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Abstract
More than 600 species  of  conifers  (phylum Pinophyta)  serve as  the backbone of  the Earth’s  terrestrial  plant  community  and play  key roles  in

global  carbon  and  water  cycles.  Although  coniferous  forests  account  for  a  large  fraction  of  global  wood  production,  their  productivity  relies

largely  on  the  use  of  genetically  improved  seeds.  However,  acquisition  of  such  seeds  requires  recurrent  selection  and  testing  of  genetically

superior  parent  trees,  eventually  followed  by  the  establishment  of  a  seed  orchard  to  produce  the  improved  seeds.  The  breeding  cycle  for

obtaining the next generation of genetically improved seeds can be significantly lengthened when a target species has a long juvenile period.

Therefore, development of methods for diminishing the juvenile phase is a cost-effective strategy for shortening breeding cycle in conifers. The

molecular  regulatory  programs  associated  with  the  reproductive  transition  and  annual  reproductive  cycle  of  conifers  are  modulated  by

environmental  cues  and  endogenous  developmental  signals.  Mounting  evidence  indicates  that  an  increase  in  global  average  temperature

seriously threatens plant productivity, but how conifers respond to the ever-changing natural environment has yet to be fully characterized. With

the breakthrough of assembling and annotating the giant genome of conifers, identification of key components in the regulatory cascades that

control  the  vegetative  to  reproductive  transition  is  imminent.  However,  comparison  of  the  signaling  pathways  that  control  the  reproductive

transition in conifers  and the floral  transition in Arabidopsis has revealed many differences.  Therefore,  a  more complete understanding of  the

underlying  regulatory  mechanisms  that  control  the  conifer  reproductive  transition  is  of  paramount  importance.  Here,  we  review  our  current

understanding  of  the  molecular  basis  for  reproductive  regulation,  highlight  recent  discoveries,  and  review  new  approaches  for  molecular

research on conifers.
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 Introduction

Living gymnosperms comprise four of the five main lineages
of seed plants: cycads, ginkgos, gnetophytes, and conifers[1]. In
contrast  to  annual  plants  like Arabidopsis,  conifers  are  peren-
nials that undergo a long juvenile phase and repeated cycles of
vegetative  growth,  dormancy,  and  reproductive  growth  con-
trolled  by  distinct,  complex  reproductive  regulatory  mecha-
nisms.  Conifer  cones  are  reproductive  shoots  that  are  more
similar  to  inflorescences  than  to  individual  flowers[2],  and  re-
productive  organ  identity  and  development  in  conifers  differ
markedly  from  those  in  angiosperms[3,4].  In  addition,  most
conifer reproductive cycle spans at least two years.  Coniferous
meristems  and  perennating  organs  therefore  endure  tremen-
dous  environmental  changes  and  rely,  to  a  great  extent,  on
specific  reproductive  strategies.  Environmental  cues  (photo-
period,  temperature)  and  endogenous  factors  (age,  develop-
mental stage, plant hormone levels) influence the timing of the
developmental  transition  from  vegetative  to  reproductive
growth,  which  is  critical  for  reproductive  success.  Conifers  in
boreal  and  temperate  regions  survive  climatic  extremes  by
integrating  endogenous  developmental  signals  with  environ-
mental  cues  to  initiate  reproductive  growth  at  an  opportune
time[5−8].  In  recent  years,  a  number  of  crucial  molecular

regulators  that  control  conifer  reproduction  have  been
identified[9,10], largely as a result of large-scale genomic sequen-
cing in a variety of  species,  such as Pinus  tabuliformis (Chinese
pine)[8], Pinus  taeda (loblolly  pine)[11], Pinus  lambertiana (sugar
pine)[12], Picea glauca (white spruce)[13], and Picea abies (Norway
spruce)[14].  In  this  review,  we  summarize  our  current  under-
standing of the cellular and molecular mechanisms involved in
reproductive  induction  and  highlight  future  prospects  for
conifer molecular biology research.

 The role of light in the regulation of conifer
reproductive growth

Day  length  is  a  major  environmental  factor  that  controls
photoperiodism  and  influences  flowering,  bud  break,  and
dormancy  in  angiosperm  plants[5,15].  GIGANTEA  (GI),  which
promotes the transcription of CONSTANS (CO), performs central
functions  in  the  transmission  of  light  signals  in  the  photope-
riodic pathway of Arabidopsis[16].  The steady,  continuous accu-
mulation  of  CO  protein  directly  induces  expression  of  the
downstream  target  gene FLOWERING  LOCUS  T (FT)  in  leaves,
and  FT  protein  is  then  transported  to  the  apical  meristem
through  the  phloem[17].  FT  forms  protein  complexes  with  the
bZIP transcription factor FLOWERING LOCUS D (FD) in the apical
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meristem to activate SUPPRESSOR OF OVEREXPRESSION OF CO 1
(SOC1), APETALA1 (AP1)  and FRUITFULL (FUL)  to  participate  in
flower induction[18].

The function of GI is thought to have been conserved during
plant evolutionary history, not only in angiosperms[19] but also
in  early  land  plants  such  as Selaginella  tamariscina[20] and
conifers such as P. abies[21]. Overexpression of GI from P. abies in
Arabidopsis produced  no  obvious  phenotype  but  partially
rescued  the  late-flowering  phenotype  of gi-2 mutants[21].  The
expression of GI in P. abies and Picea obovata confirmed its key
roles  in  the  control  of  seasonal  growth  cessation  in  spruce
species[22].  Moreover,  endogenous  silencing  of GI or FLAVIN-
BINDING KELCH REPEAT F-BOX1 (KFK) homologs in S. tamariscina
completely eliminated its reproductive phase transition, which
relied on day length, and ectopic expression of GI and KFK pro-
moted  the  floral  transition  under  short  days  in Arabidopsis[20].
The mechanism by which the GI-FKF1 system regulates  repro-
ductive  growth  upstream  of  the  photoperiodic  pathway  may
thus be conserved throughout vascular plants.

Plants  have  adapted  to  the  day/night  cycle  by  evolving  a
circadian  clock  system  that  is  closely  related  to  the  photope-
riodic  pathway  and  drives  matching  rhythms  in  many  aspects
of  metabolism  and  physiology[23,24].  Nucleotide  diversity  data
from P.  abies indicate  that PSEUDO  RESPONSE  REGULATOR  3
(PRR3)  and ZEITLUPE (ZTL)  harbor  multiple  non-synonymous
variants and appear to be excellent candidate genes for control
of the photoperiod response[21]. CIRCADIAN CLOCK ASSOCIATED
1 (CCA1), GI, ZTL, and PRR1, which are major components of the
circadian clock loops, show functional conservation between P.
abies and Arabidopsis, although they displayed different expre-
ssion  patterns  and  their  expression  was  rapidly  dampened
under  constant  light  conditions[21].  In  short,  the  biological
circadian  clock  network  has  an  important  role  in  the  photo-
periodic  control  of  reproductive  development,  and  it  appears
to have been largely present before the divergence of conifers

and angiosperms. The GI gene in conifers may have both con-
served  and  specific  roles  in  the  regulation  of  annual  rhythms
upstream  of  the  photoperiodic  pathway,  together  with  other
circadian clock genes (Fig. 1).

Bud  break  in P.  abies is  promoted  under  long-day
conditions[25],  and  the  expression  of  two CO homologs
increased  after  transfer  from  dark  to  light  conditions[10].
Analysis  of  the  annual  transcriptome  dynamics  of Cryptomeria
japonica also  revealed  conserved  expression  patterns  of CO
homologs  in  angiosperms  and  conifers[26],  suggesting  that
conifer CO genes  may  be  candidate  inducers  of  reproductive
growth initiation in response to photoperiod (Fig. 1).

The functional conservation of the CO-FT regulatory module
in  the  photoperiod  response  has  been  confirmed  in  perennial
woody trees like poplar[27]. However, angiosperms and conifers
diverged  about  300  million  years  ago[28],  and  functional
differentiation of FT-like genes has occurred.  In a phylogenetic
study,  the FT/TFL1-like genes  of P.  abies were  clustered  at  the
base  of  the  branch  node  that  separates FT and TERMINAL
FLOWER  LIKE-1 (TFL1)  genes,  and  key  amino  acid  sites  for FT
function  were  preserved[29].  The  conifer FTL1 and FTL2 genes
arose from a duplication event in a common ancestor of gymno-
sperms  and  play  roles  in  the  pathways  that  control  growth
rhythm and reproductive development[9]. Expression of conifer
FTL2 declined  rapidly  during  spring  bud  break  and  increased
before bud set and the onset of dormancy in late summer and
autumn, suggesting that it has an important role in the annual
growth rhythm[9,21,22,30]. FTL1 displayed the opposite pattern of
photoperiodic expression and controlled bud set and tempera-
ture-mediated  bud  break[31,32].  Interestingly,  overexpression  of
both PaFTL1 and PaFTL2 in  transgenic Arabidopsis lines
inhibited flowering, and a similar result was also observed in P.
tabuliformis[4],  suggesting  that  conifer  FTL  proteins  are  more
functionally similar to TFL1 than to FT of angiosperms[32]. FT-like
genes  may  have  undergone  functional  divergence  over  the

 
Fig. 1    Current understanding of flowering pathways in conifers. Five interdependent pathways control the reproductive transition in conifers:
the vernalization, photoperiod, autonomous, gibberellin, and aging pathways. Arrows indicate promotion, blunt-ended lines indicate genetic
inhibition,  and  curves  indicate  protein–protein  interactions.  Solid  lines  denote  interactions  that  are  supported  by  experimental  evidence,
whereas  dashed  lines  denote  proposed  interactions.  Genes  that  act  as  major  regulators  in  different  pathways  are  written  in  green  blocks.
Environmental factors are represented by pink ellipses, and hormones involved in reproductive growth are represented by red hexagons.
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course  of  subsequent  evolution  in  seed  plants,  including FT
genes, which encode growth activators, and FT/TFL1-like genes,
which  encode  growth  inhibitors  and  are  more  functionally
similar to TFL1. Further studies are needed on the photoperiod-
related  functions  and  regulatory  mechanisms  of FT/TFL1-like
genes in conifers.

 Conifers balance reproduction and vegetative
growth in response to low temperatures

In  addition  to  light,  plants  also  respond  strongly  to  other
environmental  stimuli  like  temperature.  In  Arabidopsis,
FLOWERING  LOCUS  C (FLC)  functions  as  a  key  temperature
monitor  that  integrates  floral  signals  in  the  vernalization
pathway and releases the inhibition of FT and SOC1 genes[33−35].
In conifers, autumn dormancy in response to low temperatures
and  reproductive  induction  occur  during  the  same  growth
period[23,31].  Transcriptome  and  genome  sequencing  data
suggest  that FLC-like homologs  arose  after  the  divergence  of
angiosperms and conifers[14,36], and gene(s) with a homologous
function  in  the  regulation  of  conifer  vernalization  pathways
have  not  yet  been  found[32].  However,  some  potential  key
genes that may be involved in conifer vernalization have been
identified  (Fig.  1).  NAM/ATAF/CUC2  (NAC2)  from Picea  wilsonii
enhanced  drought  and  salt  stress  tolerance via several
signaling  pathways  and  promoted  flowering  in  transgenic
Arabidopsis through  its  interaction  with  the  Resemble-FCA-
contain-PAT1  domain  (RFCP1)  protein[37].  Cold  stimulation  in
winter  did  not  lead  to  an  increase  in VERNALIZATION  INSENSI-
TIVE  3 (VIN3)  expression in P.  abies,  whereas VIN3 transcription
was  promoted  by  vernalization  in  wheat[38];  these  contrasting
results may reflect differences in the physiological functions of
conifer needles and spring wheat apical meristems.

In Populus trees  (poplars,  aspens  and  cottonwoods),  the
CO/FT2  regulatory  module  regulates  the  short-day–induced
growth cessation in fall[27]. While, FT1 is hyper-induced by chill-
ing and functions on the release of winter dormancy in Populus
trees[39].  The  photoperiod  pathway  and  vernalization  pathway
may  thus  also  share  common  components  in  conifers.  The
conifer FT/TFL1-like genes, which are regulated by low tempera-
ture  and  short-day  conditions  in  the  autumn,  play  important
roles  in  growth  cessation  and  endogenous  dormancy  in
response  to  chilling  stress[21,30]. FTL2 was  also  reported  to
function as a key integrator of the photoperiod pathway during
growth rhythm control in P. abies[40].  Long-day conditions with
high  temperatures  during  the  day  and  low  temperatures  at
night  could  bypass  the  typical  rhythm  cycle  and  bring  about
growth  cessation[41].  Light  and  temperature  are  important
environmental  signals  for  the  seasonal  acclimation  process  in
conifers[42].  Although  the  specific  mechanisms  remain  unclear
and require further study, it appears that the FT/TFL1-like genes
may  function  as  key  regulators  of  both  the  photoperiod  and
vernalization pathways in conifers (Fig. 1).

 Conifers survive and reproduce in a challenging
environment via the autonomous pathway

At  a  specific  stage  of  their  life  cycle,  plants  may  undergo
reproductive  development  independent  of  day  length  under
the  control  of  endogenous  signals via the  so-called  autono-
mous  pathway,  enabling  their  survival  even  under  unsuitable

external environmental  conditions. FLC serves as the key node
of the gene network that controls this autonomous pathway in
angiosperms[33,43].  In  the  upstream  pathway,  the  RNA-binding
protein FCA controls the expression of alternatively polyadeny-
lated antisense RNAs at the FLC locus[44],  and the RNA-binding
protein FPA prevents the accumulation of FLC mRNA in order to
induce flowering[43,45]. However, current evidence suggests that
homologs of angiosperm FLC genes do not exist in the conifer
lineage[14,36].  Identification  of  transcription  factors  that  func-
tionally  substitute  for FLC will  provide  further  insight  into  the
control  of  reproduction via the  autonomous  pathway  in
conifers.

Researches  on Pinus  pinaster and P.  wilsonii revealed  the
potential functions of the NAC transcription factors not only on
stress  responses  but  also  related  to  reproductive
regulation[37,46].  Ectopic  expression  of  the  RFCP1  transcription
factor  from P.  wilsonii in Arabidopsis significantly  accelerated
flowering  by  negatively  regulating FLC expression[37].  More-
over, promotion of hypocotyl growth by PwRFCP1 in Arabidop-
sis was  independent  of  light,  suggesting  that  RFCP1  may
modulate  reproductive  growth  by  the  autonomous  pathway,
i.e.  independently  of  photoperiod,  in  conifers[37].  Specifically,
RFCP1  could  function  as  a  key  component  in  the  conifer
autonomous  pathway  by  negatively  regulating  reproductive
inhibitors  (Fig.  1).  The  upstream  components  of  the  autono-
mous pathway are more likely to be conserved in angiosperms
and conifers, whereas the downstream mechanisms may differ
in conifers because they lack an FLC ortholog.

The FTL2 gene,  which  acts  as  a  reproduction  suppressor  in
conifers, displays expression patterns similar to those of angio-
sperm FLC,  with  high  accumulation  in  bud  crowns[32,47].  In
addition,  expression  of FTL2 increases  before  the  formation  of
reproductive buds in P. abies and Pinus sylvestris but decreases
when  the  reproductive  buds  open[30,48,49].  Although  conifer
FTL2 belongs  to  a  different  gene  family  than  angiosperm FLC
and  its  homolog  functions  differently  in  angiosperms,  current
studies  indicate  that  the  expression  patterns  and  functions  of
FTL2 in reproductive growth inhibition of conifers are similar to
those of FLC in angiosperms[30,47]. The inhibitory effects of FTL2
on reproductive growth,  which are biochemically  more similar
to those of angiosperm TFL1-like, are conserved in conifers such
as Picea  sitchensis, P.  glauca, Picea  engelmannii  ×  glauca, Pinus
tabuliformis,  and Pinus  contorta[32,49].  Moreover,  conifer FTL2
prevented  flowering  and  rescued  the  phenotypes  of tf1-14
mutants  when  ectopically  expressed  in Arabidopsis[49]. FTL2
may therefore function as a key component of the autonomous
pathway to regulate the reproductive transition in conifers, and
the  mechanism  by  which  it  controls  transcriptional  activity
requires further exploration (Fig. 1).

LFY/FLO,  the  downstream  target  of  FT/TFL1  in  the  floral
repression  pathway,  regulates  B-  and  C-class  floral  organ
identity  genes  to  control  floral  meristem  development  in
angiosperms[50].  Two  similar  paralogs  of LFY-like genes  are
present  in  all  major  extant  conifer  groups[51,52];  they  were  first
isolated  from Pinus  radiata and  named PrLFY and PrNLY[53,54].
Phylogenetic  analysis  revealed  that NEEDLY (NLY)  was  lost  in
flowering  plants  before  the  expansion  and  subsequent  evo-
lution of  extant  angiosperm lineages[52].  In  all  conifers  studied
to date, LFY was highly accumulated during reproductive organ
development,  revealing  its  functional  conservation  in  the
initiation  of  reproductive  development  in  both  angiosperms
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and  gymnosperms[51,53−57].  The acrocona mutant  in P.  abies
bear  female  cones  on  the  vegetative  branches,  and LFY
expression  is  upregulated  in  the  transformed  reproductive
structures,  supporting  a  vital  role  for LFY in  the  female  organ
formation  of P.  abies[58].  Seed  and  pollen  cones  are  separate
reproductive  shoots  that  may  be  regulated  by  different
mechanisms,  and  B-type  genes  act  as  dominant  activators  of
male  cone  identity[59].  Ectopic  expression  of  gymnosperm  B-
class gene APETALA3/PISTILLATA-LIKE (AP3/PI-like)  from Gnetum
and  C-class  gene AGAM0US-LIKE (AG-like)  from Cycas  edentata
rescued  the  phenotypes  of ap3-1, pi-1 and ag-2 Arabidopsis
mutants,  respectively,  suggesting  the  biochemical  conserva-
tion of  B-  and C-class  floral  genes in seed plants[60,61].  The two
LFY-like  paralogs  of Welwitschia  mirabilis,  LFY,  and  NLY,  dis-
played  significantly  different  DNA  binding  specificities,  and
only  LFY  effectively  bound  to  the AP3/PI-like genes  promoter
genes  in  Welwitschia[62].  Therefore, LFY-like genes  in  gymno-
sperms  appear  to  have  undergone  functional  differentiation
over the course of evolution, such that conifer LFY shares with
its  angiosperm  ortholog  the  capacity  to  regulate  reproductive
growth by binding directly to B-gene promoters (Fig. 1).

 How long-living conifers reckon their growth ages?
The age-related pathway in perennial Arabis alpina is similar

to  that  in  annual Arabidopsis, which  is  regulated  by  the
sequential  action  of  two  microRNAs,  miR156  and  miR172[63].
Typically, miR156 levels decline as A. alpina and Arabidopsis age
increases,  whereas  miR172  shows  the  opposite  expression
pattern[64,65]. PERPETUAL  FLOWERING  2 (PEP2),  an APETALA2
transcription factor,  is  a target of miR172 and prevents flower-
ing  before  vernalization  in A.  alpina[66].  Reduced  levels  of
miR156 cause increased production of SQUAMOSA PROMOTER
BINDING  PROTEIN  LIKESPL  (SPL)  transcription  factors  to  pro-
mote the transition from vegetative growth to reproduction in
both A.  alpina and Arabidopsis[67,68].  The A.  alpina gene PERPE-
TUAL  FLOWERING  1 (PEP1),  the  ortholog  of Arabidopsis  FLC,
mechanistically links polycarpy with seasonal flowering[68],  and
continuous flowering forms have arisen multiple times through
PEP1-1 mutations[67].  Although  homologs  of  angiosperm FLCs
are  not  present  in  the  conifer  lineage[14,36],  identification  of
transcription  factors  that  functionally  substitute  for PEP1 may
provide further insight into the ageing pathway in conifers.

miR156 and miR172 post-transcriptional regulatory modules
and  their  target  genes  have  been  identified  in  conifer
species[69−71]. SBP-box genes  contain  highly  conserved  miR156
target  sites  in  conifers  such  as P.  taeda and P.  glauca[71],  and
miR156 and miR172 specifically  cut  the target mRNAs SPL1,2,3
and AP2L1,2,3 in P.  tabuliformis[70].  SPL1  of P.  abies harbors
conserved  binding  sites  for  miR156  and  miR529,  and  the  SPL-
miR156/miR529  regulatory  module  in  the  age-dependent
pathway  appears  to  be  highly  conserved[72].  miR172  also  has
highly conserved AP2 homolog target sites in conifers[73−75].  In
general,  miR156  and  miR172  target  genes  appear  to  be
conserved  in  seed  plants,  although  miR156  and  miR172  levels
may  uncoupled  in  perennial  plants[64,65].  Further  study  is
needed to assess the regulatory relationships between miR156
and miR172 and their functions in the vegetative growth phase
transition of conifers.

A  study  that  specifically  screened MADS-box genes  from  a
cDNA  library  of P.  abies seedlings  identified  three DEFICIENS
AGAMOUS-LIKE (DAL)  genes  (DAL1–DAL3),  as  homologs  of

Arabidopsis AGL6[76]. DAL1 expression  increased  with  develop-
ment and could serve as an age-related marker in P.  abies and
Larix  kaempferi,  whose  physiological  and  morphological
characteristics  were  consistent  with  the age-related pattern  of
reproductive  growth[57,77].  Constitutive  expression  of  conifer
DAL1 in  transgenic Arabidopsis plants  dramatically  accelerated
flowering, suggesting a regulatory role for DAL1 in the transfor-
mation from vegetative to reproductive growth in conifers[7,57].
Moreover, DAL1 physically interacted with MADS11 (SOC1-like),
and  the  MADS11–DAL1  module  appeared  to  function  as  a
regulatory component of the juvenile-adult phase transition in
P. tabuliformis[7].  The number of genes in the SOC1-like clade is
greatly  expanded  in  conifers  compared  with  angiosperms[78],
resulting  not  only  from  expansion  of  the  gene  family  through
gene  duplication  events  but  also  from  the  production  of
numerous  splice  variants[79].  Members  of  this  subclade  also
express distinct splice variants in different bud types. The SOC1-
like gene DEFICIENS  AGAMOUS  LIKE  19 (DAL19)  is  specifically
upregulated  in  cone-setting  shoots,  and  its  two  mutually
exclusive exons play key roles in the vegetative-to-reproductive
phase  change  in P.  abies[79,80].  Interestingly,  the  DAL1  was
found to have widely physical interaction with many transcrip-
tion  factors  including  DAL19  in P.  tabuliformis[8,81].  Taken
together, these results suggest that DAL1 has a conserved age-
related  expression  pattern  and  clearly  affects  the  phase
transition process through interaction with SOC1-like proteins.
It  may  function  as  a  key  regulator  in  the  conifer  maturation
pathway  and  is  therefore  deserving  of  continued  research
attention (Fig. 1).

 Roles of the gibberellin pathway in the
reproductive development of conifers

Gibberellin  (GA),  an  essential  plant  hormone,  is  involved  in
regulating many events during the plant life cycle,  and its role
in  floral  development  has  been  widely  studied[82−84].  In
Arabidopsis,  GA  promotes  flowering  by  activating LEAFY and
eliminating the inhibition of SPL transcription factors by DELLA
protein,  thereby  activating FUL and SOC1 genes  to  promote
flowering[82,85,86]. DELLA also mediates FT expression to control
flowering  time  by  directly  regulating  the PIF gene[87,88].  In
addition to DELLA protein, miR159 also has important functions
upstream in the GA pathway[84,89].

Various  biotechnological  approaches  have  been  used  to
shorten  the  breeding  cycles  of  conifers,  and  exogenous  GA  in
particular has been highly effective and is widely applied[90−92].
GA3 is  most  commonly  used  to  promote  reproductive  growth
and  increase  yields  in  Cupressaceae  and  Taxodiaceae
species[92,93],  whereas  non-polar  GA4/7 is  more  efficient  for
application to Pinaceae; the latter has been shown to stimulate
reproduction  and  increase  production  in  at  least  12  pine
species,  as  well  as Larix  lepepis and L.  occidentalis[94−96].  Com-
bined exogenous application of GA4/7 and the cytokinin analog
thidiazuron  (TDZ)  to  long-shoot  buds  increases  female  strobili
formation in P.  contorta,  highlighting the potential  function of
GA in conifer sex determination[93,97].

Despite  ongoing  efforts  to  elucidate  the  mechanisms  by
which GA promotes reproductive growth and sexual  reversion
at an early developmental  stage in conifers,  the specific genes
that  respond  to  GA  signals  and  the  downstream  regulatory
mechanisms  of  the  GA  pathway  remain  unclear.  A  DELLA
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homolog  in P.  tabuliformis interacts  with  PtGID1,  which
functions as a GA receptor, suggesting the conservation of the
GA–GID1–DELLA signaling module in conifers[98].  Expression of
an SOC1-like (MADS15) gene was significantly upregulated after
exogenous  GA3 application  in C.  japonica,  indicating  that  the
conifer SOC1-like gene  may  be  a  downstream  target  of  GA
signaling  in  conifers  (Fig.  1)[99].  A  study  in P.  tabuliformis
revealed  that  the  regulatory  targets  for  GA  biosynthesis  differ
between  conifers  and  angiosperms[100].  In  short,  angiosperms
and  conifers  share  similar  regulatory  mechanisms  in  the  GA
signaling pathway, but the metabolic pathway of GA signaling
appears  to  be  different.  Identification  of  more  genes  that
respond  to  GA  signaling  and  construction  of  the  associated
gene  regulatory  network  should  be  directions  for  future
research.

 Future prospects and ways forward

Studies  of  growth  rhythms  and  developmental  regulation
have been lagging behind in conifers owing to their very large
genomes and highly heterozygous genetic backgrounds. More-
over,  because  of  the  large  genetic  distance  between  angio-
sperms  and  gymnosperms,  technical  systems  that  are  widely
used  in Arabidopsis and  crops  are  difficult  to  apply  directly  to
conifers,  greatly  impeding  progress  in  conifer  molecular
research. Conifers have great ecological and economic value as
well as a significant impact on forest carbon sinks, and studying
their  reproductive  patterns  is  crucial  for  advancing our  under-
standing  of  seed  plant  evolution.  Next,  we  summarize
techniques that are currently used in conifer molecular biology
research  and  propose  three  research  strategies  for  future
investigations  of  genetic  regulatory  mechanisms  in  conifers
(Fig. 2).

 Strategies for identifying key genes in the
developmental process

Because  the  large  genomes  of  conifers  contain  70%–80%
repetitive  sequences  and  numerous  redundant  genes[101],
traditional  mutation  techniques  (EMS,  radiation,  UV)  that  do
not rely on genetic transformation are inefficient for obtaining
functional mutations in conifers.  To date,  there have been few
reports  on  genome  editing  in  conifers,  mainly  because  it  is
difficult to transform and integrate exogenous genes. Recently,
CRISPR/Cas9-mediated  targeted  mutagenesis  has  been
reported in P. radiata[102] and P. glauca[103].  Thus, reverse gene-
tics can be used in conifer research, obtaining the sequence of
a  gene  of  interest  before  mutating  the  gene  to  verify  its
function.  Genome-wide  association  analysis  (GWAS)  has  been
used  in  a  variety  of  conifer  species  such  as P.  abies[104−106], P.
glauca[107,108], P. sylvestris[109,110], P. pinaster[111,112], P. radiata[113],
Pinus  flexilis[114],  and L.  kaempferi[115],  to  identify  candidate
genes associated with reproductive development, and research
on  conifer  molecular  mechanisms  has  thus  entered  the  geno-
mics  era.  Transcriptomic  sequencing  combined  with  gene  co-
expression  network  analysis  in P.  tabuliformis successfully
identified  gene  modules  that  control  pollen  shedding  time  in
response to  temperature[116].  Taking full  advantage of  existing
transcriptome data  and sophisticated analytical  methods  such
as weighted gene co-expression network analysis (WGCNA) can
therefore  overcome  the  current  impasse  in  conifer  molecular
investigation[117,118].

 Strategies for studying gene regulatory relationships
and underlying mechanisms

Transient  transformation  is  another  potential  strategy  for
investigating molecular mechanisms in conifers. In conifer bio-
technology,  protoplast  extraction  was  first  performed  in P.
contorta,  laying  the  foundation  for  establishment  of  a  conifer
transient  transformation  system[119].  Protoplasts  from  suspen-
sion cultures  of P.  glauca somatic  embryos  have been electro-
porated with plasmids[120],  and a  technique for  isolating shoot
protoplasts  and  driving  transient  gene  expression via electro-
poration  has  been  reported  in P.  pinaster[121].  In  related  tree
biotechnology  research,  a  transient  gene  expression  protocol
was  developed for  the  simultaneous  co-transformation of  two
proteins in the same protoplasts of Populus euphratica[122].  The
protoplast  transient  expression  system  has  also  been  widely
used for CRISPR/Cas-based genome modification as a powerful
tool  for  in-depth  investigation  of  gene  function[123,124].  Proto-

 
Fig. 2    Strategies for identification and characterization of conifer
genes  and  their  regulatory  relationships.  Omics  technologies
combine  GWAS  and  WGCNA  based  on  RNA-seq  data  to  identify
key  genes  that  determine  important  traits.  Transient  transforma-
tion  systems  overcome  restrictions  on  genetic  transformation,
enabling integration of target plasmids into conifer chromosomes
to produce functional  proteins.  A genetic  regulatory network can
then  be  constructed  from  RNA-seq  data.  The  aim  of  genome
editing is to precisely modify target genes or regulatory elements
in  conifers.  Tissue  culture–free  delivery  systems  include  delivery
via plant  germline  or  meristematic  cells  and  nanotechnology-
based delivery systems.

Reproductive regulation of conifers
 

Ma et al. Forestry Research 2022, 2:16   Page 5 of 10



plast transient transformation technology is thus very valuable
for  the rapid assessment  of  gene functions  and physical  inter-
actions  (Fig.  2),  and  it  will  be  particularly  useful  for  systems
studies  of  conifers  in  which  stable  transgenic  plants  and  mu-
tants  are  unavailable.  Stable  and  efficient  protoplast  transfor-
mation may enable the use of high-throughput, droplet-based
single-cell  RNA  sequencing  (scRNA-Seq)  in  conifers,  allowing
researchers  to  examine  cell-cell  heterogeneity  in  tissues  and
organs  with  an  unprecedented  degree  of  resolution[125].  At
present, the large size of conifer protoplasts (~70 nm diameter)
limits  this  approach:  oil  droplets  can  only  wrap  cells  less  than
40 nm in diameter owing to surface tension[126]. Improvements
in  the  capacity  of  oil  droplets  to  wrap  larger  cells  will  thus
promote the application of scRNA-Seq to conifers.

In  addition  to  protoplast  transformation, Agrobacterium-
mediated  transient  transformation  of  callus  and  hypocotyls  in
P.  tabuliformis has  been  reported;  combined  with  transcrip-
tome  analysis,  this  approach  could  efficiently  confirm  gene
regulatory  relationships  in  conifers[127].  However,  because  of
the tissue-specificity of plant gene expression, genes related to
reproductive  development  are  typically  silenced  in  callus  and
hypocotyl  tissues.  The  use  of  transient  callus  or  hypocotyl
transformation to study molecular mechanisms of reproduction
and development will thus require further improvements.

No  matter  which  transient  expression  system  is  employed,
computational methods have been developed for inferring the
direct  target  genes  or  the  impacted  genes  of  a  transformed
gene[128].  For  example,  Top-down  GGM  Algorithm[129,130] is  es-
pecially  suitable for  using transient expression data to identify
the  direct  target  genes  or  the  influenced  genes  of  an  overex-
pressed/suppressed  gene.  This  is  because  the  gene  delivered
into  a  transient  expression  system  is  generally  perturbed,
allowing the target genes or impacted genes to be recognized.

 Newly emerged strategies for testing gene functions
A  simple,  fast,  and  efficient  technique  for  generating  stable

transgenic  roots  in  living  plants  by Agrobacterium  rhizogenes-
mediated  transformation  has  recently  been  reported[131].
Positively charged nanosheets have also been used to facilitate
the transport of biologically active materials across the plasma
membrane  into  plant  cells via non-endocytic  pathways,  a
strategy  that  might  also  be  applied  to  conifers[132].  Naturally
occurring  carbon  dots  have  been  used  as  rapid  vehicles  for
carrying plasmids into mature plant cells,  resulting in transient
transformation[133]. All these approaches can be used without a
regeneration  system  and  therefore  show  great  promise  for
conifer  transformation  (Fig.  2).  In  future  research,  genetic
modification using nanomaterials  will  broaden the horizons of
plant  molecular  research,  especially  for  conifers,  which  lack
systems for regeneration and stable genetic transformation.

 Conclusions

Molecular  genetic  approaches  have  provided  insights  into
the  mechanisms  involved  in  the  reproductive  transition  of
conifers. Positive and negative regulators integrate signals from
different  regulatory  pathways  to  modulate  the  timing  of  the
reproductive  process.  However,  there  are  no  direct  homologs
of FLC in  conifers,  and all  of  their FT/TFL1-like genes appear  to
function more like TFL1, acting as reproductive repressors[14,32].
TFL2 may  function  as  an  integrator  of  the  photoperiod  and

vernalization  pathways  in  conifers;  its  expression  patterns
respond to SD conditions and display annual rhythms, suggest-
ing  that  the  reproductive  and  developmental  regulatory
pathways  of  conifers  may  reflect  more  ancient  evolutionary
mechanisms[21,22].  The  complexity  of  the  conifer  genetic  back-
ground  and  the  lack  of  a  reproductive  transformation  system
significantly  impede  the  research  progress  on  conifer  regula-
tory  mechanisms.  Identifying  key  genes  in  conifer  regulatory
networks  and  establishing  regeneration-free  techniques  for
gene functional characterization are therefore important scien-
tific challenges.
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