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Abstract
Nonnative invasive plant species (NNIPS) cause significant damage to the native forest ecosystems in the southern United States forestlands, such

as  habitat  degradation,  ecological  instability,  and  biodiversity  loss.  Taking  the  state  of  Alabama  as  an  example,  we  used  more  than  5,000

permanent United States Department of Agriculture-Forest Service's Forest Inventory and Analysis (FIA) plots measured between 2001 and 2019

over three measurement cycles to test  the suitable modeling unit  for  quantifying invasion patterns and associated factors for  regional  NNIPS

monitoring and management. NNIPS heavily infest Alabama's forestlands, and forestlands plagued with at least one NNIPS have increased over

time: 41.1%, 50.8%, and 54.8% during the past three measurements. Lonicera japonica (Thunb.) was the most abundant NNIPS in Alabama, with at

least 26% of its forested lands infested. The FIA data were aggregated with multiple spatial units: five levels of hydrological units, three levels of

ecological units, and a county level. Invasion indices were calculated for all spatial units based on NNIPS' presence/absence and average cover in

each plot. The best modeling unit was identified based on Moran's test, with the county-level modeling unit providing the best Moran's I value

over all measurement periods. Influencing factors of invasion were evaluated based on spatial lag models. Our models show that the invasion

index decreased with increases in public forest areas in a county. In contrast, the human population density of neighboring counties positively

influenced the invasion index.

Citation:  Nepal S, Spetich MA, Fan Z. 2024. Determining spatial units for modeling regional nonnative invasive plant species spread in the southern
US forestlands: using the state of Alabama as an example. Forestry Research 4: e013 https://doi.org/10.48130/forres-0024-0010

 
 Introduction

Nonnative invasive plant species (NNIPS) significantly impact
the  US  economy  and  native  ecosystems[1].  Despite  control
efforts,  invasions  have  increased  noticeably  throughout  the
landscape.  Forest  ecosystems  are  vulnerable  to  invasions
because invasive species can quickly alter species composition
and  ecosystem  structure  and  functionality,  causing  a  loss  of
forest  productivity  and  diversity[2].  Southern  US  forest  ecosys-
tems  are  experiencing  increasing  threats  from  NNIPS,  which
displace  native  species,  degrade  fundamental  forest  structure
and  functionality[3,4],  and  damage  the  environment  and  local
economies[5,6].  Moreover,  invasive  species  are  expected  to
increase  in  geographic  range  over  time,  causing  large-scale
ecological  instability  of  native  forests  and  making  control  and
mitigation measures more costly and challenging[7].

NNIPS  are  increasing  at  an  alarming  rate  throughout  sou-
thern  US  forests;  however,  only  partial  monitoring  and  a  few
invasive  control  practices  are  being  implemented[8,9].  Miller[9]

documented  33  NNIPS  rapidly  growing  in  the  southern  US.
Among them, some common NNIPS are Japanese honeysuckle
(Lonicera  japonica Thunb),  kudzu  (Pueraria  montana (Lour.)
Merr.),  privet (Ligustrum L.),  Tree-of-Heaven (Ailanthus altissima
(Mill.)  SwingleCh),  silk-tree  (Albizia  julibrissin Durazz.),  and
Chinese tallow tree (Triadica sebifera (L.) Small), primarily intro-
duced  into  the  United  States  as  ornamental  or  for

multipurpose[9−11].  These  species  are  more  vigorous  in  the
introduced  habitat  than  in  the  native  habitat[12,13],  tolerant  to
multiple  adverse  conditions,  have  various  means  for  seed
dispersal  and  propagation,  and  grow  more  rapidly  than  most
native species[9−11].  Two driving factors make them more vigo-
rous  in  introduced  areas:  advantageous  competitive  capacity
and  lack  of  natural  enemies  in  newly  introduced  areas[14].
Further,  disturbed  habitats,  such  as  ecosystem  edges,  inclu-
ding transportation networks, are susceptible to invasion[15].

Alabama  is  one  of  the  most  densely  forested  states  in  the
southern  US,  with  more  than  68%  covered  with  diverse  and
highly  productive  forests[16].  As  such,  Alabama  depends
immensely on its forests for its economy and the well-being of
its  residents[17].  As  elsewhere  in  the  southern  US,  Alabama's
forests are experiencing increasing threats due to the invasion
of  NNIPS.  The  Alabama  Invasive  Plant  Council  has  identified
these  seven  NNIPS  as  extended  and  dense  infested  species  in
the state's managed forested lands: Chinese tallow tree, privet,
Japanese  honeysuckle,  Japanese  climbing  fern,  kudzu,  cogon-
grass  (Imperata  cylindrica (L.)  Beauv.),  and  Nepalese  browntop
(Microstegium  vimineum (Trin.)  A.  Camus)[18].  These  invasive
species  have  plagued  vast  forestlands  and  become  a  severe
problem for forest landowners in Alabama.

The invasion and spread of NNIPS in forestlands are driven by
multiple factors interacting across different spatial and tempo-
ral  scales[19].  Accordingly,  their  distribution  is  non-stationary
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and  varies  in  space  and  across  ecosystems.  In  addition  to
climatic  and  geographic  factors  (e.g.,  temperature,  precipita-
tion, site productivity, forest types), socioeconomic factors such
as  ownership,  land-use  change,  road  density,  and  resource
management intensity and history have also been shown to be
significant  determinants  of  invasive  incidence[5,20].  It  has  often
been  observed  that  native  and  invasive  species  abundance
follows a negative relationship at fine scales but roughly a posi-
tive  relationship  at  broad  scales  (e.g.,  a  forest  landscape/
watershed)[21].

Selection  of  appropriate  spatial  scales  (units)  is  needed  for
regional  NNIPS  modeling  and  monitoring.  Appropriate  spatial
scales  or  units  should  not  only  help  characterize  the  distribu-
tion  patterns  of  NNIPS  but  also  provide  a  convenient  frame-
work for monitoring and management efforts. For this purpose,
we  chose  a  group  of  hydrological,  ecological,  and  administra-
tive or political units to test their feasibility. Hydrologic units are
spatially  homogeneous  in  mass  movement  and  energy
exchange.  They  are  better  determinants  of  significant  hydro-
logical,  ecological,  and  socioeconomic  processes  influencing
the  invasion  and  spread  of  invasive  species[22,23].  Ecological
units such as provinces, sections, and subsections are generally
defined  based  on  climate,  vegetation,  terrain,  and  elevation,
reflecting  ecological  assemblies'  spatial  heterogeneity  and
hierarchy[24].  In  contrast,  counties  are  mainly  political  and
administrative boundaries for policy making and management
activities  primarily  related  to  human  well-being.  Our  primary
goal  was  to  identify  the  best  modeling  units  and  develop  the
geospatial  model  to  examine  invasion  severity  in  Alabama.
Specifically, this study aimed to 1) identify the best hierarchical
geospatial  modeling  unit  to  map  the  extent  and  spread  of
NNIPS and 2) quantify associated factors that significantly affect
the  invasion  and  spread  of  NNIPS  in  Alabama's  forestlands.
These  analyses  provide  baseline  information  on  invasive  spe-
cies  modeling  and  suitable  management  units  for  developing
better  prevention  and  management  strategies  to  control  or
mitigate the negative impact of  invasive species on Alabama's
forestlands.

 Materials and methods

 Forest inventory and analysis (FIA) data
We  obtained  data  from  more  than  5,000  FIA  plots/subplots

for the state of Alabama (FIA DataMart 2019). The FIA data were
downloaded  from  the  USDA  Forest  Service's  Forest  Inventory
and  Analysis  (FIA)  DataMart  (Forest  Inventory  and  Analysis
Program  2018).  Alabama  has  5,657  FIA  plots,  approximately
4.9-km × 4.9-km spacing throughout the state, that is, one plot
for  roughly  every  24.3  km2,  to  collect  forest  information[16,25].
We  used  plots  measured  three  times  between  2001  and  2019
on  accessible  forested  lands.  Each  FIA  plot  has  four  nested
subplots;  there  were  more  than  22,000  subplots  in  each
measurement  throughout  the  state.  Some  of  these  were  inac-
cessible,  and  some  were  not  remeasured;  as  such,  we  found
that  15,240  subplots  were  accessible  and  remeasured  three
times. Invasive species information such as presence and cover
percent  were  obtained  from  the  'AL_INVASIVE_SUBPLOT_SPP'
table,  and  plot  level  information  was  obtained  from  the
'AL_PLOT'  and  'AL_COND'  tables.  Publicly  available  FIA  data
provide  the  approximate  latitude  and  longitude  due  to  a
privacy provision. Most annual plots were within +/− half a mile

of the approximate locations, and some plots were swapped[26].
Thus,  we  obtained  actual  FIA  plot  locations  from  the  USDA
Forest Service and used them for this analysis.

 Land use/forest types/demographic data in
Alabama

We  used  the  LANDFIRE  (Landscape  Fire  and  Resource
Management Planning Tools) dataset for this analysis. The 2016
existing  vegetation  type  (EVT)  data  were  downloaded  from
https://landfire.gov/viewer/viewer.html. The EVT provides infor-
mation about the existing distribution of plant communities[27].
Data  come  in  30  m  ×  30  m  pixels  and  are  available  for  the
conterminous  US.  We  used  SAF_SRM  classes,  the  crosswalk  to
Society of American Foresters (SAF),  and the Society for Range
Management  (SRM)  cover  types.  For  the  state  of  Alabama,
LANDFIRE  classified  48  SAF/SRM  classes.  We  reclassified  these
into six major categories (Fig. 1).

Forest ownership per modeling unit was generated using FIA
data.  Additionally,  the  USDA Forest  Service's  forest  type raster
imagery (https://data.fs.usda.gov/geodata/rastergateway/forest
_type/index.php),  which  was  based  on  2002  and  2003  inven-
tory  and  prepared  by  Ruefenacht  et  al.[28].  The  geoprocessing
was  done  in  ArcGIS  Pro  (version  2.5.0);  the  identity  tool  was
used to overlap modeling units with source data (i.e.,  land-use
and forest types) and the area on each land-use class and forest
type within the modeling unit was obtained. The cover percent
by each land-use class and forest type was calculated and used
as  an  independent  variable  in  the  spatial  lag  model.  Demo-
graphic  data  including  human  population  density  and  the
number of households per modeling unit were prepared using
2016 US Census data. Further, road density and length per unit
were  made  based  on  the  interstate,  US  Highway,  and  state
Highway  information  available  on  the  ESRI  website  (www.
arcgis.com/home/item.html?id=fc870766a3994111bce4a08341
3988e4). Details of these variables can be found in Table 1.

 Multiscale modeling units
The FIA data were aggregated into multiple spatial units: five

levels  of  hydrological  units  (HUC4,  HUC6,  HUC8,  HUC10,  and
HUC12),  three levels of  ecological  units (province,  section,  and
subsection),  and  a  county  level.  Watershed  Boundary  Dataset
(WBD)  was  downloaded  from  the  USDA  Natural  Resources
Conservation Service (https://datagateway.nrcs.usda.gov/) (Fig.
2). The shapefiles of three-level ecological units were obtained
from the USDA Forest Service website (https://data.fs.usda.gov/
geodata/edw/datasets.php).

 Data preparation
Based  on  FIA  data,  we  identified  seven  top  NNIPS  in

Alabama:  Japanese  Honeysuckle,  Privet,  Japanese  climbing
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Fig.  1    Land-use in Alabama based on LANDFIRE data (SAF/SRM
classes in 2016).
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fern, Sericea Lespedeza, silk tree, Chinese tallow tree, and Rose
(Rosa L.).  These  species  were  found  at  least  in  200  subplots
(i.e., > 1.3% of all subplots) measured between 2013 and 2019.
A  binary  variable  was  created  to  represent  the  presence  or

absence  of  invasive  species  from  each  subplot.  To  capture
temporal  changes,  we  traced  the  15,240  subplots  remeasured
three  times.  Alabama's  FIA  plots  measured  between  2001  and
2005  (i.e.,  in  cycle  8)  were  treated  as  first-time  measurement

Table 1.    Variables used in the spatial lag model to evaluate the potential driving factors of NNIPS invasions.

Variable Variable definition Data types Data description and source

public_own_pct Percent of publicly owned forest (0−100) Ownership FIA DataMart (https://apps.fs.usda.gov/fia/
datamart/CSV/datamart_csv.html)

rd_length Total length of major roads (interstate and state
highways) (m)

Roads Esri (www.arcgis.com/home/item.html?id=
fc870766a3994111bce4a083413988e4)

rd_density Road density in each county (m/m2)
elm_ash_cot Elm/Ash/Cottonwood group area in percent

(0−100)
Forest groups USDA Forest Service (forest types/groups are

based 2002 and 2003 data)
https://data.fs.usda.gov/geodata/rastergateway/
forest_type/index.php

lob_short Loblolly/Shortleaf Pine group area in percent
(0−100)

long_slash Longleaf/Slash Pine group area in percent (0−100)
oak_gum_cypress Oak/Gum/Cypress group area in percent (0−100)
oak_hickory Oak/Hickory group area in percent (0−100)
oak_pine Oak/Pine group area in percent (0−100)
lob Loblolly Pine area in percent (0−100) Forest types
lob_hard Loblolly Pine/Hardwood area in percent (0−100)
long Longleaf Pine area in percent (0−100)
mix_hard Mixed Upland Hardwoods area in percent (0−100)
sw_no_wo Sweetgum/Nuttall Oak/Willow Oak area in percent

(0−100)
wo_ro_hi White Oak/Red Oak/Hickory area in percent (0−100)
pop_2010 Population in 2010 Demographics 2010 US Census demographic information.

Downloaded from Esri
(https://hub.arcgis.com/datasets/esri::usa-
counties/about)

pop_den_2010 Population density in 2010 (population·m2)
households Number of households in 2010
pop_2010_nbh Avg. population of neighborhood counties
pop_den_2010_
nbg

Avg. population density of neighborhood counties
(population·m2)

ag_pct Agriculture lands in percent (0−100) Land-use Land-use in 2016 from downloaded from
LandFire
(https://landfire.gov/viewer/viewer.html)

dev_pct Developed lands in percent (0−100)
dist_pct Disturbed lands in percent (0−100)
fr_pct Forest lands in percent (0−100)
ot_pct Other lands in percent (0−100)
wa_pct Water cover in percent (0−100)

area Total county area (m2)

 
Fig.  2    Maps  of  spatial  units  (from  coarse  to  fine):  three  levels  of  ecoregions  (left),  four  levels  of  hydrological  units  (middle),  and  counties
(right) used to predict the invasion of NNIPS in Alabama's forestlands.
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(i.e., T1), 2006−2012 (i.e., cycle 9) as second-time measurement
(i.e.,  T2),  and  2013−2019  (i.e.,  cycle  10)  as  third-time  measure-
ment (i.e., T3). The number of infested subplots by each species
and  per  measurement  time  is  summarized  in Table  2.  For  the
NNIPS above, their presence probability (Eqn 1), average cover
percent  (Eqn 2),  and invasion index  (Eqn 3)  in  forestland were
calculated for each modeling unit.

Pij =
Sij

Nij
(1)

Pij

Sij

Nij

Here,  is the presence probability of NNIPS in forestland for
a  modeling  unit i at  measurement j.  is  the  number  of
infested subplots in a modeling unit i and measurement time j,
and  is  the total  number  of  subplots  in  a  modeling unit i at
measurement time j. Here, measurement time j = T1, T2, and T3,
and  modeling  unit i =  Hydrological  units  (HUC4,  HUC6,  HUC8,
HUC10,  and  HUC12),  county,  and  ecological  units  (province,
section, and subsection).

Cij =

∑
cij

Nij
(2)

Cij ∑
cij

Nij

Here,  is  the  average  cover  of  NNIPS  in  forestland  for  a
modeling  unit i at  measurement  time j.  is  sum  of  cover
percent  of  all  invasive  species  from  all  subplots  found  in  a
modeling  unit i at  measurement  time j, and  is  the  total
number of subplots in a modeling unit i at measurement j. The
invasion index, measuring the invasion severity, was calculated
as,

Invasion index = Pij×Cij (3)
If  any  polygons  in  the  selected  modeling  units  had  missing

values,  those  missing  values  were  adjusted  with  imputed
values  based on the Inverse  Distance Weighted (IDW) imputa-
tion  method.  Addressing  missing  values  is  critical  because
some modeling units are small- as such, no FIA plots fall under
them, resulting in NULL or missing values.

 Data analysis
Spatial  and  temporal  trends  of  NNIPS  were  examined  and

graphically  illustrated.  Invasive  species'  occurrence  and  sever-
ity  often  follow  clustered  patterns[29,30].  Moran's  I  test  statistic,
proposed  by  Moran[31],  can  be  used  to  quantify  the  crowded-
ness. A positive Moran's I statistic suggests clustering, meaning
the data have a positive spatial autocorrelation[32]. In this analy-
sis,  we  chose  the  modeling  unit  with  the  highest  Moran's  I
statistic, suggesting a wider spatial variation in the data. In such
a case, we need a geospatial model to account for those spatial
autocorrelations.  Thus,  influencing  factors  for  invasion  indices
were modeled using the spatially lag model- spatial autoregres-
sive (SAR)  (Eqn 4).  The SAR model  assumes a  lag effect  on the
dependent  variable  (i.e.,  invasion  index)  by  neighbors.  For
example, a county's invasion index is affected by nearby coun-
ties' invasion indices.

Y = ρWY+Xβ+ε (4)
Here, Y is  the  dependent  variable  (invasion  index), X repre-

sents  independent  variables  (land-use,  forest  types,  road

density, population density, and other variables in Table 1), ρ is
a  parameter  of  spatial  lag  coefficient, W is  the  spatial  weight
matrix, β is the regression coefficients to be estimated, and ε is
residuals.

Geoprocessing,  data  preparation,  and  visualization  were
done  in  Esri  ArcGIS  Pro  2.5.0  software  and  R[33].  Moran's  I  and
spatial  lag  tests  were  conducted  using  the  'spdep'  package[34]

in  R.  Highly  correlated  (correlation  coefficient  >  0.6)  variables
were  removed  from  the  model.  The  best-fitted  spatial  lag
model  was  identified  by  choosing  the  lowest  Akaike  informa-
tion criterion (AIC).

 Results

 Invasive species increased over time
The distinct species count of NNIPS in Alabama's forestlands

tended  to  increase  over  time.  In  total,  25,  26,  and  33  unique
NNIPS were recorded in T1, T2, and T3, respectively. Infestation
%  tended  to  increase  over  time  as  well;  during  the  first
measurement,  only  41.1%  of  total  remeasured  subplots  were
infested, but during the third measurement, the infestation rate
had risen to 54.8% (Table 2).  Alabama forestlands are not only
increasing in infestation % but also adding more different inva-
sive species over time. For instance, in T1, the infested subplots
had  an  average  of  1.32  unique  NNIPS.  However,  in  T3,  27%
more (i.e.,  1.68 unique nonnative invasive species)  were found
in Alabama forestlands.

The number of infested subplots in Alabama in each cycle is
given  in Table  3.  The  abundance  of  all  major  NNIPS  increased
over  time.  Japanese  honeysuckle  was  the  most  abundant
species,  followed  by  privet  and  Japanese  climbing  fern.  The
change  in  Japanese  honeysuckle  abundance  over  time  was
nearly 19% between T1 and T2 and 5% between T2 and T3. The
second  most  abundant  species,  privet,  increased  by  almost
80% between T1 and T2 and 36% between T2 and T3. The rate
of  increment  on  less  abundant  species  increased  at  a  higher
rate.  In  general,  the  average  cover  percent  of  these  species
increased  over  time.  However,  the  average  cover  percent  of
Japanese  honeysuckle  decreased  between  T2  and  T3  (Fig.  3 &
Table 3).

 Spatial and temporal patterns of major NNIPS in
Alabama

The spatial and temporal visualization of the presence proba-
bility of major NNIPS in Alabama is shown in Figs 4 & 5. Figure 4
represents  the  aggregated  presence  probability  of  all  species
over  time  across  space.  The  presence  probability  of  individual
species can be seen in Fig. 5, which shows the presence proba-
bility  of  individual  species  based  on  T3  (i.e.,  2013−2019)
records.

 Best modeling unit
Among modeling units,  Moran's I  statistics varied over time.

County-level  modeling units  gave the  highest  Moran's  I  statis-
tics  for  T1  and  T3,  and  the  ecological  unit-section  gave  the

Table 2.    Changes in the infestation rate (%) of NNIPS over time in Alabama's forestlands.

Measurement
cycle Year Total subplots Infested subplots Infestation % Invasive species

count
Average species count per

subplot (in infested subplots)

T1 2001−2005 15,240 6,268 41.1 8,251 1.32
T2 2006−2012 15,240 7,744 50.8 11,405 1.47
T3 2013−2019 15,240 8,347 54.8 14,020 1.68
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highest for T2. All hydrological units had a lower Moran's I than

county-level  modeling units  (Table  4).  Thus,  we chose  county-

level modeling units for this analysis.

 Factors influencing NNIPS spread in Alabama
We  fitted  observed  invasion  indices  using  the  spatial  lag

model  that  utilized  various  independent  variables  (Table  5).
Best-fitted  spatial  lag  models  were  identified  for  each

Table 3.    Number of infested subplots by major NNIPS in Alabama's forestlands.

FIA species
code Common name Latin name Form

Infested subplot
count

Presence
probability (%) Mean cover (%)

T1 T2 T3 T1 T2 T3 T1 T2 T3

LOJA Japanese honeysuckle Lonicera japonica Thunb Vine 5,348 6,400 6,751 35.09 41.99 44.30 10.58 11.18 4.20
LIGUS2 Privet Ligustrum L. Shrub 1,740 3,122 4,248 11.42 20.49 27.87 2.80 4.55 4.59
LYJA Japanese climbing fern Lygodium japonicum (Thunb.) Fern 162 360 781 1.06 2.36 5.12 0.14 0.24 0.29
LECU Chinese lespedeza Lespedeza cuneata (Dum. Cours.) Forb 23 303 537 0.15 1.99 3.52 0.02 0.32 0.27
ALJU Silk-tree Albizia julibrissin Durazz. Tree 139 219 351 0.91 1.44 2.30 0.12 0.13 0.13
TRSE6 Chinese tallow tree Triadica sebifera (L.) Small Tree 95 137 255 0.62 0.90 1.67 0.07 0.10 0.13
ROSA5 Rose Rosa L. Shrub 81 169 203 0.53 1.11 1.33 0.07 0.15 0.10
Others 663 695 894 4.35 4.56 5.87 1.01 1.21 0.80

 
Fig. 3    Presence probability (x-axis)  and mean cover percent (y-axis)  of major NNIPS across all  FIA subplots in Alabama's forestlands.  NNIPS
names in this figure based on FIA Vegetation Species Code (VEG SPCD); LOJA (Japanese honeysuckle), LIGUS2 (Privet), LYJA (Japanese climbing
fern),  LECU  (Chinese  lespedeza),  ALJU  (Silk-tree),  TRSE6  (Chinese  tallow  tree),  ROSA5  (Rose),  and  OTHERS  (all  other  nonnative  invasive  plant
species). The area inside triangles represents the invasion index (severity) and the shape of triangles represents whether an NNIP species is a
fast-spreading  species  (larger  changes  in  the  presence  probability)  or  a  fast-establishing  species  (larger  changes  in  the  cover  percentage)
between different inventory cycles.
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measurement based on the lowest AIC. Table 5 shows selected
variables  and  their  coefficients,  AIC,  lag  coefficient,  and  test
values of residual autocorrelation.  All  models had positive and
significant  lag  coefficients.  Observed  invasion  indices,  model-
predicted values, and residuals of the fitted models are graphi-
cally illustrated in Figs 6, 7 & 8.

Demography (pop_2010_nbh) and ownership were the only
variables shown in all spatial lag models, suggesting their roles
in NNIP invasions were universal and perpetual over time. NNIP
invasion index (severity) increased with the county population.
NNIPs  are  less  likely  to  invade  public  forestlands  than  private
lands.  Forest  types  (groups)  also  played  a  significant  role,  but

NNIP  invasion  severity  by  forest  type  (group)  varied  over  time
(Table 5).

 Discussion

In  Alabama,  NNIP  species  are  spreading  both  spatially  and
increasing  in  number  temporally.  This  study  examined  the
distribution  of  major  NNIP  species,  quantified  the  invasion
indices,  selected  the  best  modeling  units,  and  developed  a
model considering the spatial lag effect of invasion indices. We
aggregated  all  major  NNIP  species  and  quantified  invasion
indices  using  presence  probability  and  cover  percent.  Hussain

 
Fig. 4    Presence probability of all NNIPS in Alabama's forestlands over time (T1: 2001−2005, T2: 2006−2012, T3: 2013−2019).

 
Fig.  5    Presence  probability  (%)  of  individual  NNIPS  measured  between  2013  and  2019  in  Alabama's  forestlands.  LOJA  (Japanese
honeysuckle),  LIGUS2  (Privet),  LYJA  (Japanese  climbing  fern),  LECU  (Chinese  lespedeza),  ALJU  (Silk-tree),  TRSE6  (Chinese  tallow  tree),  and
ROSA5 (Rose).
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et al.[5] used invasive species count data to explore the ecologi-
cal  and  economic  aspects  of  invasive  species  in  Alabama.  We
believe the invasion index used in this study is more meaning-
ful  in  exploring  the  invasion  severity  because  it  considers  two
dimensions  of  the  invasion:  presence  probability  (abundance)
and  cover  percent  (dominance).  Nepal  et  al.[35] used  a  similar
quantification  approach  to  quantify  the  invasion  severity  of
Chinese tallow trees.

Our  analysis  showed  that  Japanese  honeysuckle  had  been
the most prevalent invasive species in Alabama. Miller  et  al.[36]

also  described  this  species  as  the  most  frequent  and  dense,
especially  in  eastern-central  Alabama.  Its  presence  probability
was  higher  than  all  others'  combined  values  in  all  measure-
ment  periods  (Table  4).  Similarly,  its  cover  percentage  was
higher  than  all  others'  combined  values  in  T1  and  T2.  Thus,  it
has contributed significantly to the overall invasion index in T1
and  T2.  As  we  noted,  the  cover  percent  of  Japanese  honey-
suckle  was  meager  in  T3  compared  to  other  measurement
cycles (Fig. 3);  thus, the overall  invasion index was lower in T3.
Japanese  honeysuckle  is  likely  to  be  deciduous  in  response to

drought  or  cold,  even  though  it  is  an  evergreen  or  semi-ever-
green  species[37].  It  is  uncertain  if  the  abrupt  drop  in  cover
percent  observed  in  T3  was  due  to  this  species'  deciduous
nature  or  any  other  reasons  such  as  the  competition  with  a
developing  forest  overstory.  Future  research  should  focus  on
why Japanese Honeysuckle's cover percentage was lower in T3.
Japanese  honeysuckle  is  normally  constant  across  the  land-
scape,  with  little  increase  or  decrease;  the  giant  swing  in  the
data  is  most  likely  attributable  to  the  change  in  field  guide
protocols  (Personal  communication  with  Alabama  Forestry
Commission).

The  number  of  NNIPS  has  been  increasing  over  time  in
Alabama. We found 25 NNIPS in T1, 26 in T2, and 33 in T3. The
current  non-completed  cycle  (2020  and  2021;  i.e.,  T4)  -  has
already  reported  26  distinct  species.  In  T3  alone,  FIA  data
showed seven new species that were not present during the T2
measurement. The increase during the third measurement indi-
cates that nonnative species are spreading across Alabama. As
new invasive species establish themselves in Alabama, existing
invasive  species  continue  to  spread.  It  leads  to  widespread

Table 4.    Moran's I test of the invasion index of all NNIPS in Alabama's forestlands.

Modeling unit
T1 T2 T3

Moran's I Std error p-value Moran's I Std error p-value Moran's I Std error p-value

HUC 4 −0.24 −0.32 0.63 0.02 0.09 0.18 −0.18 −0.08 0.53
HUC 6 0.14 1.36 0.09 0.32 2.38 0.01 0.18 1.64 0.05
HUC 8 0.27 3.19 < 0.001 0.35 3.98 < 0.001 0.23 2.68 < 0.001
HUC 10 0.36 10.49 < 0.001 0.36 10.36 < 0.001 0.26 7.35 < 0.001
HUC 12 0.24 15.08 < 0.001 0.18 11.59 < 0.001 0.18 11.29 < 0.001
COUNTY 0.40 5.55 < 0.001 0.38 2.25 < 0.001 0.37 5.23 < 0.001
Ecoregion (section) 0.37 2.14 0.02 0.51 2.44 0.01 0.27 2.00 0.02
Ecoregion (subsection) 0.06 0.82 0.21 0.01 0.37 0.35 0.01 0.28 0.39

Table 5.    Estimated regression coefficients and summary statistics of the fitted spatial lag models.

Measurement cycle
(year) Model statistics Variable Estimated coefficients p-value

Residual autocorrelation

Test z-value p-value

T1 (2001−2005) lag coefficient
ρ = 0.51

(p < 0.001)

AIC = 390.5

intercept 4.681 0.085 0.551 0.458
pop_2010_nbh 0.029 0.020

rd_density 19.016 0.041
oak_pine −0.187 0.124
lob_hard −0.273 0.116
mix_hard −0.106 0.139
wo_ro_hi −0.172 0.027

public_own_pct −0.086 0.110
ot_pct −113.519 0.011
wa_pct −21.017 0.085

T2 (2006−2012) lag coefficient
ρ = 0.53

(p < 0.001)

AIC = 407.37

intercept 10.264 < 0.001 0.904 0.341
pop_2010_nbh 0.024 0.058

oak_pine −0.281 0.036
wo_ro_hi −0.209 0.019

elm_ash_cot 1.008 0.090
public_own_pct −0.175 0.006

ot_pct −168.324 0.001
T3 (2013−2019) lag coefficient

ρ = 0.55
(p < 0.001)

AIC = 367.95

intercept 6.171 < 0.001 0.228 0.633
pop_2010_nbh 0.029 0.003

lob_hard −0.483 < 0.001
wo_ro_hi −0.161 0.018

public_own_pct −0.122 0.007
ot_pct −80.554 0.034
wa_pct −14.603 0.127
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Fig.  6    Observed  indices  of  invasion  severity  over  time  in  Alabama's  forestlands.  Dark  green  represents  the  lowest  and  red  represents  the
highest level of invasion.

 
Fig. 7    Estimated indices of invasion severity by spatial lag models over time in Alabama's forestlands. Dark green represents the lowest and
red represents the highest level of invasion.

 
Fig. 8    Residuals of spatial lag models over time. The autocorrelation test of residuals is not statistically significant at the significance level of
0.05 (Table 5), which means the spatial lag models well fit the invasion patterns of NNIPS.
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invasion  presence  but  at  a  relatively  lower  rate  of  increase  in
cover percentage.

Choosing appropriate modeling units is vital because spatial
aggregation  impacts  spatial  autocorrelation  and  estimated
coefficients[38].  Using Moran's I value as our guide, we selected
the  county-level  modeling  unit.  County-level  modeling  units
perform better than other modeling units for aggregated inva-
sion  indices  of  all  NNIPS.  However,  modeling  units  might  be
different  for  the invasion index of  individual  NNIPS.  For  exam-
ple,  the  Chinese  tallow  invasion  index  performed  better  with
the  hydrological  unit  HUC8.  It  may  be  related  to  dispersal
factors associated with Chinese tallow. Birds and water currents
mainly influence its dispersal following flooding[39,40].

Hussain et al.[5] found that forest ownership and proximity to
densely  populated  areas  in  Alabama  positively  impacted  the
occurrence  and  abundance  of  invasive  species.  They  modeled
occurrence  and  abundance  separately  based  on  zero-inflated
negative  binomial  regression.  To  account  for  the  neighboring
effect,  we  developed  an  invasion  index  accounting  for  both
occurrence and abundance in  the spatial  lag model.  Thus,  our
model can better explain the influencing factors of invasions in
Alabama.  Further,  we  ran  the  model  across  three  different
measurement  data  sets.  Our  results  show that  all  three  spatial
lag  models  (Table  5)  had  a  positive  and  significant  lag  coeffi-
cient  (ρ).  These  indicate  positive  spatial  feedback.  A  higher
invasion index in a county also raises the neighboring counties'
predicated invasion index.

We found that publicly owned forest cover percentage nega-
tively  impacted  invasion  indices  across  measurement  periods.
Zhai  et  al.[6] &  Hussain  et  al.[5] found  similar  outcomes  in  the
southern states, with areas under private ownership more likely
to  have  more  NNIPS.  We  also  found  that  the  neighbor  county
population density positively impacted the invasion index. The
positive relation between the invasion index and population is
likely  due  to  infrastructures  facilitating  the  dispersal  of
NNIPS[41].  Furthermore, Chen also observed a positive relation-
ship between invasive species richness and total road length in
Alabama[42].  The  amount  and  type  of  forest  cover  also  impact
the invasion index. For instance, the increasing cover percent of
white  oak/red  oak/hickory  forests  was  likely  to  decrease  the
invasion index in Alabama (Table 5).

 Conclusions

This  study  obtained  NNIPS  data  from  more  than  5,000
remeasured  FIA  plots  across  Alabama.  We  mapped  major
NNIPS in both spatial and temporal domains. We observed that
NNIPS  spread  across  the  state  and  that  invasion  severity
increased  over  time.  Japanese  honeysuckle  was  the  most
widespread  species  across  the  state.  We  quantified  the  inva-
sion index/severity  based on cover  percent  and presence pro-
bability.  Invasion  indices  were  quantified  individually  for  all
multiple modeling units: five levels of hydrological units, three
levels  of  ecological  units,  and  county.  Moran's  I  test  showed
that  the  county-level  modeling  units  had  the  highest  spatial
autocorrelation; thus, we chose the county-level modeling unit
best  suited  for  the  spatial  lag  model.  The  spatial  lag  model
suggests  that  forested  area,  forest  ownership,  and  neighbor's
population density significantly impact the invasion severity in
Alabama.  We  suggest  invasive  species  controlling  practices
should focus on both within the county and surrounding coun-
ties.
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