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Abstract
Stigma development and successful pollination are essential for the continuous existence of flowering plants. However, the specific mechanisms

regulating  these  important  processes  are  not  well  understood.  In  this  study,  we  investigated  the  development  of  the  stigma  in Fraxinus
mandshurica,  dividing it into three stages: S1, S2, and S3. Transcriptome data were used to analyze the gene expression patterns across these

developmental  stages,  and 6,402 genes were observed to exhibit  variable expression levels.  Our analysis  revealed a significant enrichment of

pathways related to reactive oxygen species (ROS) and flavonoids, as indicated by the Kyoto Encyclopedia of Genes and Genomes enrichment

analysis of the differentially expressed genes. Further examination by cluster analysis and quantitative polymerase chain reaction revealed that

58 genes were associated with ROS synthesis and seven genes were linked to flavonoid synthesis during the S2 and S3 stages. ROS accumulated

during stigma development, which decreased rapidly upon pollen germination and pollen tube elongation, as confirmed by H2DCFDA staining.

Moreover,  ROS levels  in  mature stigmas were reduced by treatment with ROS scavengers,  such as  copper  (II)  chloride,  sodium salicylate,  and

diphenyleneiodonium,  an  inhibitor  of  NADPH  oxidases,  which  enhanced  pollen  adhesion  and  germination.  These  findings  suggest  that  the

balance between ROS production and sequestration plays a critical role in regulating stigma development and pollen germination in Fraxinus
mandshurica.
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 Introduction

Gametophyte development and pollination are critical in the
life  cycle  of  flowering  plants,  as  well  as  fruit  production[1,2].
Many  genes,  proteins,  and  pathways  regulate  pollination  in
plants. However, in certain plant species, these genes, proteins,
and pathways undergo distinct changes in both the stigma and
pollen,  establishing  a  barrier  to  reproduction[3].  The  stigma
receives pollen in the process of pollination, and based on the
secretory substances on the stigma, the stigma can be divided
into  wet  and  dry.  Dry  stigmas,  found  in  Brassicaceae  and
Poaceae  families,  are  characterized  by  a  waxy  proteinaceous
cuticle covering their surface[4]. Conversely, wet stigmas, found
in  Liliaceae,  Solanaceae,  and  Rosaceae  families,  are  saturated
with water droplets and lipids, which facilitate pollen adhesion
and  hydration[5−7].  Lipids  are  also  important  for  pistil  fertility,
with cis-unsaturated triacylglycerides playing a critical role[8].

While the adhesion and hydration of pollen is less regulated
in  wet  stigmas,  dry  stigmas  show  selective  pollen  acceptance
due  to  the  existence  of  surface  barriers  that  promote  pollen
tube penetration[9]. During pollination, pollen comes in contact
with  the  mature  stigma,  triggering  changes  in  signaling
molecules  and  critical  metabolites[10].  In  dry  stigma,  pollen
capture  mainly  relies  on  the  physical  and  chemical  properties
of  the  pollen  surface,  and  upon  the  capture  of  compatible
pollen, POLLEN COAT PROTEIN B-CLASS PEPTIDE (PCP-bs) binds

to  FERONIA  (FER)  and  ANJEA  (ANJ),  leading  to  a  reduction  in
ROS levels[11]. Subsequently, an increase in the second messen-
ger  Ca2+ promotes  pollen  germination[12−14].  In  flowering
plants, reactive oxygen species (ROS) play an important role in
the  development  of  male  and  female  gametophytes  and  the
interaction between pollen and stigma[15].

After  the  stigma  recognizes  the  pollen,  the  downstream
signal in the stigma responds quickly. The downstream protein
of  the  S-LOCUS  RECEPTOR  KINASE  (SRK),  ARM-REPEAT
CONTAINING  1  (ARC1),  is  not  phosphorylated,  allowing
EXOCYST70A1  (EXO70A1),  GLYOXALASE1  (GLO1),  and  PHOS-
PHOLIPASE  D1  (PLD1)  to  function  normally[16].  EXO70A1
promotes  vesicle  fusion  and  secretion,  which  are  crucial  for
pollen hydration[17],  while the lyase GLO1 regulates methylgly-
oxal  levels  in  the  cytoplasm,  thereby  reducing its  content  due
to  glucose  metabolism  during  pollination[18].  PLD1  produces
phosphatidic  acid,  promoting vesicle  fusion in-stigma mastoid
cells and facilitating exocytosis for pollen germination[16].

In  recent  years,  the  rapid  development  of  omics  technolo-
gies,  such  as  RNA  sequencing  and  proteomics,  has  enabled
researchers  to  explore  the  mechanisms  underlying  gameto-
phyte  development  and  pollination.  An  analysis  of  stigmatic
exudates  from Lilium  longiflorum and Olea  europaea identified
51  and  57  proteins,  respectively,  the  majority  of  which  were
newly discovered, and many of which were implicated in regu-
lating  pollen  growth[19].  In  another  study,  mass  spectroscopy
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coupled  with  3D  gel-based  techniques  identified  more  than
2,100 triticale stigma proteins involved in stigma development,
pollen–stigma  interactions,  and  environmental  stress
response[20]. Integration of PacBio SMRT-seq and Illumina RNA-
seq  technologies  in  ornamental  kale  resulted  in  the  construc-
tion of a transcriptome database covering the various stages of
stigma  development  and  leading  to  the  discovery  of  novel
genes,  transcripts,  non-redundant  transcripts,  alternatively
spliced  variants,  complete  open  reading  frame  sequences,
simple  sequence  repeats,  and  long  non-coding  RNAs,  all  of
which are important for the biology of the stigma[21]. Thus, the
development  of  omics  technologies  can  provide  new  ideas  in
Fraxinus mandshurica research.

Fraxinus  mandshurica (F.  mandshurica)  is  a  large  deciduous
tree belonging to the Oleaceae family,  valued for its monetary
worth  and  medical  properties[22].  Propagated  by  seed,  this
plant  has  a  low  seed-setting  rate  due  to  various  physiological
factors  that  influence  gametophyte  development,  pollination,
and  fertilization[23].  Understanding  how F.  mandshurica regu-
lates  and  optimizes  gene  expression  during  stigma  develop-
ment  could  be  instrumental  in  preserving  its  reproductive
capability  to  ensure  successful  cross-pollination  and  seed
formation for its conservation. Despite its importance, there is a
lack  of  transcriptional  profiling studies  exploring stigma deve-
lopment  in F.  mandshurica.  To  address  this  gap,  we  use  RNA-
sequencing  (RNA-seq)  to  compare  the  transcriptomic  profiles
of F. mandshurica stigma at various stages of development, and
this  study  serves  as  an  avenue  for  improvement  of F.  mand-
shurica cultivation and conservation.

 Materials and methods

 Plant material and morphological analysis
F.  mandshurica from  the  Northeast  Forestry  University

(Harbin, China) experimental forest was used as the experimen-
tal  material.  The  stigmas  of F.  mandshurica were  collected  at
different  stages  of  development.  In  the  initial  stage  (S1),
approximately 3,000 stigmas were collected per sample. These
stigmas  were  characterized  as  small  and  ellipsoidal,  without
bifurcation,  and  measuring  less  than  or  equal  to  1  mm  in
length. In the subsequent stage (S2), approximately 2,000 stig-
mas  were  collected  as  they  reached  a  size  of  1.5–2.0  mm  and
started  to  show  signs  of  bifurcation.  In  the  final  stage  (S3),
approximately 1,500 stigmas were collected per sample. At this
stage, the stigmas had become bifid, with branches exceeding
2.5  mm  in  length,  resembling  sheep  horns  in  shape,  and
displaying  white  coloration  along  the  edges.  Three  biological
replicates  were  collected for  each stage and labeled as  S1,  S2,
and  S3.  The  samples  were  flash-frozen  using  liquid  nitrogen
and stored at –80 °C for RNA extraction.

 RNA isolation and RNA sequencing
The stigmas of F. mandshurica were processed for RNA isola-

tion  using  TRNzol  Universal  Reagent  (Tiangen,  Beijing,  China),
according  to  the  manufacturer's  protocol.  The  quantity  and
quality  of  the  RNA  were  assessed  using  spectroscopy
(NanoDrop2000,  Thermo  Fisher  Scientific,  Waltham,  MA,  USA)
and  1.5%  agarose  gel  electrophoresis,  respectively.  The  Illu-
mina  HiSeq  2000  platform  (San  Diego,  CA,  USA)  was  used  to
sequence  the  9  RNA  samples  (three  replicates  for  each  stage).
RNA-seq  by  expectation-maximization  and  fragment  per  kb
of  transcript  per  million  fragments  mapped  were  used  to

calculate the gene transcript levels in different stages of stigma
development[24].  DESeq2  (https://rdrr.io/bioc/DESeq2/src/R/
core.R) was employed to extract differentially expressed genes
(DEGs)  with  criteria  set  to  |log2Fold  Change|  ≥1  and  false
discovery rate <0.05[25].

 RT-qPCR analysis
Primer-Blast  (www.ncbi.nlm.nih.gov/tools/primer-blast/

index.cgi)  was  used  to  design  primers  for  quantitative  poly-
merase  chain  reaction  (qPCR).  cDNA  synthesis  was  performed
using TransScript One-Step cDNA Synthesis and gDNA Removal
SuperMix  (TransGen,  Beijing,  China),  while  the  LightCycler480
system  (Roche,  Basel,  Switzerland)  was  employed  for  qPCR
using SYBR qPCR Mix  (TransGen,  Beijing,  China).  Relative  gene
expression  levels  were  calculated  using  the  2−ΔΔCᴛ method[21],
with FmTUB serving  as  the  housekeeping  gene  for  normaliza-
tion. The experiment was carried out with three biological and
three technical replicates.

 ROS detection in stigmas
The  ROS  levels  in  the  stigmas  of F.  mandshurica were

measured  using  2,7-dichlorodihydrofluorescein  diacetate
(H2DCFDA).  The stigmas were immersed in 10 mM MES,  5 mM
KCl,  50  mM  CaCl2,  pH  6.15,  containing  50 µM  H2DCFDA,  and
then rinsed at least three times before observation, each group
includes  13 stigmas.  The average signal  intensity  in  regions  of
interest  was  quantified  using  ImageJ  software  (National  Insti-
tutes  of  Health,  Bethesda,  MD,  USA).  For  comparison,  the  S1
group is defined as the control group, ROS levels in control stig-
mas were set to 1.

 Excised stigma-feeding assays and pollination
visualization

The excised stigmas were immersed into 5 mM CaCl2,  5 mM
KCl,  0.01%  H3BO3,  1  mM  MgSO4·7H2O,  10%  sucrose,  0.8%
agarose,  pH  7.5  for  1  h.  Initially,  mature  stigmas  were  treated
with copper (II) chloride (CuCl2), sodium salicylate (Na-SA), or an
inhibitor  of  NADPH  oxidases,  diphenyleneiodonium  chloride
(DPI).  The mock-treated group of CuCl2 and Na-SA was treated
with  ddH2O.  The  mock-treated  group  of  DPI  was  treated  with
0.1%  DMSO.  The  stigmas  were  placed  in  a  chamber  at  a
temperature  of  22.5  °C  and  a  humidity  of  45%  for  60  min.
Subsequently,  the stigmas were manually pollinated once and
then  placed  in  a  chamber  under  identical  temperature  and
humidity for 30, 60, and 120 min. Following this, an aniline blue
stain  was  applied,  and  pollen  adhesion  and  germination  were
observed using a Leica DM4 B microscope (Wetzlar, Germany).

 Statistical analysis
Data  on  ROS,  pollen  number,  and  pollen  tube  number  are

presented  as  bar  graphs  generated  in  GraphPad  Prismv  8.0.1.
The dots in bar graphs denote individual data points ± SEM for
all  stigmatic  ROS  data  and  all  the  pollen  tube  growth  data.
Student's  t-test  was  used  to  determine  the  statistical  signifi-
cance,  asterisks  or  ns  directly  above  the  data  bars  indicate  a
significant difference (*p < 0.05, **p < 0.01, ***p< 0.001).

 Results

 Distinct developmental stages are observed in the
F. mandshurica stigma

Three  distinct  developmental  stages  were  observed  in F.
mandshurica stigmas by stereomicroscopy. During the S1 stage,
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the  stigma  was  characterized  as  small  and  ellipsoidal,  with  no
observable  bifid  structure.  The  stigma  appeared  light  yellow
and  measured  1  mm  or  less  in  length.  In  the  S2  stage,  the
stigma  elongated  and  began  to  show  signs  of  bifurcation.  Its
length increased to 1.5–2.0 mm, and the yellow color along the
edges of the stigma began to fade to white. By the S3 stage, the
stigma displayed a bifid structure, with branches exceeding 2.5
mm  in  length,  resembling  sheep  horns  in  shape,  and  display-
ing white coloration along the edges (Fig. 1).

 Differential expression analysis identified
enriched pathways during stigma development in
Fraxinus mandshurica

Raw  reads  of  74.23–90.44  million  basepairs  were  generated
from  nine  RNA  samples  using  the  Illumina  HiSeq  platform
(Supplemental Table S1), resulting in 70.94–86.85 million clean
reads per library, accounting for 95.72% of total reads (Supple-
mental  Fig.  S1a).  In  total,  41,286  unigenes  were  successfully
annotated in at least one database. The quantity and quality of
the  sequencing  data  satisfied  the  requirements  for  further
downstream analysis.

Subsequent  analysis  was  conducted  based  on  |log2Fold
Change|  ≥1  and  FDR  <0.05  as  significance  cut-offs.  The  princi-
pal  component  analysis  (PCA)  of  gene  expression  levels
revealed minimal differences among the three biological repli-
cates  compared  to  between  the  samples  (Fig.  2a).  Differential
expression  analysis  during  stigma  development  identified
5,053  (2,171  upregulated  and  2,882  downregulated),  4,584
(2,023  upregulated  and  2,561  downregulated),  and  1,401  (702
upregulated and 699 downregulated)  DEGs between S1 vs S2,
S1  vs  S3,  and  S2  vs  S3  libraries,  respectively  (Fig.  2b).  Further-
more,  450  DEGs  were  common  to  all  libraries  (Fig.  2c),  poten-
tially functioning in all stages of stigma development. Similarly,
3,460  transcription  factors  (TFs)  were  identified  and  catego-
rized  into  94  TF  families,  with  AP2/ERF-ERF  (228  genes),  bHLH
(209  genes),  MYB  (200  genes),  and  C2H2  (175  genes)  families
being the largest (Supplemental Fig. S1b).

Gene Ontology enrichment analysis revealed that DEGs were
predominantly associated with the biological process category
(cellular and metabolic processe), cellular component category
(cellular  and  anatomical  entity),  and  molecular  function  cate-
gory (binding and catalytic activity) (Supplemental Fig. S1c–e).

In each comparison group (S1 vs S2,  S2 vs S3,  S1 vs S3),  the
top 15 pathways with the smallest q-values in the KEGG analy-
sis  were  considered  significant  (Supplemental  Fig.  S1f–h).  To
investigate the biological  and metabolic  processes involved in
stigma development,  we used the KEGG database to annotate
all  DEGs.  Among  the  15  pathways  showing  enrichment,  a
strong  presence  of  plant–fungal  interactions  were  observed,
followed by secondary metabolite biosynthesis, carotenoid bio-
synthesis,  flavonoid  biosynthesis,  metabolic  processes,  plant–
hormone signaling, and MAPK signaling (Fig. 2d).

 Expression of ROS-related genes is significantly
increased at S2 and S3 stages in the F.
mandshurica stigma

In  plants,  ROS  are  mainly  produced  within  subcellular
compartments,  thus  requiring  efficient  mechanisms  to  regu-
late their levels. Our analysis of RNA-seq data focused on genes
associated  with  ROS  production  and  sequestration.  A  total  of
58  genes  were  differentially  expressed,  including  six  enzymes
related  to  ROS  production  and  seven  enzymes  related  to  ROS
elimination.

Between  the  apoplast  and  the  cytosol,  two RESPIRATORY
BURST  OXIDASE  HOMOLOGS (RBOH:  NADPH  oxidase)  were
highly  expressed  in  the  S2  stage,  with  one  additionally  show-
ing  increased  expression  in  the  S2  and  S3  stages.  Three
POLYAMINE  OXIDASES (PAO) were also differentially  expressed,
with  two  showing  high  expression  in  the  S3  stage  and  one  in
the  S1  stage. ALDEHYDE  OXIDASE (AO)  demonstrated  elevated
expression  in  the  S2  stage,  while YUCCA exhibited  increased
expression in S2 and S3 stages. Notably, most genes encoding
ROS  scavenging  enzymes,  such  as GLUTATHIONE  PEROXIDASE
(GPX), GLUTATHIONE S-TRANSFERASE (GST), THIOREDOXIN (TRX),
and PEROXIDASE (PRX), were highly expressed in the S2 and S3
stages (Fig. 3a).

In  the  chloroplast,  one SUPEROXIDE  DISMUTASE (SOD)  gene
was highly expressed in S2 and S3 stages, while two GLUTARE-
DOXINS (GRX)  were  highly  expressed  in  S2  and  S3  stages  (Fig.
3b),  all  of  which  are  known  to  scavenge  ROS.  Similarly,  in  the
peroxisome,  the  expression  of ACYL-COA  OXIDASE (ACOX)  and
SARCOSINE OXIDASE (SOX) increased across the three develop-
mental  stages,  and MONODEHYDROASCORBATE  REDUCTASE
(MDAR) was highly expressed in S2 and S3 stages (Fig. 3c). Ten
genes  were  selected  for  qPCR,  and  the  findings  aligned  with
those of RNA-seq (Fig. 3d).

 Genes associated with flavonoid synthesis may be
specific to S2 and S3 stages in the F. mandshurica
stigma

The  KEGG  analysis  revealed  a  significant  enrichment  of
flavonoid  synthesis  pathways  across  the  three  developmental
stages. Our analysis of the RNA-seq data identified seven genes
involved  in  flavonoid  synthesis,  and  the  levels  of  these  genes
were increased in S2 and S3 stages. To confirm the reliability of
our transcriptome data,  we conducted qPCR on four flavonoid
synthesis  genes.  The results  revealed high expression levels  of
PHENYLALANINE  AMMONIA-LYASE (PLA), FLAVANONE  3P-
HYDROXYLASE (F3H), CHALCONE  SYNTHASE (CHS),  and

Stigma

Style

Ovary

S1 S2 S3

500 μm

 
Fig.  1    Morphological  stages  of  stigma  development  in F.
mandshurica. From left to right: S1, S2, and S3 stages, as observed
by  stereomicroscopy.  The  orange  bar  corresponds  to  the  stigma,
the  green  bar  to  the  style,  and  the  blue  bar  to  the  ovary.  Scale
bar = 500 µm.
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FLAVONOL  SYNTHASE (FLS)  in  S2  and  S3  stages  (Fig.  4a, b).
Taken together,  these findings indicate  that  genes involved in
flavonoid  synthesis  are  specific  to  the  S2  and  S3  stages  of
stigma  development  and  may  play  a  role  in  pollen–stigma
interactions.

 ROS accumulation decreases after pollination
To  evaluate  the  ROS  levels  across  the  three  developmental

stages, we stained the stigmas with 2,7-dichlorodihydrofluores-
cein diacetate (H2DCFDA). The results revealed a gradual accu-
mulation of ROS in the stigma from S1 to S2 stage, followed by
an  increase  of  approximately  7-fold  in  the  S3  stage  (Fig.  5a).
Additionally, aniline blue staining was used to explore the role
of  ROS  in  pollination.  Pollen  attachment  was  observed  in  the
mature stigma at  pollination,  with fewer pollen grains sticking
to the stigma and failing to germinate at  30 min after  pollina-
tion  (30  MAP).  Pollen  attachment  increased  significantly  at  60
min  after  pollination  (60  MAP),  with  partial  germination  of
pollen.  At  120  min  after  pollination  (120  MAP),  all  the  pollen
tubes germinated and grew toward the style (Fig. 5b).

H2DCFDA staining was employed to detect ROS levels in the
stigma after pollination (0, 30, 60, and 120 MAP). Compared to
the ROS level at 0 MAP, a significant reduction in the ROS level
was  observed  at  30  and  120  MAP  (Fig.  5c).  These  results  indi-
cate  that  ROS  levels  increase  during  stigma  development,  but
decrease after  pollination and pollen tube growth,  suggesting
ROS  impact  stigma  development,  pollination,  and  pollen  tube
growth.

 Reduced ROS levels accelerate pollen number and
pollen tube growth in the mature stigma

To  investigate  whether  reduced  ROS  levels  in  the  mature
stigma could increase pollen number and pollen tube germina-
tion, mature stigmas were treated with ROS scavengers, copper
(II) chloride (CuCl2) and sodium salicylate (Na-SA) (Fig. 6a). Addi-
tionally, an inhibitor of NADPH oxidases, diphenyleneiodonium
chloride (DPI),  was used to suppress ROS levels in mature stig-
mas  (Fig.  6c).  The  findings  revealed  that  30  min  after  pollina-
tion,  there  was  a  significant  increase  in  both  the  number  of
pollen  and  pollen  tubes  on  the  stigma  compared  to  the
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Fig. 2    Statistical analysis of differentially expressed genes (DEGs) related to stigma development in F. mandshurica. (a) Principal component
analysis  (PCA)  of  transcriptome  data  during  stigma  development.  (b)  Summary  of  DEG  results.  Red  and  blue  indicate  upregulated  and
downregulated genes, respectively. In each comparison, orange indicates the total. (c) Venn diagram of DEGs in three comparison groups. (d)
KEGG enrichment analysis of all DEGs.
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mock-treated  group  (Fig.  6b, d).  The  results  indicate  that  ROS
scavengers  and  NADPH  oxidase  inhibitors  can  effectively
reduce  ROS  levels  in  the  mature  stigma.  Furthermore,  the
results  demonstrate  an  enhancement  in  pollen  tube  germina-
tion on the stigma, suggesting a potential association between
the reduction in ROS levels and the induction of pollen–stigma
interactions.

 Discussion

Stigma  development  and  pollination  are  important  factors

for  successful  reproduction  in  flowering  plants.  Studies  in

various plant species have revealed the usefulness of transcrip-

tome  data  in  deciphering  the  mechanisms  underlying  stigma

development  and  pollination[26,27].  Despite  the  widespread
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distribution  of F.  mandshurica across  northeast  China,  Russia,
and  Europe,  few  studies  investigate  the  biology  of  its  floral
organs[28].  In our study,  the RNA-seq data revealed 6,402 DEGs
and 3,460 transcription factors  (TFs)  across  the developmental
stages (S1 vs S2, S2 vs S3, and S1 vs S3 libraries), which included
ROS  synthesis  genes,  antioxidant  enzymes,  and  flavonoid
synthesis  genes.  In  general, F.  mandshurica female  plants  are
more  sensitive  to  stress[28],  leading  to  increased  ROS  produc-
tion and enhanced metabolic activity. Functional annotation of
these DEGs highlighted their involvement in diverse biological
pathways,  including  plant–pathogen  interactions,  as  well  as
flavonoid  and  carotenoid  synthesis.  Moreover,  the  evolution-
ary  perspective  proposes  that  pollination  has  emerged  from
interactions  between  plants  and  pathogens[29,30],  which  leads
to  the  accumulation  of  ROS  and  the  activation  of  scavenging
systems,  including  antioxidant  enzymes  and  non-enzymatic
small  molecules  such  as  glutathione,  flavonoids,  and
carotenoids[31]. Therefore, global transcriptional profiles enable
researchers to study the mechanisms underlying stigma devel-
opment,  and  this  information  can  greatly  advance  our  under-
standing of plant reproductive biology.

Reactive  oxygen  species  exist  in  many  forms  within  cellular
environments, with the major forms including H2O2 (hydrogen

peroxide),1O2 (singlet oxygen), O2
·− (superoxide), HO− (hydroxyl

radical),  and  other  organic  and  inorganic  peroxides[31−33].  Our
analysis  of  the  RNA-seq  data  revealed  changes  in  the  expres-
sion  of  genes  related  to  ROS  production  during  stigma  deve-
lopment.  Specifically,  three  differentially  expressed  unigenes
encoding RBOH proteins (RBOHA-1, RBOHA-2, and RBOHC) were
identified.  RBOH  proteins  regulate  the  activity  of  ROS-produ-
cing  NADPH  oxidase  (NOX),  whose  activation  is  triggered  by
Ca2+-dependent phosphorylation and Ca2+ binding to EF-hand
motifs[34]. For example, StCDPK proteins have been reported to
stimulate NADPH oxidase via phosphoric acid, which increases
the production of ROS[35].  In our study, both CNGCs and CDPKs
were  highly  expressed  during  S2  and  S3  stages,  aligning  with
the  expression  trends  of ROBH genes,  suggesting  Ca2+ can
modulate RBOH activity  during  stigma  development.  Further-
more,  other  enzymes  can  contribute  to  ROS  production.  For
example,  AO  not  only  regulates  aldehyde  oxidation  but  also
influences NADPH oxidase activity, leading to the generation of
superoxide anions[36,37].  Additionally,  NADPH oxidase and PAO
synergistically  regulate  the  accumulation  of  H2O2 and  supero-
xide (O2

·−) in tobacco[38,39]. To sum up, these genes regulate ROS
production during stigma development. The activation of CDPK
and  other  genes  may  lead  to  the  activation  of  downstream
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Fig.  4    Validation  of  potential  genes  associated  with  flavonoid  synthesis  by  cluster  analysis  and  quantitative  polymerase  chain  reaction
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gene RBOH.  In  the β-oxidation  pathway,  ACOX  converts
acyl-CoA  into  trans-2-enyl-CoA  while  producing  H2O2 as  a
by-product[40].  Similarly,  SOX  covalently  binds  FAD  molecules,
facilitating  the  decomposition  and  metabolism  of  lysine,
thereby  producing  H2O2 as  a  by-product[41].  Apart  from  the
elevated  expression  of RBOH genes  during  the  S2  and  S3
stages,  we  also  observed  the  activation  of  several  transcripts
encoding  AO,  SOX,  PAO,  and  ACOX  in  the  S2  stage  and  their
increased expression across the three stages of stigma develop-
ment. Taken together, these findings suggest that these genes
act synergistically to promote the accumulation of ROS during
stigma development.

Low levels of  ROS are critical  in plants,  protecting cells  from
damage.  When  ROS  levels  increase,  antioxidant  mechanisms
are  activated to  sequester  ROS[32].  Our  study identified several
enzymes, including SOD and PRX, which play important roles in
defending  plants  from  the  damaging  effects  of  ROS.  These
enzymes  catalyze  the  dismutation  of  O2

·− to  H2O2 and  O2 in

mitochondria, chloroplasts, peroxisomes, and apoplasts[31,41−43].
Monodehydroascorbate  reductase  (MDAR),  another  antioxi-
dant  enzyme,  can  also  scavenge  ROS[44].  The  current  study
revealed  consistent  expression  trends  among  genes  encoding
SOD,  PRX,  MDAR,  TRX,  GPX,  GST,  and  GRX,  indicating  ROS
production  activates  antioxidant  enzyme  expression.  During
the  S2  stage,  the  levels  of  RBOH,  AO,  and  PAO  were  upregu-
lated in both the apoplast and cytoplasm, suggesting that ROS
content in the stigma changed during the S2 stage, which acti-
vated the ROS scavenging system in the stigma.

Flavonoid  synthesis  directly  impacts  various  physiological
processes  that  are  crucial  for  floral  organ  growth  and
development[45,46].  Elevated  levels  of  flavonoids  have  been
reported in both the stigma and pollen[47], with the key compo-
nents  of  the  flavonoid  synthesis  pathway  (PAL,  CHS,  F3H,  and
FLS)  regulating  flavonoid  accumulation  in  plants[48].  In  orna-
mental  kale,  flavonoids  act  as  antioxidants  and  alleviate  self-
incompatibility,  with  four  flavonoid-producing  genes  (CHS1,
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CHS2, F3H,  and FLS)  consistently  expressed  in  the  stigma[49].
Flavonoids  also  facilitate  reproduction  in  plants  under  harsh
environmental  conditions[50] and  regulate  stigma  develop-
ment  by  interacting  with  components  of  the  ROS  synthesis
pathway[51−53].  They  are  also  involved  in  pollination,  with
studies  suggesting  opposing  roles  for  flavonoids  and  ROS[49].
Flavonoids  and  ROS  are  also  abundant  during  gametophyte
development[47,50].

Chalcone synthase (CHS) is abundant in both the stigma and
pollen of Petunia, and mutations in the CHS gene lead to defec-
tive stigma and sterility[54]. Flavonoids also regulate pollen and
stigma  interactions  in Arabidopsis and Helianthus  annuus[47,55].
Consistent  with  prior  research,  increased  expression  of  PAL-1,
CHS, F3H-1, and FLS in the S2 and S3 stages of stigma develop-
ment  were  observed,  and  their  expression  patterns  aligned
with  those  of  ROS-related  genes,  suggesting  flavonoids
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participate in  stigma development and pollination in F.  mand-
shurica.

High  levels  of  ROS  impact  various  aspects  of  plant  biology,
including  stress  response,  stigma  development,  pollen  deve-
lopment  and  release,  and  pollen  tube  growth[15,31,56].  Interes-
tingly,  ROS  accumulation  in  flowers  has  been  reported  to  be
critical  for  plant  reproduction[49,57].  During  this  process,  ROS
control  pollination,  with  ROS  functioning  as  key  determinants
of  the  plant's  decision-making  process  for  successful
fertilization[58].  After  pollination,  ROS  levels  decrease  in  the
stigma,  while  incompatible  pollination  brings  about  increases
in  ROS  levels,  thus  leading  to  self-incompatibility[59,60].  For
example,  FERONIA  (FER),  an  important  determinant  of  self-
incompatibility, is regulated by ROS to ensure pollen growth and
germination[60].

In the present study, ROS levels in the stigma were assessed
by H2DCFDA staining. It was observed that ROS accumulated in
all  stages  of  stigma development,  reaching peak  levels  during
the  S3  stage.  The  accumulation  of  ROS  in  the  stigma  not  only
promotes  successful  pollination  but  also  mediates  pollen
germination  and  growth  through  a  decrease  in  ROS  levels[61],
consistent  with  prior  research  reporting  a  reduction  in  ROS
levels after pollination[49,60].  In tobacco plants, the reduction of
H2O2 in the stigma accelerates pollen germination and guaran-
tees successful reproduction[62]. Other ROS, including ·O2−, ·OH,
and  OH–,  also  participate  in  the  interactions  between  pollen
and stigma during reproduction[63].

This  is  the  first  study  to  investigate  the  role  of  ROS  scav-
engers  in  pollen–stigma  interactions  in F.  mandshurica.  The
presence of ROS production and sequestration mechanisms in
the reproductive tissues of plants has been reported in various
species[64],  and  the  accumulation  of  ROS  in  the  stigmas  of
angiosperms is  well  documented[65].  The interactions between
pollen and stigma are important for pollen attachment, hydra-
tion,  adhesion,  and  germination.  Furthermore,  the  content  of
ROS  in  stigma  increased  significantly  after  incompatible  polli-
nation  and  decreased  after  compatible  pollination,  elevated
ROS levels in stigma can inhibit the germination of compatible
pollen,  suppressing  RBOH  or  FERONIA(FER)  receptor  kinase
homolog or Rac/Rop guanosine triphosphatase (GTPase) which
can effectively reduce the content of  ROS in stigma and cause
incompatible pollen to germinate[60].  Proteins and lipids found
on  the  surface  of  pollen  are  involved  in  this  process.  In
Arabidopsis,  KINβγ mediates  ROS  production  in  mitochondria,
which  is  essential  for  pollen  hydration  and  germination[66].
Common ROS scavengers, such as CuCl2, Na-SA, and DPI, along
with  NADPH  oxidase  inhibitors,  have  been  used  to  sequester
ROS, resulting in enhanced pollen attachment[59,60]. Other stud-
ies  have  demonstrated  that  ROS  inhibit  pollen  adhesion  and
germination[61],  and  a  reduction  in  ROS  levels  in  the  stigma
before  pollen  attachment  is  critical  for  pollen–stigma  interac-
tions  and  pollen  germination[67].  As  for  DPI  and  catalase,  both
scavengers  enhance  pollen  germination  in  cucumber  by
inhibiting  NADPH  oxidase  activity[68].  Similarly,  DPI  decreases
ROS  levels,  thus  promoting  pollen  adhesion  and
germination[69].  Taken together,  these findings underscore the
role of ROS accumulation in stigma development, highlighting
the  importance  of  reducing  ROS  for  pollen  attachment  and
germination.

 Conclusions

This  study  utilized  RNA-seq  data  to  identify  crucial  genes
involved  in  both  the  production  and  sequestration  of  ROS
during  stigma  development  in F.  mandshurica.  Our  results
underscore the pivotal role played by ROS in regulating stigma
development,  pollination,  and  pollen  tube  growth.  Staining
revealed  ROS  accumulation  during  stigma  development,  and
when  stigmas  were  treated  with  ROS  scavengers  and  an
NADPH  oxidase  inhibitor,  there  was  a  decrease  in  ROS  levels
and  an  increase  in  pollen  adhesion  and  germination.  Taken
together,  these findings greatly  contribute to  our  comprehen-
sion of reproduction in F. mandshurica.
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