity in their SERS fingerprint spectra. On the other
hand,  the  amount  of  spectral  information data  is  too complex
to  distinguish.  In  this  case,  mathematical  statistical  analysis
methods  and  chemometrics  methods  should  be  combined  to
eliminate signal interference during the detection process and
achieve  efficient  detection  of  foodborne  pathogens[86,87].
Leong  et  al[88] used  a  SERS-based  surface  chemistry  classifica-
tion method, in combination with machine learning, to classify
six  types  of  bacteria  by  layering  surface  charges,  biochemical
features, and the types and quantities of functional groups. The
accuracy  was  up  to  98%,  and  the  relationship  between  bacte-
rial  extracellular  matrices  (ECMs)  surface  features  and  SERS
fingerprint  spectra  was  successfully  made.  Eady  et  al[89]

compared  traditional  plate  culture  and  PCR  methods  and
confirmed  that  combining  SERS  with  support  vector  machine
(SVM)  could  realize  rapid  detection  and  accurate  classification
of Salmonella Typhimurium in chicken rinse. In addition, Zheng
et  al[90] utilized  python  assisted  SERS  chips  to  achieve
photothermal  inactivation  of Salmonella  typhimurium and
Staphylococcus aureus in blood samples, avoiding the problem
of  secondary  contamination  during  the  detection  process
(Figure 5). 

Foodborne viruses
Foodborne  viruses  exist  in  various  foods  might  cause

diseases  such  as  viral  gastroenteritis  and  hepatitis  in  humans.
Patients  often  suffer  from acute  vomiting and diarrhea  due to
ingestion  of  contaminated  water  or  food[91].  Common  food-
borne  viruses  in  meat  and  meat  products  include  avian
influenza  virus,  norovirus,  hepatitis  E  virus,  and  rotavirus[92].
PCR  is  a  classical  technique  for  virus  infection  identification
with high sensitivity and accuracy but requires complex sample
pretreatment and expensive equipment[93].  In addition to PCR,
immunological methods such as ELISA are also commonly used
for virus detection[94].  However,  the sensitivity and accuracy of
this method are not as good as nucleic acid amplification tech-
nology[95].  Therefore, SERS-based methods were developed for
efficient  detection  of  foodborne  viruses.  H5N1  is  a  highly
pathogenic  and  deadly  subtype  of  avian  influenza  virus[96].
Wang et al[97] used an unlabeled SERS method, using AgNPs as
the substrate, to achieve rapid detection of influenza A (H5N1)
subtype influenza virus in chicken embryos, by forming specific
sandwich  immunocomplexes,  with  high  accuracy  and  strong
specificity.  This  provided  a  reference  basis  for  the  simple  and
rapid  detection  of  various  infectious  viruses.  Sun  et  al[98]

proposed  a  magnetic  immunosensor  labeled  with  4-MBA  for
the detection of avian influenza virus H3N2. The sensor had the
advantages  of  high  sensitivity  and  rapid  detection.  Therefore,
this method had the potential to be applied to the detection of
avian influenza virus  in  other  real  biological  samples.  Wang et
al[99] designed  and  synthesized  a  novel  magnetic  tag  with
excellent  signal  amplification  performance.  The  SERS-LFIA
system  was  used  to  detect  HAdV  and  H1N1,  and  it  was  found
that this method had high sensitivity with detection limits of 10
and 50 PFU/mL, respectively, and could be used in real biologi-
cal samples such as human whole blood, serum, and sputum. 

Veterinary drug residues
To  prevent  and  control  animal  diseases,  veterinary  drugs,

mainly  include  antibiotics,  antiparasitic  and  antifungal  drugs,
hormones,  and  anti-inflammatory  drugs,  have  long  been
applied  during  livestock  feeding[100].  The  use  of  veterinary
drugs  often  brings  profits  to  animal  producers  and  reduces
losses. However, residual veterinary drugs in animal bodies may
have  many  negative  impacts  on  the  animals  themselves  and
consumers who consume them, including the development of
drug resistance in both animal and human bodies, affecting the
functioning  of  the  immune  system  and  the  diversity  of  gut
microbiota[101].  Before  detecting  veterinary  drug  residues,  it  is
necessary  to  perform  sample  pretreatment  to  reduce  external
interference, which is closely related to the accuracy and preci-
sion of  the detection[102].  Currently,  common methods such as
solid-phase  extraction  (SPE)  and  solid-phase  microextraction
(SPME) are used to separate the analyte from complex sample
matrices[103,104].  Even  so,  the  sample  solution  after  enrichment
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is still so complex as to direct detection and identification, thus
gas/liquid  chromatography  (GC/LC)  followed  by  mass  spec-
trometry (MS) is necessary.

It is worth mentioning that SERS has outstanding potential in
detecting  residual  harmful  chemical  components.  Peng  et
al[105] used  AuNPs  as  substrates  to  detect  benzylpenicillin
potassium  (PG)  and  explored  the  effects  of  Au  substrates  and
reporter  adsorption  on  SERS  intensity.  Finally,  the  established
method was applied to the detection of PG in duck meat. Zhao
et  al[106] used  OTR202  (AuNPs)  and  OTR103  (gold  colloid
enhancement  reagent)  as  SERS  substrates,  combined  with
adaptive  iteratively  reweighted  penalized  least  squares  (air-
PLS)  to  remove  fluorescence  and  background  signals,  and  the
detection limit was down to 1.120 mg/L, achieving rapid detec-
tion of tetracycline residues in duck meat. Zhao et al[107] estab-
lished  a  method  for  determining  marbofloxacin  using  SERS
based  on β-cyclodextrin-modified  silver  nanoparticles  (β-CD-
AgNPs)  with  a  detection  limit  of  1.7  nmol/L.  In  chicken  and
duck  samples,  the  spiked  recovery  rate  of  marbofloxacin
ranged  from  101.3%  to  103.1%,  providing  a  solution  for  reli-
able on-site detection in the future. To reduce spectral interfer-
ence from other  substances  in  food matrices,  combining SERS
with other  separation technique is  a  good choice.  Shi  et  al[108]

used  thin-layer  chromatography  combined  with  SERS,  namely
TLC-SERS,  to achieve simultaneous and rapid (<10 min)  detec-
tion of 14 nitroimidazoles compounds in pork with a detection
limit  of  0.1  mg/L.  Based on the magnetic  SERS-LFA system,  Tu

et al[109] synthesized SERS tags using DTNB and 4-MBA as dual
Raman  reporters,  combined  with  specific  antibodies.  They
utilized the dual signal amplification effect of numerous stable
hotspots  and  magnetic  enrichment  to  detect  the  residues  of
four  veterinary  drugs  in  pork.  This  method  achieved  trace
detection  at  the  pg/mL  level  within  35  minutes,  effectively
improving the sample detection signal and sensitivity, and had
great  prospects  in  the  detection  of  harmful  small  molecules
(Figure 6). 

Food additives
Food  additives  are  artificially  synthesized  or  natural

substances  that  can  improve  the  sensory  characteristics  and
quality  of  food.  The application of  food additives has played a
great role in the development of the food industry. To improve
the  flavor,  texture,  nutrition,  and  extend  the  shelf  life  of  meat
products, several food additives include antioxidants, preserva-
tives, colorants, and acidity regulators, are applied during meat
processing and storage[110]. However, unscrupulous retailers, in
pursuit of commercial interests, abuse food additives and even
engage  in  illegal  use  of  preservatives,  colorants,  and  other
substances  with  maximum  amount  limits  in  meat  product
production, such as the abuse of nitrite, composite phosphates,
and  sodium  benzoate.  Unreasonable  uses  of  food  additives
have also brought about a series of food safety issues, posing a
great threat to the life and property safety of consumers[111]. At
present, the main detection methods for food additives include
spectroscopy[112],  chromatography[113] and  electroanalysis[114].
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Meanwhile,  the  sampling  and  pretreatment  steps  have  a
considerable effect on detection accuracy[115].

For several  common food additives,  SERS also exhibits satis-
factory  potential[116].  Nitrite,  as  an  essential  food  additive  in
meat  processing,  is  often  used  as  a  preservative  and  coloring
agent, but it might cause certain health risks, thus being neces-
sary  to  develop  a  rapid  SERS  detection  method[117].  Zhang  et
al[118] enhanced  the  SERS  signal  of  nitrite  by  introducing  4-
aminothiopenol capped AgNPs decorated halloysite nanotubes
(HNTs-AgNPs4−ATP),  thereby  achieving  the  detection  of  nitrite
ions  in  sausages  and  pork  luncheon  meat.  This  method
achieved  in-situ  derivatization  and  selective  determination  of
nitrite  ions  in  meat  products  through  labeled  SERS.  The  effec-
tive  dispersion  and  deposition  of  metal  nanoparticles  play  an
important  role  in  maintaining  substrate  stability  and  improv-
ing  SERS  performance[119].  Zhang  et  al[120] developed  a  SERS
platform  for  rapid  detection  of  nitrite  using  electrospinning
assisted electrospray technology. The use of this technology is
of  great  significance  for  the  effective  deposition  of  certain
shaped metal nanoparticles into SERS layers. The platform had
good  selectivity,  stability  and  anti-interference  ability,  and  the
detection limit was about 15.29 ng/L, realizing the detection of
nitrite in chicken sausage, canned pork, bacon, and ham. Liang
et al[121] combined hydrogel materials with SERS technology to
prepare  a  sensor  for  detecting  the  concentration  of  sodium
nitrite,  and  introduced  machine  learning  to  analyze  data  and
predict  results.  The  minimum  detection  limit  reaches  3.75
mg/kg,  realizing  the  quantitative  determination  of  sodium
nitrite in the extracts of bacon, lunch meat and ham slices. 

Illegal additives
In recent years,  food safety accidents caused by illegal addi-

tives have aroused public attention to food quality and safety.
Compared  with  abuse  of  food  additives,  illegal  additives  have
more serious implications owing to their severe toxicity to both
livestock  and  human  body.  Illegal  additives  mainly  include
melamine[122],  malachite  green[123],  receptor  agonist[124] and

other  substances,  which  are  usually  used  to  fraudulently
increase  nutrient  content  or  preserve  freshness[23].  The  most
common illegal additives in meat and meat products include β-
adrenergic  receptor  agonists  (clenbuterol  hydrochloride[123],
ractopamine[125],  etc.)  in  pork,  beef,  mutton  and  animal  liver,
nitrofuran  drugs  in  pork  and  poultry[126],  and  synthetic
pigments such as acid orange in meat products[127]. At present,
commonly used detection methods for illegal additives include
gas chromatography[128],  mass spectrometry[129],  ELISA[130],  etc.
With  the  continuous  development  of  SERS  substrates,  Yan  et
al[131] prepared  transparent  SERS  substrates  using  anodic
aluminum oxide (AAO) template method for direct detection of
residual  ractopamine  on  pork  without  the  need  for  pretreat-
ment. This method achieved the detection of trace amounts of
ractopamine in  meat  samples  with  a  detection limit  of  10-8 M,
and also opened up a new way for the direct measurement of
other  trace  chemical  substances  on  the  surface  of  food.  The
uniform  core-shell  structure  of  nanomaterials  significantly
improves  the  SERS  performance  in  signal  enhancement  and
stability  by  increasing  loading  and  reducing  aggregation,
which can improve detection efficiency and reliability[132,133]. Su
et al[134] designed a core-shell structure as a multifunctional tag
and used the dual model colorimetric/SERS-LFIA for the detec-
tion of clenbuterol. This method increased the sensitivity of the
detection  system  and  stronger  colorimetric  reaction  through
antigen  antibody  specific  binding,  achieving  quantitative
detection of  clenbuterol  in  pork,  chicken,  and sausages with a
detection  limit  as  low  as  0.05  ng/mL.  Xie  et  al[127] realized  the
rapid  detection  of  acid  orange  II  in  braised  pork  by  synthesiz-
ing  new  core-shell  nanomaterials  including  SERS  substrates  of
Fe3O4@Au.  In combination of  machine learning methods,  they
verified the correctness of the detection results and compared
with the results of HPLC, showing that this method can be used
as  an  alternative  of  conventional  HPLC  method  for  the  detec-
tion and analysis of acid orange in food. 

Biotoxins
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Biotoxins are a class of toxic substances produced by various
organisms  such  as Clostridium,  E.  coli,  Staphylococcus  aureus,
and  the  common  biotoxins  in  meat  and  meat  products  are
botulinum toxin and shiga toxin. Biotoxins often cause acute or
chronic  poisoning  in  the  human  body  and  have  become  a
major threat in fields such as food and medicine[135]. The detec-
tion  of  food  biotoxins  typically  involves  quantitative  analysis
using  ELISA[136],  MS[137] and  HPLC[138].  Nowadays,  biosensors
based  on  SERS  have  become  an  important  analytical  method
for biotoxin detection. Subekin et al[139] developed an aptasen-
sor  based  on  silver  nanoislands  as  SERS  substrate  for  rapid
detection of type A botulinum toxin. Due to its ability to recog-
nize  molecules  and  serve  as  Raman  tags,  the  sensor  has  high
specificity  and  good  reproducibility,  with  a  detection  limit  of
2.4 ng/mL, and can achieve rapid detection of botulinum toxin
in  complex  matrices.  Kim  et  al[140] synthesized  three-dimen-
sional  magnetic  beads  modified  with  gold  nanoparticles  and
developed a SERS-based magnetic immunoassay for rapid and
sensitive  detection  of  botulinum  toxin.  The  detection  limit  of
this technology for type A and type B botulinum toxin reached
5.7  ng/mL  (type  A)  and  1.3  ng/mL  (type  B).  The  proposed
method  is  a  low-cost  and  efficient  detection  technology  for
botulinum toxin and promising for other trace biotoxins detec-
tion  in  meats.  Jia  et  al[141] developed  a  biosensor  with
SiO2@Au/DTNB as the SERS tag that can simultaneously detect
ricin, staphylococcal enterotoxin B (SEB), and type A botulinum
toxin  (BoNT/A)  by  combining  SERS  with  LFIA.  This  technology
achieved  rapid  on-site  detection  of  three  toxins  with  good
repeatability  and  specificity,  and  was  capable  of  applying  to
clinical medicine. 

Quality control 

Meat adulteration
Meat  adulteration  is  a  fraudulent  behavior  of  unscrupulous

merchants  who mix  low-quality  meat  or  non-meat  substances
into high priced meat or its products in order to seek extra prof-
its.  Such  behavior  usually  includes  species  or  variety  adulter-
ation,  production source adulteration,  and production process
adulteration[142,143].  Meat  adulteration  might  be  related  to  the
changes  in  supply  and  demand,  as  well  as  the  cost  of  animal
husbandry  and  processing.  However,  this  trickery  caused  seri-
ous  negative  effect  of  meat  industry  and  hid  the  unknown
safety  issue.  The  food  safety  issues  caused  by  meat  adulter-
ation  are  worrying.  The  adulterated  meat  might  contain
unknown species, pathogens and veterinary drugs, which may
not  only  directly  affect  the  life  and  property  safety  of
consumers  but  also  involve  religious  issues  and  affect  market
stability[144,145].  The  existing  detection  methods  for  meat  adul-
teration  mainly  include  nucleic  acid  detection  technology[146],
biosensors[147],  spectroscopic  detection  technology[148],
immunological detection technology[149], and mass spectrome-
try  technology[150].  Currently,  the  detection  methods  for  meat
adulteration  can  be  divided  into  non-destructive  and  destruc-
tive  testing[151].  Non-destructive  testing  techniques  include
near-infrared  spectroscopy[152],  hyperspectral  imaging[153],  etc.
Destructive  testing  techniques  include  detection  based  on
nucleic  acid[154] and protein[155].  As a nondestructive detection
method, SERS has been applied in meat fraud detection. Liu et
al[156] proposed  a  novel  detection  strategy  mediated  by
CRISPR/Cas12a  followed  by  SERS,  which  could  convert  the
target  nucleic  acid  concentration  into  a  visual  signal  for  meat
adulteration detection, achieving the detection of low adulter-
ation  rate  samples  in  complex  food  matrices.  Khalil  et  al[157]

 

Table 1.    Applications of SERS in detection meat hazards and additives

Detection object SERS substrate Method LOD Ref

Foodborne pathogens
E. coli O157: H7 AgNPs SERS-SCIS 1.35 CFU/mL [84]
E. coli O157: H7 AuNPs SERS 10 CFU/mL [85]
Salmonella Typhimurium AgNPs SERS-SVM / [89]
Salmonella typhimurium and Staphylococcus aureus pAu/G SERS-Python / [90]
Foodborne viruses

H5N1 AgNPs SERS 5.0 × 10−6 TCID50/mL [97]

H3N2 AuNPs SERS 102 TCID50/mL [98]
HAdV, H1N1 AgNPs SERS-LFIA 10, 50 PFU/mL [99]
Veterinary drug residues
benzylpenicillin potassium AuNPs SERS / [105]
Tetracycline OTR202-OTR103 SERS-air PLS 1.120 mg/L [106]
marbofloxacin AgNPs SERS 1.7 nmol/L [107]
nitroimidazoles AuNPs SERS-TLC 0.1 mg/L [108]
multiple veterinary drugs Au@AgNPs SERS-LFA pg/mL [109]
Food additives
nitrite ions AgNPs SERS μg/L [118]
nitrite AgNPs SERS 15.29 ng/L [120]
sodium nitrite AuNPs SERS mg/kg [121]
Illegal additives
acid orange II AuNPs SERS-DFT 1 μg/mL [127]

ractopamine AgNPs SERS 10−8 mol/L [131]
clenbuterol Au/AuNS SERS-LFIA 0.05 ng/mL [134]
Biotoxin
botulinum neurotoxin type A AgNPs SERS 2.4 ng/mL [139]
botulinum toxins A and B AuNPs SERS 5.7 ng/mL(A), 1.3 ng/mL(B) [140]
BoNT/A AuNPs SERS-LFIA 0.1 ng/mL [141]
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designed  an  ultrasensitive  dual  nanoplatform  SERS  biosensor,
namely the graphene oxide gold nanorod (GO AuNR) and gold
nanoparticles  (AuNPs),  which could qualitatively  and quantita-
tively  detect  DNA  from  any  source.  This  sensor  could  replace
traditional  pork DNA detection methods,  helping to more effi-
ciently  address  the  issues  of  authenticity  and species  origin  in
meat products. Khalil et al[158] also developed a DNA biosensor
for  SERS  that  could  quantitatively  detect  two  types  of  meat
simultaneously.  The  detection  principle  lies  in  the  covalent
conjugation between the signal  probe and the capture probe.
When the target sequences of two species are fixed simultane-
ously,  the  hybridization  between  the  probe  and  the  target
achieves signal  enhancement.  This  sensor  used a  SERS activity
dual  platform  to  increase  detection  sensitivity,  with  strong
selectivity  and  specificity.  As  an  emerging  technology,  SERS  is
still lacking in research on meat adulteration detection.

Existing researches mainly focus on the detection of species
sources, and further development is needed for cases of deter-
mining the authenticity  of  production areas and processes.  To
fully  explore  the  Raman  spectrometry,  new  data  mining  tech-
nologies  such  as  machine  learning  should  be  introduced  to
identify  adulteration.  Besides,  the  development  of  portable
detection  devices  to  achieve  real-time  on-site  assessment  is
another future research trend. 

Freshness determination
Meat  contains  abundant  nutrients,  making  it  an  ideal  place

for  microbial  reproduction.  The  presence  of  microorganisms
and  some  endogenous  enzymes  often  leads  to  a  decrease  in
the  freshness  of  meat  and  eventual  spoilage.  The  decrease  in
freshness of meat can be judged by changes in color, which not
only leads to the disposal of meat and resource waste, but also
poses  health  risks  such  as  pathogens  and  toxins[159,160].  With
the improvement of disposable income, consumers are paying
increasing attention to freshness of foods. The traditional meth-
ods  for  determining  freshness  include  sensory  evaluation,

chemical  index  detection,  and  microbial  detection[161].
However,  these  methods  all  have  some  limitations.  Sensory
evaluation  methods  require  specialized  evaluators,  and  the
judgment results are always subjective; For chemical indicators
such as total volatile base nitrogen (TVBN) and microbial detec-
tion,  the  detection  methods  are  cumbersome  and  time-
consuming, and cannot meet the needs of contemporary food
industry[162].  Therefore,  it  is  crucial  to  develop  an  efficient  and
sensitive non-destructive testing method that can measure the
freshness  of  products.  At  present,  several  advanced  methods
for  determining  freshness  include  fluorescence
spectroscopy[163],  near-infrared  spectroscopy[164],  and  visual
intelligent  packaging  technology[165].  Notably,  food  freshness
detection technology based on SERS has been widely reported.
Qu  et  al[166] achieved  the  detection  of  volatile  organic
compounds  (VOCs)  in  chicken  samples,  including  bacterial
metabolites, H2S, aldehydes, and biogenic amines, by integrat-
ing  array  sensors  and  combining  machine  learning,  thereby
achieving real-time determination of their freshness (Figure 7).
Given that cadaverine and putrescine are toxic biogenic amines
produced  by  microorganisms,  posing  a  significant  threat  to
human  health  and  food  security,  Sun  et  al[167] utilized  p-MBA
functionalized  SERS  substrates  to  capture  the  analyte
molecules through amide reactions, enabling trace detection of
amine  substances  in  pork  samples,  which  is  of  great  signifi-
cance  for  detecting  the  degree  of  food  spoilage.  Kim  et  al[168]

designed  a  SERS  paper  platform  coated  with  a  metal-organic
framework  (MOF)  that  could  effectively  recognize  volatile
amine molecules, and this paper sensory has been successfully
applied  to  the  freshness  determination  of  chicken,  beef,  and
pork samples. 

Summary

With the rise in public  awareness of  food safety and human
health,  meat  safety  and  quality  have  received  unprecedented
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attention.  SERS,  as  an  ultrasensitive  detection  technique,  can
achieve trace analysis of target analytes. Besides, the rapid and
high-resolution  detection  characteristics  of  SERS  make  it  suit-
able  for  on-site  detection  and  multiplex  analysis.  This  review
focused on the development of application of SERS technology
in  safety  detection  and  quality  assessment  of  meat  and  meat
products.  First,  both  label-free  and  labeled  SERS  detection
modes were summarized and labeled mode was predominant
owing to higher sensitivity  and various forms.  Then,  the appli-
cation  of  SERS  in  foodborne  pathogens,  veterinary  drug
residues,  food  additive  abuse,  illegal  additive  use,  and  detec-
tion  of  biotoxin  in  meat  and  meat  products  were  introduced.
Meanwhile,  the progress of SERS-based meat adulteration and
freshness  identification  were  discussed.  However,  SERS  also
faced  some  existing  problems,  such  as  poor  reproducibility  of
detection results, weak resistance to external interference, and
difficulty  in  enriching analytes.  For  future research,  the follow-
ing points  can be underlined to  promote the further  develop-
ment  and  application  of  SERS  technology  in  the  detection  of
meat and meat products: (1) Combining SERS with other tech-
nologies.  SERS,  as  a  sensitive  detection  method,  relies  on
appropriate  pretreatment  operations  to  improve  the  accuracy
and  precision  of  detection;  (2)  Expanding  SERS  research  on
heavy  metal  ion  pollution  detection  in  meat  and  meat  prod-
ucts  by  combining  elemental  analysis  techniques,  and  boost-
ing research on adulteration identification and freshness detec-
tion of meat and meat products; (3) Combining machine learn-
ing  and  chemometrics  methods  to  mining  Raman  spec-
troscopy  data  and  improving  automatic  detection  and  smart
sensing.  With  the  continuous  development  of  material  and
data  science,  researchers  will  further  study  novel  SERS
substrates,  SERS  tags  and  SERS  instruments  to  improve  the
stability  and repeatability  of  this  technology,  paving the foun-
dation  for  safety  and  quality  assessment  in  meat  and  food
industry. 
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