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Abstract
Leaf  morphology  plays  a  crucial  role  in  predicting  the  productivity  and  environmental  adaptability  of  forest  trees,  making  it  essential  to

understand  the  genetic  mechanisms  behind  leaf  variation.  In  natural  populations  of Populus  cathayana,  leaf  morphology  exhibits  rich

intraspecific variation due to long-term selection. However, there have been no studies that systematically reveal the genetic mechanisms of leaf

variation in P. cathayana. To fill this gap and enhance our understanding of leaf variation in P. cathayana, we collected nine leaf traits from the P.
cathayana natural  population,  consisting  of  416  accessions,  and  conducted  the  preliminary  classification  of  leaf  types  with  four  categories.

Subsequently, we conducted an analysis of selective sweep and genome-wide association studies (GWAS) to uncover the genetic basis of leaf

traits variation. Most of the leaf traits displayed significant correlations, with broad-sense trait heritability ranging from 0.38 to 0.74. In total, three

selective sweep methods ultimately identified 278 positively selected candidate regions and 493 genes associated with leaf size. Single-trait and

multi-trait GWAS methods detected 13 and 59 genes, respectively. By integrating the results of selective sweep and GWAS, we further identified a

total  of  nine  overlapping  genes.  These  genes  may  play  a  role  in  the  leaf  development  process  and  are  closely  associated  with  leaf  size.  In

particular, the gene CBSCBSPB3 (Pca07G009100) located on chromosome 7, was associated with the response to light stimulation. This study will

deepen our understanding of the genetic mechanism of leaf adaptive variation in P. cathayana and provide valuable gene resources.
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 Introduction

Leaf  morphology  plays  a  pivotal  role  throughout  various
stages  of  plant  growth  and  development,  influencing  crucial
processes such as gas exchange and transpiration[1]. Moreover,
it  serves as a significant indicator for plant identification and a
predictive  marker  for  productivity,  being directly  and quantifi-
ably  influenced  by  environmental  changes[2],  and  it  also
displays  a  wealth  of  variations.  These  variations  are  closely
related to genetic  variation and environmental  factors.  Under-
standing the genetic architecture and adaptive mechanisms of
leaf  variation has important ecological  and evolutionary impli-
cations[3].  Currently,  our  understanding  of  the  leaf  trait  varia-
tion in forest trees still requires further research.

Common  garden  experiments  are  the  most  common
approach used to study the genetic variation of traits in forest
tree populations.  Typically,  these studies combine phenotypes
and  genomic  variation  to  dissect  genetic  diversity[3−6].  Com-
pared  to  other  tree  species,  poplars  exhibit  rapid  growth,  are
easy  to  propagate  asexually,  and  have  a  relatively  mature
genetic  transformation  system[7].  Therefore,  poplars  are  gene-
rally  considered  as  model  species  for  forest  tree  research[8].
Previous  studies  have  identified  several  quantitative  trait  loci
(QTLs) and single nucleotide polymorphisms (SNPs) associated
with morphological  traits  of  poplar  leaves[4,8,9].  On this  basis,  a
series of studies have been conducted on leaf variation in tree

species  such  as Coffea  mauritiana[10], Ginkgo  biloba[11],  and
Camellia  sinensis[12].  These  studies  have  provided  preliminary
explorations  into  the  genetic  basis  of  leaf  trait  variation  and
identified candidate genes associated with leaf color, morpho-
logy, and thickness. They provide initial insights into the varia-
tion  of  leaf  traits  in  forest  trees  controlled  by  multiple  genes,
but further exploration is still required.

With advances in molecular biology, association genetics has
emerged  as  a  powerful  tool  for  identifying  the  loci  or  genes
underlying traits of  interest.  Among them, genome-wide asso-
ciation  studies  (GWAS)  have  been  particularly  prominent,
playing an important role in understanding the genetic basis of
plant  traits[13].  Despite  the  high  heritability  of  many  morpho-
logical traits in forest trees, the significant SNPs associated with
them  only  explain  a  small  proportion  of  the  heritability[14,15].
Complex traits often exhibit polygenicity, and traditional GWAS
often  struggle  to  detect  the  effects  of  alleles  with  small  effect
and low frequency[16,17]. Multi-trait GWAS overcomes this prob-
lem to some extent, using the correlations among traits and the
combined weak genetic effects across traits to enhances GWAS
statistical  power  and  the  ability  to  detect  novel  SNP  loci[15,18].
Currently, the commonly used models for multi-trait GWAS are
mainly  the  multivariate  linear  mixed  model  (mvLMM)  and
multi-trait  mixed  model  (MTMM)[19−21].  Among  these,  the
mvLMM  model  runs  faster  than  the  MTMM  and  has  higher
accuracy  for  groups  with  smaller  sample  sizes[19],  making  it
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more suitable for  forest  tree studies.  So far,  it  has been widely
used  in  several  tree  species  such  as Populus  trichocarpa[4,8],
Populus deltoides[22], and Sequoiadendron giganteum[23]. Among
them,  Chhetri  et  al.[4] identified  four  and  20  candidate  genes
using  single-trait  and  multi-trait  GWAS,  respectively,  in  their
study  of  leaf  traits  in P.  trichocarpa;  Xia  et  al.[24] detected  five
and  114  significant  associations  using  single-trait  and  multi-
trait  GWAS,  respectively,  in  their  research  on  growth  traits  of
perennial  hybrid Liriodendron.  Indeed,  multi-trait  analyses  can
increase power not only to detect pleiotropic genetic variants,
but also genetic variants that affect only one of multiple corre-
lated  phenotypes[25].  Multi-trait  and  single-trait  GWAS  should
be  viewed  as  complementary  rather  than  competitive[19],  and
their integration will be beneficial for GWAS mining.

Populus  cathayana is  a  native  species  in  China  with  rapid
growth  and  ability  to  adapt  to  various  complex
environments[26,27]. The leaf morphology of P. cathayana popu-
lation  has  shown  a  rich  genetic  variation.  Here,  we  first
conducted  a  study  on  the  whole-genome  variation  of P.
cathayana leaves  traits.  Based  on  the  phenotypic  data  from  a
common  garden  experiment,  we  performed  selective  sweep
and GWAS analysis to detect the genetic basis of leaf variation
in P. cathayana. The aim is to deepen our understanding of leaf
adaptive  evolution  and  identify  potential  candidate  genes.
These  findings  will  provide  preliminary  insights  for  the  adap-
tive  variation  of  forest  leaves,  and  valuable  genetic  resources
for poplar improvement.

 Materials and methods

 Plant materials and phenotype collection
The Populus  cathayana Rehder  (Salicaceae,  Tacamahaca)

association  population  consists  of  416  genotypes,  collected
from  34  natural  distribution  areas  in  China[28],  spaced  at  least
100  m  from  each  other.  All  genotypes  were  propagated
through  vegetative  reproduction  by  cuttings  in  the  green-
house of the Chinese Academy of Forestry. After two months of
growth, they were transplanted to a common garden in Beijing,
with 10−20 seedlings per genotype. The seedlings were spaced
at  30  cm  ×  50  cm,  and  uniform  water  and  fertilizer  manage-
ment was implemented.

 Phenotype data collection
In  the  spring  of  2018,  all P.  cathayana genotypes  were

pruned at a height of 3 cm above the ground. In mid-July of the
same year, three healthy and insect-free saplings were selected
from  each  genotype,  and  fully  expanded  leaves  from  the  7th,
8th,  and  9th positions  counting  from  the  top  were  collected  to
measure  leaf  chlorophyll  content  and  morphological  indices.
The relative chlorophyll content (SPAD) of the leaves was deter-
mined using a hand-held Soil and Plant Analyzer Development
chlorophyll  meter,  and  the  leaves  were  scanned  and  imaged
using  a  scanner.  After  that,  the  leaf  area  (LA),  leaf  perimeter
(LP),  leaf  length  (LL),  leaf  width  (LW)  and  petiole  length  (PL)
were  measured  using  Digimizer  image  processing  software.
Three  compound  leaf  morphology  traits  were  calculated
according to the method described by Cheng et al.[29].

Lea f index (LI) = Lea f length/Lea f width

Relative petiole length (RPL) = Petiole length/Lea f length

Lea f margin f actor (LMF) = 4∗Lea f area/Lea f perimeter2

 Statistical analyses
All  measurements  were  checked  for  recording  errors,  and

outliers  were  removed.  Phenotypic  descriptive  statistics
(Supplemental Table S1) were calculated using dplyr v.1.1.2[30].
The variance components were estimated by applying a mixed
linear model using lme4 v.1.1.34[31], with genotype as a random
factor  and  replication  as  a  fixed  factor.  The  generalized  heri-
tability (H2) was calculated using the formula H2 = Vg/(Vg + Ve),
where  Vg  and  Ve  represent  the  genetic  and  residual  variance
components, respectively. Additionally, based on the statistical
results  of  leaf  traits,  we  performed  PCA  analysis  using
FactoMineR  v1.34[32],  and  conducted  hierarchical  clustering
analysis using ggtree v.3.4.4[33].

 Genotype data information
Preparation of the genotypic data was as described in Xiang

et al.[34]. Briefly, paired-end libraries were prepared according to
Illumina's  standard,  and  the P.  cathayana association  popula-
tion  was  subjected  to  whole-genome  resequencing  using  the
Illumina HiSeq 2500 platform. Each sample was sequenced to a
depth of  approximately  30  X.  After  filtering the raw reads,  the
high-quality  paired-end sequencing reads  were  aligned to  the
reference  genome  of P.  cathayana (https://ngdc.cncb.ac.cn/?
lang=en,  PRJCA014016)  using  the  BWA-MEM  algorithm  from
the  BWA  v.0.7.8[35].  Subsequently,  PCR  amplified  repeats  were
removed  using  SAMtools  v.0.1.19[36],  and  SNP  detection  was
performed  using  Genome  Analysis  Toolkit  (GATK)  v.4.0.4.0[37].
Finally, SNPs with an average sequencing depth < 20, quality <
30, minor allele frequency < 0.05, and missing genotype > 0.05
were filtered out using VCFtools v.0.1.16[38].

 Selective sweep analysis
Selective sweep helps to identify genomic information asso-

ciated  with  adaptive  variations.  Here,  we  used  three  methods
for  selective  sweep  analysis.  Genetic  differentiation  coefficient
(Fst)  and  nucleotide  diversity  (π)  were  calculated  using  the
sliding  window  method  with  VCFtools  v.0.1.16.  XP-CLR  was
performed  using  the  python  version  of  XP-CLR  v.1.1.2[39] with
the parameters: --ld 0.95 -maxsnps 600 --size 10 kb --step 1 kb.
Referring to the studies by Li et al.[3] & San et al.[40], we similarly
used the top 5% window as the candidate region for selective
scanning  analysis.  The  overlapping  regions  among  the  three
methods were defined as the final candidate regions for selec-
tive sweep. Then, the genes within final candidate regions were
defined  as  selective  sweep  candidate  genes,  and  enrichment
analysis  was  performed  on  these  selective  sweep  candidate
genes using the GO (Gene Ontology) and KEGG (Kyoto Encyclo-
pedia of Genes and Genomes) databases.

 Genome-wide association studies (GWAS)
To further identify genes that play a key role in the variation

of P.  cathayana leaf  traits,  we  conducted  GWAS  analysis.  We
first filtered out SNPs with a minor allele frequency > 0.05 and a
missing genotype rate < 0.05 using VCFtools v.0.1.16[38]. Subse-
quently,  we  used  Plink  v1.90[41] (window  size  50,  step  size  50,
r2 ≥ 0.20) to filter out SNPs with a high degree of linkage dise-
quilibrium to ensure the independence of the SNPs. Ultimately,
587,765  SNPs  were  retained  for  association  analysis.  We  first
conducted  single-trait  GWAS  (Supplemental  Table  S2)  using
univariate  linear  mixed  model  (LMM)  in  GEMMA  v.0.98.3[42].  In
order to eliminate false positives in association analysis, the first
three principal components (Supplemental Table S3) were used
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as  a  fixed effect,  while  kinship  matrix  (Supplemental  Table  S4)
was  used  as  a  random  effect.  Principal  component  analysis
(PCA)  was  performed  using  GCTA  v1.93.2.  Kinship  matrix  was
also constructed using GEMMA v.0.98.3. The GWAS model was:

y =Wα+xβ+u+ e,

where y is a vector of quantitative traits for n individuals, W is an
n  ×  c matrix  of  covariates  (fixed  effects), α is  a  vector  of  corres-
ponding  coefficients  including  the  intercept,  x  is  an n-vector  of
marker  genotypes, β is  the  effect  size  of  the  marker,  u  is  an n-
vector of random effects, and e is an n-vector of errors[42].

 Multi-trait GWAS
Multi-trait  GWAS  enhances  the  signal  strength  of  SNPs  to

some extent, and the degree of enhancement is closely associ-
ated with the correlation and functional relationships between
traits.  Here,  we  constructed  five  trait  combinations  (Supple-
mental  Table  S5)  and  employed  the  multivariate  linear  mixed
model  (mvLMM)  in  the  GEMMA  v0.98.3  to  perform  multi-trait
GWAS.  For  example,  based  on  inter-trait  correlations,  we
combined four closely correlated leaf morphological traits (leaf
area, leaf circumference, leaf length, and leaf width) as the main
structural  units  of  leaves.  Considering  the  functional  relation-
ships  among  traits,  we  combined  leaf  area,  SPAD  and  petiole
length[4] as  they  may  have  potential  effects  on  leaf  photosyn-
thesis.  Considering  the  impact  of  leaf  index  and  leaf  margin
factor  on  understanding  leaf  morphological  traits  and  their
implications for  plant  adaptability[43],  we constructed two trait
combinations  based  on  the  sub-traits  of  these  two  composite
traits.  In  addition,  we  combined  the  three  composite  traits
(relative petiole length, leaf index and leaf margin factor) as the
overall  evaluation  of  leaf  traits.  The  multi-trait  GWAS  model
was:

Y =WA+xβd +U+E,

where Y is an n by d matrix of quantitative traits for n individuals,
W is an n × c matrix of covariates (fixed effects), A is c by d matrix
of  corresponding  coefficients  including  the  intercept,  x  is  an n-
vector of marker genotypes, βd is a d vector of marker effect sizes
for the d phenotypes, U is an n by d matrix of random effects, and
E an n by d matrix of errors[42].

 Analyses of GWAS results
CMplot  v4.3.1  was  used  to  generate  Q-Q  plot  to  assess  the

accuracy of the model and create Manhattan plots to visualize
the  GWAS  results[44].  We  used  a p_value  cutoff  based  on  the
Bonferroni correction criterion of 8.51 × 10−8 (0.05/n, where n is
the  effective  number  of  SNPs)  to  identify  significant  associa-
tions  for  single-trait  and  multi-trait  GWAS.  Additionally,  for
single-trait GWAS, we also used a more liberal p_value cutoff of
1.70  ×  10−6 (1/n,  where n is  the  effective  number  of  SNPs)  to
identify suggestive associations. For significant associations, we
used the reference genome of P. cathayana as a reference and
considered their upstream and downstream regions of 20 kb as
candidate  intervals  to  obtain  GWAS  candidate  genes.  Percen-
tage of  variance explained (PVE)  by SNPs was estimated using
the formula described by Shim et al.[45]. Since multi-trait output
does  not  provide  SE  for  effect  size,  the  estimation  of  PVE  for
SNPs was not conducted. The PVE calculation formula was:

PVE =
2β2MAF(1−MAF)

2β2MAF(1−MAF)+(se(β ))22NMAF(1−MAF)

where, β =  effect  size,  MAF  =  minor  allele  frequency,  N  =
sample size, se(β) = SE of β.

 Candidate gene functional enrichment and
network analysis

Based  on  the  gene  annotation  information  of  the P.
cathayana genome,  we  used  the  GO  and  KEGG  databases  to
predict  the  potential  biological  functions  of  candidate  genes.
To further screen candidate genes, we constructed a candidate
gene  network  using  Cytoscape  v3.7.1[46].  Nodes  denote  traits
and genes and node size denotes connectivity.

 Results

 Correlations and variation analysis of leaf traits
The  distribution  of  leaf  traits  and  correlations  analysis

between traits are shown in Fig. 1. Most leaf traits were signifi-
cantly  different  (p <  0.01)  within  the P.  cathayana population.
The  same  results  were  also  found  between  different  source
regions[28].  The five leaf  morphological  traits  were significantly
positively correlated among each other, and significantly nega-
tively correlated with two composite traits (LI and LMF) as well
as  SPAD (Fig.  1).  Broad-sense heritabilities  ranged from 0.3791
to  0.7375  for  leaf  traits,  with  the  highest  being  LMF  and  the
lowest being SPAD coefficient of variation (Table 1).

 PCA and cluster analysis of leaf phenotypic data
in P. cathayana population

We  performed  principal  components  analysis  (PCA)  to
further  explore  the  relationships  among  traits  within  the P.
cathayana population. PC1 explained over 54% of the total vari-
ation,  with  PC1  and  PC2  together  explaining  80%  of  the  total
variation.  Five  morphological  traits  were  negatively  weighted
towards  the  PC1  axis,  while  SPAD  was  positively  weighted
towards  that  axis.  RPL  and  LMF  were  positively  weighted
towards the PC2 axis, while LI was negatively weighted towards
that axis (Fig. 2a). Furthermore, through the clustering analysis,
we have classified the P. cathayana leaves into four categories:
long-stalked large leaf (LSLL), long-stalked medium leaf (LSML),
short-stalked  medium  leaf  (SSML),  and  short-stalked  small  leaf
(SSSL) (Fig. 2b, c, Supplemental Table S6).

 Selective sweep identifies candidate genes
regulating leaf morphology

In our previous study, we considered the P. cathayana popu-
lation  to  be  divided  into  four  groups:  NW  (Northwest  China),
SW (Southwest China), TH (Tai-hang Mountains), and NC (North
China)  (Supplemental  Fig.  S1).  We  observed  that  LSLL  geno-
types  were  predominantly  concentrated  in  the  NW  group,
while  SSSL  genotypes  were  mainly  found  in  the  TH  group.  To
identify  selected  genes  associated  with  leaf  size  during  leaf
variation,  we  selected  10  LSLL  genotypes  from  the  TH  group
and 10 SSSL genotypes from the NW group for selective sweep
analysis. Fst, π, and XP-CLR identified a total of 278 overlapping
regions  (Fig.  3).  Further,  493  selective  sweep  candidate  genes
were  identified  (Supplemental  Table  S7).  These  candidate
genes were significantly enriched in GO terms closely related to
leaf  development,  including  cell  growth,  cell  death,  auxin
biosynthesis  and  metabolic  processes,  protein  kinase  activity,
and  aspects  of  the  photosynthetic  membrane  such  as  chloro-
plast  thylakoids  (Fig.  4a, Supplemental  Table  S8).  In  addition,
these  genes  were  notably  enriched  in  several  metabolic  path-
ways,  including  plant-pathogen  interaction,  photosynthesis,
starch  and  sucrose  metabolism,  and  biosynthesis  of  unsatu-
rated  fatty  acids.  Overall,  enrichment  analysis  preliminarily
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suggests that the candidate genes play significant roles in leaf
development (Fig. 4b, Supplemental Table S9).

 GWAS to identify candidate genes controlling leaf
morphology

GWAS  was  conducted  to  further  identify  candidate  genes
associated  with  leaf  morphology.  For  single-trait  GWAS,  we
identified  a  total  of  six  significant  SNPs  across  the  nine  leaf
traits  (Supplemental  Figs  S2 & 3).  These  SNPs  were  located
within or near 13 gene, with explained PVE ranging from 1.08%
to 3.34% (Table 2).  For  multi-traits  GWAS,  we identified a  total
of  33  significant  SNPs  associated  with  at  least  one  of  the  five
sets of traits (Fig. 5a−e, Supplemental Fig. S4). These SNPs were
located  within  or  close  to  59  gene  (Supplemental  Table  S10).
Ultimately,  the  two  GWAS  methods  identified  a  total  of  67
candidate  genes  associated  with  leaf  traits;  Among  them,  five
candidate  genes  overlapped  in  the  two  GWAS  methods

(Supplemental  Table  S11).  In  addition,  using  a  more  liberal
p_value  cutoff  of  1.70  ×  10−6,  we  associated  a  total  of  41
suggestive association SNPs in nine single-trait GWAS (Supple-
mental Fig. S2). These SNPs explained PVE ranging from 0.01%
to  3.18%,  and  identifying  52  suggestive  candidate  genes
(Supplemental  Table  S12).  Among  these  suggestive  candidate
genes,  eight  overlapped  with  the  candidate  genes  from  the
multi-trait GWAS. These overlapping genes are initially deemed
key candidate genes likely to influence the leaf morphology of
P. cathayana (Supplemental Table S13).

To further clarify the biological functions of the GWAS candi-
date  genes,  we  conducted  enrichment  analysis  on  the  GWAS
candidate  genes  (Supplemental  Fig.  S5a, b).  The  candidate
genes  were  involved  in  various  GO  terms,  including  saponin
and  glycoside  biosynthetic  and  metabolic  process,  phytos-
teroid biosynthetic process, response to abscisic acid, response
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RPL
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SPAD

LP: Leaf perimeter

LL: Leaf length

LW: Leaf width

PL: Petiole length

RPL: Relative petiole length

LI: Leaf index

LMF: Leaf margin factor

SPAD: Leaf chlorophyll

 
Fig.  1    Relationships  between  leaf  traits.  Scatter  plots  and  histograms  display  the  distribution  of  each  trait.  The  red  line  overlaid  on  each
histogram represents  the density  distribution.  '*',  '**'  and '***'  denote significant  correlations at  the 0.05,  0.01,  and 0.001 levels,  respectively.
Red and blue asterisks represent positive and negative correlations, respectively.

Table 1.    Results of statistical analysis of leaf traits.

Trait Abbreviation Mean SD Min Max CVa Vgb Vec H2d

Leaf area LA 118.272 37.235 21.034 219.587 0.31 1,143.7214 685.7488 0.6252
Leaf perimeter LP 51.986 9.642 23.017 83.762 0.19 87.9111 66.3378 0.5699
Leaf length LL 16.344 2.511 7.733 22.327 0.15 5.4303 2.7019 0.6678
Leaf width LW 10.242 2.072 3.483 15.633 0.20 3.9290 2.9150 0.5741
Petiole length PL 3.205 1.047 0.786 5.513 0.33 0.9876 0.3814 0.7214
Relative petiole length RPL 0.197 0.061 0.066 0.376 0.31 0.0671 0.0256 0.7234
Leaf index LI 1.645 0.272 1.042 2.520 0.17 0.0003 0.0005 0.3791
Leaf margin factor LMF 0.173 0.019 0.123 0.232 0.11 0.0033 0.0012 0.7375
Leaf chlorophyll SPAD 41.989 4.587 30.993 57.233 0.11 7.0770 4.9680 0.5875

a Coefficient of variation; b genetic variance; c residual variance; d heritability,
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to stimulus, chloroplastic endopeptidase clp complex, response
to  hormone  (Supplemental  Table  S14).  Moreover,  they  are
associated  with  KEGG  metabolic  pathways  such  as  protein

processing  in  endoplasmic  reticulum,  cyanoamino  acid
metabolism, phenylpropanoid biosynthesis, starch and sucrose
metabolism,  flavonoid  biosynthesis,  plant  hormone  signal

a b

c

 
Fig. 2    Principal component analysis (PCA) and hierarchical clustering analysis based on leaf phenotype data. (a) The PCA plot showing the
first  and  second  principal  components  of P.  cathayana genotypes,  represented  by  color-coded  points,  and  the  relative  importance  of
explanatory variables is indicated by vectors. (b) Clustering of P. cathayana populations into four categories based on leaf traits. (c) Comparison
of four leaf shape categories[28].
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Fig. 3    Selective sweep analysis visual line chart and frequency histogram. Genetic differentiation coefficient (Fst) and nucleotide diversity (π)
were calculated by the sliding window method with a window size of 10 kb and a step size of 1 kb; XP-CLR has the same window size as Fst and
π. The plots (a), (b) and (c) respectively represent the line graph and frequency histogram of Fst, π, and XP-CLR. In the line plot, the blue line and
red  line  represent  the  top  5%  and  top  1%  thresholds,  respectively,  and  correspond  to  the  blue  and  red  shaded  areas  in  the  frequency
histogram. The interval that passes the top 5% threshold lines in three methods is considered as the final candidate region for selective sweep.
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transduction  (Supplemental  Table  S15).  The  results  of  the
enrichment  analysis  provide  preliminary  evidence  that  the
GWAS  candidate  genes  play  a  role  in  regulating  leaf  traits,
either directly or indirectly.

 Identification of key loci regulating leaf variation
In  multi-trait  GWAS,  there  are  two loci  that  show significant

associations  in  different  trait  combinations,  and  they  warrant
further investigation. Among them, SNP 7__12437614 on chro-
mosome  7  showed  a  close  association  with  the  LA  trait  (Fig.
5a−c), and was located within Pca07G009100 (CBSCBSPB3). This
gene  contains  the  CBS  domain,  and  GO  enrichment  analysis
indicates its involvement in the response to light stimulus. SNP
18__14798104 on chromosome 18 showed a close association
with the LMF trait (Fig. 5c, d) and was located within the coding
region  of  Pca18G011700  (PIX13).  This  gene  encodes  the

tyrosine  and  serine/threonine  kinase  proteins,  and  GO  enrich-
ment  analysis  indicates  its  involvement  in  defense  responses
and  responses  to  external  stimuli,  as  well  as  other  GO
processes;  The neighboring genes Pca18G011690 (CYP716A17)
and Pca18G011710 both encode Cytochrome P450, which may
be involved in the synthesis of chlorophyll and other photosyn-
thetic  pigments. Fst and π analysis  results  indicated significant
differentiation  between  the  SHSL  and  LHLL  categories  near
these two SNPs (Fig. 5f, h). This further suggests that these loci
may  play  a  key  role  in  promoting  genetic  differentiation  and
adaptive  phenotypic  variation.  Furthermore,  the  observed
phenotypic  differences  between  different  haplotypes  provide
support for the involvement of these SNPs in trait variation (Fig.
5g, i).  These  results  further  suggest  that  candidate  genes  may
regulate  leaf  development  by  affecting  leaf  photosynthetic
capacity.

a b

 
Fig. 4    Functional enrichment analysis of selective sweep candidate genes. (a) GO enrichment analysis of candidate genes, where the size of
the points represents the number of genes, and the color of the points indicates significance level. BP, CC, MF respectively represent biological
process, cellular component, and molecular function. (b) KEGG enrichment analysis of candidate genes, where the size of the points represents
the number of genes, and the color of the points indicates significance level.

Table 2.    Statistical information of significant SNPs in single-trait GWAS.

rsa Trait p_value PVEb Gene Functional annotation

19__8697977 LW 5.36E-08 3.15 Pca19G006210 Reverse transcriptase
Pca19G006220 RNase H-like domain found in reverse transcriptase

10__3487289 LL 6.77E-08 2.97 Pca10G001830 Protein tyrosine and serine/threonine kinase
Pca10G001840 D-mannose binding lectin

9__9068032 PL 1.04E-08 3.34 Pca09G008070 WD domain, G-beta repeat
Pca09G008080 Clp protease
Pca09G008090 C2H2-type zinc finger

8__15332723 SPAD 2.24E-08 3.24 Pca08G018800 5' nucleotidase family
1__26393650 RPL 2.10E-08 1.98 Pca01G022670 NA

Pca01G022680 Protein of unknown function (DUF1117)
9__9068032 RPL 5.28E-08 2.20 Pca09G008070 WD domain, G-beta repeat

Pca09G008080 Clp protease
Pca09G008090 C2H2-type zinc finger

18__14798104 LMF 4.57E-09 1.08 Pca18G011690 Cytochrome P450
Pca18G011700 Protein tyrosine and serine/threonine kinase
Pca18G011710 Cytochrome P450

NA, not available. a The name of the SNP. b The proportion of phenotype variance explained by SNP.
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 Candidate gene network analysis
To  further  identify  important  candidate  genes,  we

constructed a  candidate  gene network using Cytoscape v3.7.1

(Fig.  6, Supplemental  Table  S16).  The  number  of  overlapping

GWAS  candidate  genes  among  different  leaf  traits  was  closely

related  to  the  correlation  among  traits,  with  no  overlapping
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Fig. 5    GEMMA multi-trait GWAS Manhattan plots and significant locus analysis. The plots (a), (b), (c), (d), and (e) correspond to the manhattan
plots  of  LA_LP_LL_LW,  LA_PL_SPAD,  LI_LW_LL,  LMF_LA_LP  and  RPL_LI_LMF,  respectively.  For  ease  of  comparison,  we  have  included  the
single-trait  GWAS Manhattan plots  of  the  traits  in  the figures.  Each dot  on the plot  represents  a  SNP,  with  dot  colors  indicate  single-trait  or
multi-trait associations. p_value were transformed into −log10(p_value).  SNPs above green lines passed bonferroni correction test (p ≤ 8.51 ×
10−8).  The  red  circle  represents  the  detected  loci  in  multiple  trait  combinations.  (f)  Analysis  of  genetic  differentiation  (Fst)  and  nucleotide
diversity (π) near SNP 7__12437614. (g) Comparison of leaf phenotypes corresponding to three haplotypes at SNP 7__12437614, represented
by mean values in a bar graph with standard deviation as the error. (h) Analysis of genetic differentiation (Fst) and nucleotide diversity (π) near
SNP 18__14798104. (i)  Comparison of leaf phenotypes between two haplotypes at SNP 18__14798104, represented by mean values in a bar
graph with standard deviation as the error.
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genes found between SPAD and other traits.  Within the entire
network,  18  GWAS  candidate  genes  were  associated  with  at
least two leaf trait variations. The gene Pca09G008080 (CLPR1),
encoding an ATP-dependent Clp protease proteolytic  subunit-
related protein, and the gene Pca10G001830, encoding protein
tyrosine  and  serine/threonine  kinase,  showed  high  connectiv-
ity in the network. Selective sweep and GWAS identified a total
of nine overlapping genes (Supplemental Table S17), and these
genes may play a role in the leaf development process and are
closely associated with leaf size. Among them, the gene CBSCB-
SPB3,  associated  with  the  response  to  light  stimulation,  was
identified  as  a  key  candidate  gene  in  GWAS  analysis  of  this
study.

 Discussion

Leaf size and shape are crucial traits in the development and
growth of poplar[9]. Identifying the genetic mechanisms under-
lying leaf trait variation holds profound implications for poplar
breeding.  For  a  long  time,  leaf  trait  research  has  been  an
important  direction  of  forest  tree  research.  However,  our
understanding  of  the  gene  regulatory  networks  and  genetics
underlying leaf development is still limited[22,47]. With advance-
ments  in  biotechnology,  the  genomic  era  has  provided

possibilities  for  further  studying  the  variations  in  leaf  traits.
Populus,  as  model  forest  tree  species,  has  been  subject  to  a
series  of  GWAS  studies  on  leaf  traits,  such  as P.  trichocarpa[4]

and P.  euphratica[48].  These  studies  indicated  that  leaf  traits
have exhibited abundant genetic variation within poplar popu-
lations.  Our  study  similarly  confirms  the  presence  of  rich  leaf
variation  in P.  cathayana,  enabling  the  preliminary  classifica-
tion  of P.  cathayana leaves  into  four  categories  (LSLL,  LSML,
SSML and SSSL).

Previous  research  has  suggested  that  poplar  leaf  trait  varia-
tions were primarily driven by geographical factors, with many
leaf  traits  correlating  with  altitude  and  latitude[8,49]. P.
cathayana leaf  morphological  traits  exhibit  high  correlations
among  themselves  and  negative  correlations  with  chlorophyll
content  (SPAD),  which  are  consistent  with  previous  studies.
Furthermore,  they  also  pointed  out  that  the  morphological
characteristics  of  poplar  leaves  not  only  affect  chlorophyll
content but also influence leaf thickness and stomatal density,
subsequently impacting poplar tree nitrogen content, stomatal
conductance,  and  photosynthesis[50],  ultimately  affecting  tree
growth.  Significant  variation  in  leaf  traits  within P.  cathayana
populations  may  be  closely  associated  with  environmental
factors  such  as  temperature,  precipitation,  and  solar  radiation
lamps, in addition to genetic factors.

Key candidate genes

GWAS candidate genes

Suggestive candidate genes

Selective candidate genes

 
Fig. 6    Candidate gene network visualization. Circles represent candidate genes, and the size of the circles indicates the number of associated
traits. The color of the circles corresponds to different types of candidate genes. Lines represent the traits associated with genes and whether
they are candidate genes for selective sweep.
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Previously,  there  have  been  no  reports  on  whole-genome
studies  of  leaf  traits  in P.  cathayana.  Here,  we  systematically
carried  out  the  first  whole-genome  study  of P.  cathayana
leaves.  We  observed  that  the  ability  of  GWAS  to  mine  single
traits was limited,  and most traits  were difficult  to associate to
specific  genetic  variant  loci.  This  phenomenon  is  present  not
only  for  leaf  traits  but  also  for  most  traits  of  forest
trees[3,4,8,9,22,48,51].  The  reasons  for  this  limitation  have  been
discussed in previous studies[4,14,52]. One of the primary reasons
is  the  relatively  small  population  size  used  in  forest  tree  asso-
ciation analyses, which makes it difficult to detect the effects of
alleles  with  small  effect  sizes  and  low  frequencies.  Therefore,
we  considered  applying  multi-trait  mixed  linear  model  to
improve  the  mining  power  in  addition  to  the  conventional
GWAS  analysis[4,19].  In  our  study,  multi-trait  GWAS  identified
more  candidate  genes  than  single-trait  GWAS,  and  this
increased  power  of  multi-trait  GWAS  depends  in  part  on  the
correlation among traits.

Selective  sweep  and  GWAS  provide  possibility  for  studying
adaptive variations and have been widely used[53−57].  Li et al.[3]

used  GWAS,  selective  sweep  and  multi-omics  data  to  identify
41  representative  genes  potentially  involved  in  stomatal  mor-
phological  variation  and  photosynthetic  capacity  in P.  tomen-
tosa. In  this  study,  several  genes  (CBSCBSPB3,  CYP716A17,
CLPR1)  were  identified  through  selective  sweep  and  GWAS,
which may be related to leaf function in Arabidopsis[58,59]. Their
functional  annotations  in  the P.  cathayana genome  are  asso-
ciated with light stimulation, photosynthesis, chloroplast deve-
lopment,  and  stress  response.  Therefore,  we  preliminarily
consider  them  to  be  key  candidate  genes  for  exploring  leaf
variation  in P.  cathayana.  Furthermore,  by  selective  sweep  we
also  identified  multiple  genes  associated  with  cell  develop-
ment, photosynthesis, and chloroplasts.

Compared  to  previously  reported  GWAS  studies  on  poplar
leaf  traits[3,4,9,22,48,51],  we  found  few  overlapping  genes  across
different studies.  By studying the functions of  these candidate
genes, we found that candidate genes are functionally enriched
in cell development, carbohydrate metabolism, plant-pathogen
interactions,  and  flavonoid  biosynthesis.  In  our  study,  GWAS
candidate  genes  also  displayed  similar  functions.  Notably,  we
found  that  unlike  other  leaf  GWAS  studies, P.  cathayana leaf
traits GWAS candidate genes were significantly enriched in GOs
such  as  response  to  abscisic  acid  and  mitotic  cell  cycle.  We
believe that our study provides valuable insights into a portion
of the genetic variation behind the phenotypic traits of leaves.

 Conclusions

In  summary,  we have reported the  first  genome-wide study
on  leaf  traits  in P.  cathayana and  classified  the  leaf  types  of P.
cathayana into  four  major  categories.  Integrating  selective
sweep  and  GWAS,  we  conducted  a  preliminary  exploration  of
the genetic basis of leaf variation in P. cathayana. We detected
candidate  genes  associated  with  photosynthesis  and  chloro-
plast  development  that  may  play  a  key  role  in  leaf  variation.
Through single-trait  and multi-trait  GWAS analyses,  we further
identified candidate genes involved in regulating leaf morpho-
logy  variation.  Integrating  selective  sweep  and  GWAS  result
further identified the important role of CBSCBSPB3 in leaf phe-
notype  variations.  Our  findings  advance  the  understanding  of

adaptive  variation  of  leaf  traits  and  provided  valuable  genetic
resources for improving the adaptations of forest tree.
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