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Abstract
Point cloud registration is  a necessary prerequisite for conducting precise,  large-scale forest surveys and management.  This paper focuses on

providing a systematic overview and summary of the work on forest point cloud registration over the past 20 years. The developmental process

of forest point cloud registration methods, spanning from the early reliance on manual markers to the subsequent evolution towards automatic

registration based on feature matching, and then to the advanced technology based on deep learning were reviewed. Furthermore, the paper

offered detailed discussions on the registration between different point cloud platforms: ground platforms, between ground platforms and aerial

platforms, and between aerial platforms. Additionally, the paper delved into mainstream datasets and evaluation metrics in the domain of forest

point  cloud registration.  Finally,  the paper summarized the current state of  research in this  area,  highlighted challenges,  and provided future

research  outlooks.  This  review  aims  to  provide  researchers  with  a  comprehensive  understanding  of  forest  point  cloud  registration,  and  to

promote the advancement of point cloud technology, hopefully inspiring further applications in the field.
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 Introduction

Forests  are  recognized  as  the  largest  terrestrial  ecosystems
on  Earth.  They  not  only  provide  vital  resources  for  the
economy and human well-being, but also play a crucial role in
maintaining  the  equilibrium  and  stability  of  other  global
ecological systems[1,2].  Hence, precise measurement and moni-
toring  of  forests  are  of  paramount  importance.  Traditional
methods  perform  well  on  a  small  scale  but  face  limitations
regarding  time,  spatial  resolution,  and  efficiency  when
extended to larger areas.

As  photogrammetry  and  remote  sensing  technologies
continue  to  advance,  the  benefits  of  three-dimensional  point
cloud  data  in  reconstructing  forest  scenes  and  extracting
feature  information  are  becoming  increasingly  evident.  Light
Detection and Ranging (LiDAR), renowned for its high accuracy
and  simplicity  of  operation,  has  emerged  as  the  preferred
method for acquiring point cloud data across various domains
within the realm of remote sensing. However,  with the advent
and ongoing refinement of various image matching and point
cloud  reconstruction  algorithms,  optical  imagery  is  steadily
gaining ground as a primary source of point cloud data[3,4].

In practical  applications,  catering to diverse forest  inventory
tasks  often  involves  extracting  relevant  factors  independently
from various  datasets.  Moreover,  substantial  repetitive  survey-
ing  may  be  required  to  compensate  for  data  gaps  within  a
single  dataset.  However,  differences  in  data  acquisition  plat-
forms across datasets introduce challenges such as spatial scale
discrepancies,  variations in  density,  accuracy,  and detail  repre-
sentation,  even  within  the  same  forest  stand.  As  a  result,

establishing  correlation  among  feature  factors  across  multiple
platform  datasets  becomes  arduous[5].  Therefore,  registering
collected point cloud data is imperative to ensure consistency.

Forest  point  cloud  registration  (PCR)  aims  to  register  point
cloud data collected from various perspectives, times, and plat-
forms  to  construct  a  comprehensive  three-dimensional  model
of the forest.  Therefore, it  has garnered significant attention in
the forestry sector, notwithstanding encountering several tech-
nical  and  practical  challenges.  Firstly,  due  to  the  dense  and
irregular  nature  of  forests,  noise  is  often  prevalent  in  point
cloud data, particularly in image-based point clouds. Secondly,
factors  such  as  occlusion  in  forest  environments  can  lead  to
missing  data  in  point  cloud  datasets.  Additionally,  seasonal
variations and other natural factors may introduce inconsisten-
cies between data collected at different times, thereby compli-
cating the registration process. Furthermore, disparities in data
quality  and  resolution  among  different  platforms  further
complicate  the  registration  process.  Moreover,  the  absence  of
unified  evaluation  standards  hampers  the  development  and
application  of  registration  algorithms.  Lastly,  PCR  primarily
operates at the plot scale, limiting its applicability in large-scale
scenes.

In  response  to  these  challenges,  this  paper  endeavors  to
present a comprehensive review of research on forest PCR over
the  last  two  decades.  We  categorized  and  summarized  the
various existing methods, offering insights into future research
directions.  Our  objective  is  to  provide  valuable  references  for
researchers  and  contribute  to  the  advancement  of  efficient
forest resource management and conservation.
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 Status of research and development trends

In the field of forest ecology research and resource manage-
ment, accurately acquiring and analyzing high-precision three-
dimensional structural information is crucial for precisely repre-
senting  the  morphology,  structure,  and  dynamic  changes  of
forests.  Through  the  utilization  of  LiDAR  technologies  such  as
Terrestrial Laser Scanning (TLS), Backpack Laser Scanning (BLS),
Mobile  Laser  Scanning  (MLS),  Airborne  Laser  Scanning  (ALS),
Unmanned  Aerial  Vehicle  Laser  Scanning  (ULS),  along  with
unmanned aerial vehicles and ground-based photogrammetry,
researchers  can  capture  the  three-dimensional  spatial  struc-
ture of forests with unparalleled detail and accuracy. PCR serves
as  an  indispensable  step  in  the  amalgamation  of  these  tech-
nologies.  Within  the  forest  environment,  PCR  has  progressed
through  three  primary  stages  of  development:  initially  relying
on artificial markers, transitioning to the prevalence of feature-
based methods in recent years,  and currently  moving towards
the  modern  trend  of  development  based  on  deep  learning
methods.

 Methods based on artificial markers
In  the early  days,  PCR commonly involved positioning artifi-

cial markers, such as reflector balls or artificial reflectors, within
sample plots. Registration was then conducted through manual
identification  of  these  markers  or  by  utilizing  software[6−8].
Hilker  et  al.[9] introduced  four  connections  within  the  sample
plots  to  improve  the  precision  and  reliability  of  registration.
Subsequently,  Pueschel[10] utilized  four  FARO  laser  scanner
reference  spheres  and  one  planar  target  for  manual  registra-
tion, achieving sub-millimeter accuracy. To simplify the process
of  using  artificial  markers,  Zhang  et  al.[11] applied  the  back
sighting  orientation  approach,  using  only  one  reflector  as  a
connection  point  between  two  scans.  During  this  stage,
researchers attempted to enhance the registration precision by
improving  the  placement  and  detection  methods  of  manual
markers.  While offering advantages such as high accuracy and
strong  reliability,  the  process  of  setting  up  markers  requires
considerable  time  and  effort,  and  user  intervention  during
marker  identification  may  be  necessary[12],  thus  limiting  their
practicality and efficiency.

 Methods based on feature matching
These  methods  identify  and  extract  key  features  from  the

forest point cloud data. Subsequently, the required transforma-
tion  parameters  are  estimated  by  registering  the  identified
features,  ensuring  the  uniform  registration  of  individual  point
clouds into a common frame of reference. Due to the irregula-
rity  of  forest  point  clouds  and  the  frequent  self-similarity  in
their  surrounding  regions,  registration  methods  characterized
by geometric elements (points,  lines, and surfaces) are ineffec-
tive  in  forests.  In  forest  scenes,  tree  stems  are  typically  consi-
dered the most stable structures. Hence, some researchers have
chosen tree  location[13,14],  the  correlation  between tree  height
and  diameter  at  breast  height[15],  stem  position  or  stem
curvature[16−18],  digital  terrain  models[19],  and  canopy  height
models[20] as  distinctive  feature  points  for  the  registration
process.  At  the  same time,  researchers  employed specific  des-
criptors  for  a  more  sophisticated  feature  matching  approach.
Descriptors such as Fast Point Feature Histogram (FPFH)[21] and
YOHO-Desc[22] capture  local  shape  information  in  point  cloud
data,  aiding  in  the  registration  process.  Furthermore,

researchers  have  explored  the  creation  of  registration  primi-
tives  using  various  feature  combinations,  including  tree  loca-
tions and inter-tree distances[23], key points and stem locations
extracted  from  tree  crowns[24],  or  shaded  regions  identified  in
the  original  point  cloud  from  a  single  scan[25].  Most  contem-
porary forest PCR methods are divided into two separate steps,
coarse  and  fine  registration.  Coarse  registration  is  achieved
through feature matching to obtain a better initial  pose, while
fine registration further refines the registration error using algo-
rithms  such  as  Iterative  Closest  Point  (ICP).  Feature-based
methods  can  automatically  detect  and  match  feature  points,
making them widely applicable. However, they are sensitive to
point  cloud  quality  and  environmental  changes,  often  requi-
ring data preprocessing,  and parameter  tuning for  these algo-
rithms  may  be  cumbersome.  Additionally,  while  feature-
matching  methods  can  handle  some  level  of  noise  and  local
deformation,  they  may  encounter  issues  such  as  mismatches
and omissions.

 Methods based on deep learning
With breakthrough advancements across various domains in

recent  years,  deep  learning  technology  has  gradually  been
introduced  into  forest  PCR  research.  The  PointNet  and  Point-
Net++ networks  provide  a  robust  foundation for  deep feature
extraction and classification of point cloud data[26].  Leveraging
these  advanced  network  architectures,  researchers  can  more
accurately  extract  key  features  from  forest  point  cloud  data.
Wang et al.[22] achieved a registration success rate of 99.8% by
designing  a  learning-based  sparse  graph  construction  and  a
pose  graph  solving  strategy  based  on  historical  reweighting.
Although  learning-based  methods  can  automatically  learn
features  and  handle  complex  large-scale  data,  they  require  a
large  amount  of  annotated  data  for  model  training  and  have
high  computational  complexity,  potentially  facing  overfitting
issues.

As  PCR technology is  increasingly  applied in  forest  resource
monitoring,  the  field  of  forest  PCR  is  undergoing  a  transition
from manual marker methods to automation and artificial intel-
ligence.  Each  method  has  its  advantages  and  limitations,  as
depicted in Table 1, and the choice should be based on specific
circumstances. In complex forest environments and in research
involving point cloud segmentation, classification, etc., manual
marker  methods  remain  indispensable.  In  relatively  simple  or
moderately  complex  forest  environments,  feature-based
matching  methods  have  matured,  but  there  are  differences  in
feature  point  extraction  and  matching.  Learning-based
methods  are  still  in  their  early  stages,  but  their  potential  is
promising.  With  ongoing  technological  advancements,  it  is
anticipated  that  future  forest  PCR  will  become  more  efficient,
accurate, and intelligent.

 Forest PCR methods based on multi-source
platforms

In  the  practical  application  of  forest  PCR,  the  registration
issues  and  tasks  vary  among  different  platforms,  necessitating
the  adoption  of  diverse  registration  methods.  With  this  con-
sideration  in  mind,  searches  using  keywords  such  as  'forest'
and  'point  cloud  registration'  in  databases  including  CNKI,
WANFANG, and Web of Science were conducted, summarizing
and  synthesizing  relevant  literature  from  approximately  2003
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to June 2023. After reviewing the majority of relevant literature
and  considering  practical  application  scenarios  for  forest  PCR,
platform  architecture  was  categorized  as  follows:  between
ground  platforms,  between  ground  platforms  and  aerial  plat-
forms, or between aerial platforms. Additionally, Fig. 1 was plot-
ted to visually illustrate the trend of forest PCR methods based
on different platform architectures for readers' reference.

 Methods based on registration between ground
platforms
 Methods for registration between TLS and TLS

(1) Methods based on artificial markers
Periodic forest PCR methods typically involve the placement

of  artificial  markers  such  as  reflective  spheres  and  artificial
reflectors  in  sample  plots.  Subsequently,  the  registration
process  occurs  either  through  manual  identification  of  these
markers or via software[8,9,27,28]. Bienert & Maas[28] discussed two
registration  methods:  one  utilizing  white  spheres  as  connec-
tors, and the other relying on extracted tree axes and a connec-
tor.  While  both methods  visually  seem to  achieve registration,
specific  quantitative  metrics  are  needed  to  assess  their  effec-
tiveness. Hilker et al.[9] placed four 0.20 m diameter polystyrene
spheres  in  each  sample  plot  to  register  multiple  TLS  scans,
resulting  in  Root  Mean  Square  Errors  (RMSE)  of  registration
ranging  from  0.04  to  0.7  m.  To  reduce  reliance  on  artificial
markers,  Zhang  et  al.[11] employed  the  back  sighting  orienta-
tion technique between adjacent scans for coarse registration,
followed  by  fine  registration  using  the  centers  of  tree  stems.
The results indicated a mean error of 0.18 m for coarse registra-
tion and 0.015 m for fine registration. Additionally, Giannetti et
al.[29] achieved  registration  accuracy  of  0.002  m  by  automati-
cally  detecting  spherical  targets  using  Trimble  RealWorks[18]

software.  Despite  its  high  accuracy,  ground  platform  registra-
tion  based  on  artificial  markers  has  limited  potential  for

improvement  due  to  the  time-consuming  and  labor-intensive
process of marker placement and identification.

(2) Methods based on feature matching
Given that tree stems are the most stable structures in forest

scenes,  most automated forest PCR methods rely on extracted
attributes  of  tree  stems  for  registration.  For  example,  Liang  &
Hyyppa[14] performed registration of a forest point cloud based
on stem locations by determining all possible matching vector
pairs. The overall stem detection accuracy after registration was
95.3%.  Although this  approach is  theoretically  feasible,  it  does
not  provide  a  specific  quantitative  assessment  of  registration
accuracy, and the computational complexity increases with the
number  of  unknown  parameters.  Kelbe  et  al.[16] eliminated
dissimilar  stem-triplet  pairs  using  a  similarity  assessment  of
Diameter  at  Breast  Height  and  geometric  feature  descriptors
derived  from  the  stems,  resulting  an  average  error  of  0.076  m
horizontally  and  0.124  m  vertically  after  registration.  Building
on  the  work  of  Liang  &  Hyyppa[14],  Liu  et  al.[17] further
addressed the registration problem by reconstructing the stem
curves from each TLS scan and then matching the trunks at the
feature level. The RMSE values for horizontal and vertical trans-
lations  were  0.016  and  0.131  m.  Tremblay  &  Beland[18]

expanded  on  the  work  of  Kelbe  et  al.[16] by  comparing  the
lengths of the vertices of the stem triangles and the diameter at
breast  height  to  establish  inter-stem  similarity  for  registration,
which resulted in average errors in the x, y,  and z directions of
0.014,  0.013,  and  0.08  m,  respectively.  Compared  to  Kelbe  et
al.[16],  the accuracy in the horizontal  direction was significantly
improved,  and  the  algorithm  execution  time  was  reduced.
However,  as  the  number  of  stems  in  each  scan  increases,  the
execution  time  of  these  methods  rises  rapidly.  Therefore,
researchers explored alternative features for  registration.  Yang
et al.[21] used the FPFH approach to compute the initial transfor-
mation matrix based on a sample-consistent initial registration

Table 1.    Advantages and disadvantages of different PCR methods.

Method Advantages Disadvantages

Artificial markers 1. High accuracy 1. Placement of markers is limited, requiring uniform distribution
2. Strong reliability 2. Setting up markers is time-consuming and labor-intensive
3. Strong controllability 3. User intervention might be needed during marker identification

Feature matching 1. Automatically detects feature points 1. Sensitive to point cloud quality and environmental changes
2. Broad applicability 2. Typically requires preprocessing of point cloud data
3. Handle noise and local distortion 3. Parameters of algorithms need experimentation and adjustment
4. Integrate with other technologies 4. May encounter mismatches and omissions

Deep learning 1. Automatically learns features 1. Requires a large amount of annotated data for model training
2. handle complex, large-scale data 2. High computational complexity, may face overfitting issues
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Fig. 1    Trend of forest PCR methods based on different platform architectures.
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algorithm  for  coarse  registration.  Then,  Normal  Distributions
Transform (NDT) was employed for fine registration. The results
indicated that the FPFH-NDT algorithm has an average registra-
tion  error  of  0.323  m,  outperforming  FPFH-ICP,  NDT,  and  ICP.
Guan  et  al.[25] used  shaded  regions  in  the  original  point  cloud
data  from  a  single  TLS  scan  as  a  key  feature  for  registering
multiple  scans  of  TLS  data.  The  results  showed  that  the  aver-
age  residual  of  the  registration  was  0.042  m,  comparable  to
manual  registration  methods.  However,  the  computational
time of the enumeration process increases exponentially as the
number of  identified visually  occluded points  increases.  Dai  et
al.[24] employed semantically guided key point detection and a
robust  random  sampling  consistency  mechanism  to  enhance
the  accuracy  and  efficiency  of  registration,  achieving  an
average residual distance of 0.049 m.

(3) Multi-view methods
When  performing  ground-based  LiDAR  PCR,  several  forest

registration  methods  adopt  a  sequential  framework[15,25,30,31].
However,  each  registration  introduces  a  certain  amount  of
error,  and  these  errors  accumulate  with  multiple  registration
steps.  To  further  minimize  registration  errors,  Ge  &  Zhu[30]

proposed an automated end-to-end framework,  RegisMUF, for
registering  unordered  forest  point  clouds.  The  procedure
includes  the  following  steps:  1)  Generate  a  reliable  scanning
network  by  predicting  overlapping  regions  in  possible  neigh-
boring  scans  based  on  a  common  subgraph.  2)  Apply  a  pair-
wise approach to all connected scans at a coarse level, and then
verify the integrity of the frames using a pose test. 3) Refine the
matching  process  by  applying  an  enhanced  fine  registration
method  under  an  accelerated  network  convergence  strategy.
The results indicated that, for the tested dataset, the rotational
error  was  below  0.2°,  and  the  translational  error  was  less  than
0.2  m.  Subsequently,  Wang  et  al.[32] proposed  a  method  that
combines  reliable  pose  graph  initialization  and  history
reweighting.  The  specific  steps  are  as  follows:  1)  Construct  a
sparse pose graph utilizing neural networks to learn the global
features  of  each  point  cloud,  estimate  the  overlap  ratio
between scan pairs by comparing the correlation of two global
features, and use this information to build a sparse but reliable
pose  graph  (containing  fewer  but  more  trustworthy  edges);
2) Design an iteratively reweight a least squares scheme with a
history  reweighting  iterative  scheme:  Initialize  edge  weights
based on global features and registration results, and then itera-
tively  refine  poses  using  the  history  reweighting  function;
3)  Conduct  point  cloud  registration:  Apply  registration  algo-
rithms on the sparse  pose graph,  perform registration calcula-
tions only on the edges in the sparse graph,  and then use the
proposed IRLS scheme to optimize and synchronize the global
poses  of  all  scans,  achieving  overall  registration  consistency
and accuracy.

 Registration among other ground platforms
The  registration  among  ground  platforms  mainly  occurs

between  TLS.  However,  there  are  also  cases  involving  other
platforms,  such  as  TLS  and  BLS[33,34],  or  BLS  and  BLS[35],
although  research  in  this  area  is  less  common.  Kukko  et  al.[36]

conducted  registration  with  MLS,  involving  the  following  key
steps: 1) Initial trajectory acquisition utilizing the Global Naviga-
tion  Satellite  System  (GNSS)  and  Inertial  Measurement  Unit
(IMU)  to  obtain  the  initial  trajectory  of  the  MLS  system.
2)  Feature  detection  and  matching  employing  data  collected
by  MLS  to  identify  and  match  features  such  as  tree  trunk

positions in the environment. 3) Application of the Graph SLAM
algorithm  to  correct  geometric  inconsistencies  induced  by
GNSS-IMU  observation  data.  Based  on  tree  trunk  feature  posi-
tioning  data,  the  internal  consistency  of  the  data  was  signifi-
cantly improved from 0.7 to 0.01 m. When compared with plot
references,  the  average  absolute  tree  stem  position  error  was
reduced  to  0.06  m.  Gao  et  al.[35] applied  various  algorithms
including ICP, NDT, curvature-based point cloud matching, PFH
feature-based  matching,  FPFH  feature-based  matching,  and
3DSC feature-based matching for  the registration of  BLS point
clouds  for  different  scenes.  The  findings  revealed  that  BLS
registration  is  notably  influenced  by  slopes,  with  the  ICP
algorithm  being  the  least  affected.  The  FPFH  feature-based
matching algorithm performs best in areas with smaller slopes,
while  the  PFH  feature-based  matching  algorithm  achieves  the
highest registration accuracy on steeper terrains.

 Methods based on registration between ground
platforms and aerial platforms registration

In  the  early  stages,  the  registration  between  ground  and
airborne platforms involved registering the coordinate systems
of  field  measurements  with  aerial  data  coordinates[13,37],
meeting the initial requirements for forest resource monitoring.
Over  time,  the  demand  for  comprehensive  three-dimensional
structural  information on forests has grown. Ground platforms
can  provide  detailed  information  on  the  lower  canopy  struc-
ture  but  have  a  limited  perspective  on  the  upper  canopy.  By
contrast,  airborne  platforms  can  capture  detailed  information
on  the  top  canopy  but  face  obstacles  when  penetrating  the
lower  canopy.  Registering  the  data  from  both  platforms  helps
construct  a  complete  and  detailed  three-dimensional  forest
structure,  providing  a  comprehensive  perspective  for  forest
management and research.

 Methods for registration between TLS and ALS
Over  the  past  decade,  the  registration  of  TLS  and  ALS  has

evolved  from  early  attempts  toward  more  advanced  two-step
registration[38,39].  In  the  initial  endeavors,  tree  matching  rates
were used as an assessment metric for TLS-ALS registration, but
this  indicator  only  provided  a  preliminary  evaluation  of  the
registration  quality,  lacking  precision.  Fritz  et  al.[40] proposed
registration methods using simple geometric features and tree-
to-tree  distances.  This  study  presented  three  methods  as
follows:  1)  Focused  on  planar  distance-based  registration  by
calculating distances between trees; 2) Employed three-dimen-
sional  line  fitting  techniques,  utilizing  trunk  information  from
TLS to estimate potential tree top positions in ALS; 3) Involved
cross-registration  based  on  three-dimensional  box  models.  It
used estimated tree top positions, geometric centers from TLS,
as  well  as  tree  crown  diameter  and  height  information  from
ALS to create two 3D box models, determining matching possi-
bilities by checking if  they intersected. Despite their simplicity,
all three methods exhibited low registration accuracy, with tree
matching  rates  below  50%.  Lindberg  et  al.[41] built  upon  the
tree-matching  algorithm  proposed  by  Olofsson  et  al.[13] and
directly  identified  trunk  features  in  TLS  for  registration.  While
this  approach  improved  registration  to  some  extent,  accuracy
remained limited, especially when tree stems were obscured or
trees were in close proximity.

Subsequently,  researchers  employed  more  advanced
features or a combination of various features to enhance regis-
tration  accuracy.  Hauglin  et  al.[15] utilized  normalized  features
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of DBH and tree height for registration. Paris et al.[20] employed
CHM  as  features  for  registration.  The  former  exhibited  lower
registration  accuracy,  with  an  average  of  84%  of  data  having
registration  errors  within  1  m.  The  latter  showed  CHM  image
correlation coefficients ranging from 0.53 to 0.73 after registra-
tion,  with  RMSE  of  estimated  tree  height  and  crown  width
reaching 0.39 and 1.46 m,  respectively.  However,  both evalua-
tions  were  conducted  in  the  horizontal  direction,  with  the
vertical  registration  issues  left  unresolved.  Additionally,  these
methods were only suitable for  more open forest  areas,  requi-
ring further improvements for dense forest registration.

In the past, the registration of TLS and ALS primarily relied on
feature-matching methods, such as tree positions or shapes[42].
However, with increasing demand for registration and techno-
logical advancements, the registration process has evolved into
a two-stage strategy. This involves initially establishing a rough
correspondence  through  coarse  registration,  followed  by  fine
registration  based  on  this  initial  registration.  For  instance,
Giannetti et al.[29] employed visual inspection, treating trees as
corresponding points, for rough registration using Cloud Com-
pare  software.  Subsequently,  Trimble  Real  Works  software[18]

was utilized for a blended multi-view adjustment of the digital
terrain model extracted from the point cloud. Further fine regis-
tration was conducted with ALS using the reference coordinate
system.  The  results  indicated  a  coarse  registration  accuracy  of
0.05 m, while the fine registration accuracy, assessed by terrain
height difference indicators, had RMSE values of 0.02 and 0.03 m
for  TLS,  HMLS,  and  ALS.  Although  this  registration  method
demonstrated  high  accuracy,  its  applicability  was  limited  due
to its  reliance on manual  markers.  Given the irregular distribu-
tion  of  natural  forest  point  clouds,  Dai  et  al.[43] proposed  a
density-based  registration  method.  This  approach  utilizes  a
probability  framework and maximum likelihood estimation for
registration,  involving  the  following  main  steps:  1)  Minimizing
the  difference  in  point  density  between  ALS  and  TLS  crown
points to generate similar pattern points.  These pattern points
represent  local  maxima  of  potential  probability  density  func-
tions.  2)  Registering  pattern-based  key  points  using  the
Coherent  Point  Drift  algorithm.  3)  Applying  the  recovered
transformation  to  the  original  point  cloud  and  optimizing  it
using  the  standard  ICP  algorithm.  The  results  demonstrated
that  the  proposed  probability-based  method  performed  well,
with  a  3D  distance  residual  of  0.07  m.  Notably,  this  method
avoided the need for descriptor similarity around key points or
a single-tree segmentation process,  but its  effectiveness could
be influenced by crown overlap.

 Methods for registration between TLS and ULS
Several  recent  studies  on  TLS  and  ULS  PCR  promoted  the

evolution  from  registration  based  on  simple  features  to  the
development  of  complex  algorithms[44−47].  The  proposed  tree
height registration method relies on Singular Value Decompo-
sition  (SVD)  for  coarse  registration  and  achieves  fine  registra-
tion  through  iterative  SVD[44].  The  results  showed  an  average
accuracy  of  0.43  m.  To  reduce  dependence  on  tree  attributes
and  improve  registration  efficiency,  Zhang  et  al.[45] employed
FPFH for coarse registration, after which they used the ICP algo-
rithm  for  fine  registration,  and  ultimately  eliminated  cumula-
tive errors in overlapping regions of multiple scan point clouds
through  a  graph-based  adjustment  framework  for  seamless
connection.  The  results  indicated  that  after  registration,  the
horizontal  RMSE  values  ranged  from  0.02  to  0.03  m,  while

vertical  RMSE values  fell  within  the  range of  0.010 to  0.015 m.
This suggests that the method performs well in terms of regis-
tration accuracy. However, the parameter selection of the FPFH
algorithm significantly influences the quality of the registration
results, with inappropriate parameter settings leading to unsta-
ble registration quality. To overcome this, Liu et al.[46] proposed
a registration method based on feature triangles, involving the
following main steps: 1) Tree positions are extracted from both
ULS  and  TLS;  2)  Using  tree  positions  as  registration  primitives,
feature triangles are constructed, and same-name triangle pairs
are identified based on similarity metrics; 3) Using these identi-
fied  triangles,  computed  registration  transformation  parame-
ters  are  applied.  The  average  registration  accuracy  of  this
method  is  0.31  m,  demonstrating  relatively  high  positional
accuracy. However, the registration performance may decrease
with  an  increase  of  forest  density,  which  may  result  in  signifi-
cant  errors  in  local  areas.  In  the  same  year,  Shao  et  al.[48] also
introduced  an  efficient  automated  registration  method  that
primarily  involves  the  following  steps:  1)  Ground  registration,
adjusting  ground  point  clouds  to  the  horizontal  using  ground
filtering and a Random Sample Consensus algorithm; 2) Crown
registration,  projecting  vegetation  point  clouds  to  form  a  2D
image  and  applying  morphological  operations;  3)  Image
matching,  performing  key  point  matching  based  on  crown
shape  context  features;  4)  Point  cloud  registration,  finely
adjusting rotation and translation matrices using the ICP algo-
rithm  for  registration.  However,  the  results  indicated  that  the
average  accuracy  of  coarse  registration  did  not  exceed  0.2  m,
and  after  fine  registration,  the  average  distance  and  RMSE
values were less than 0.15 m. Moreover,  for samples with high
canopy density,  using all  canopy points may not provide suffi-
cient  valid  information  for  accurate  fine  registration.  Additio-
nally,  the  setting  of  the  canopy  projection  range  is  based  on
empirical  knowledge  rather  than  an  adaptive  or  automated
approach, limiting its universality for different forest structures.

 Methods for registration between BLS and ULS
TLS  and  BLS  both  fall  under  the  category  of  ground  laser

scanning technologies. TLS holds an advantage in stability and
accuracy,  while  BLS,  utilizing  SLAM  technology,  can  precisely
stitch together scanned point cloud data without the need for
ground  control  points.  This  significantly  reduces  the  workload
and  time  required  for  setting  up  ground  control  points  in  the
field,  simplifying  the  operational  process  and  decreasing
reliance  on  heavy  equipment,  making  data  collection  in  chal-
lenging  or  sensitive  forest  environments  more  feasible  and
convenient.  Polewski  et  al.[49] employed  tree-to-tree  distances
as  features  to  register  BLS  and  ULS  point  clouds.  The  method
involves the following key steps:  1)  Adjusting the Z-axis of  the
point  cloud  by  leveraging  the  negative  gravitropism  of  tree
growth;  2)  Construction  of  relative  features:  Using  plane
distance metrics to construct descriptor vectors between trees;
3)  Graph  matching  and  similarity  assessment:  Establishing  a
bipartite graph and employing the Kuhn-Munkres algorithm to
find  the  best  matches;  4)  Scale  estimation:  Maximizing  the
graph  matching  score  function  to  estimate  the  relative  scale
between  datasets;  5)  Optimal  transformation  search:  Utilizing
simulated annealing to find the matching subset leading to the
best  coordinate  transformation;  6)  Scale  refinement:  Fine-
tuning  the  scale  factor  through  a  detailed  grid  search  and
selecting the optimal result.

Forest point cloud registration
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 Methods for registering ground-based and ULS with
ground-based and UAV image point clouds

Combining  the  method  of  laser  PCR  with  the  integration  of
image  point  clouds  significantly  reduces  the  cost  of  forest
measurement[23,50,51].  On the operational front, it  simplifies the
data  collection  process,  enabling  even  non-professionals  to
collect  and  process  data  with  relative  ease.  Additionally,  it
offers  advantages  in  improving  spatial  resolution  and  data
update frequencies, greatly enhancing the timeliness and cred-
ibility  of  forest  resource  monitoring  data.  It  provides  a  more
efficient  and  reliable  technical  approach  for  the  accurate
assessment  and  management  of  forest  resources.  Polewski  et
al.[23] introduced a method for  registering ground photogram-
metric  point  clouds  with  ALS  in  forested  areas.  This  method
uses tree positions as registration primitives, measuring simila-
rity  by  calculating  horizontal  and  vertical  distances  between
each tree and its surrounding trees. The main steps include: 1)
Estimating tree stem positions in-ground and ALS point clouds,
constructing  descriptors  to  represent  the  plane  and  vertical
distances to other trees;  2) Computing descriptors:  Calculating
the similarity of all stem descriptor pairs between the two point
clouds and determining corresponding trunk pairs using graph
matching  techniques;  3)  Finding  the  optimal  transformation:
Selecting the best set of trunk pairs from the matched dataset
using  a  heuristic  algorithm;  4)  Constructing  stem  descriptors:
Characterizing the distance of each stem relative to other stems
within  the  same  plot;  5)  Quantifying  stem  descriptors:  Apply-
ing  a  radial  basis  function  to  measure  the  similarity  between
descriptors;  6)  Graph  matching:  Finding  the  best  matches  for
trunks  based  on  descriptor  similarity;  7)  Determining  rigid
transformation: Computing transformation parameters for opti-
mal  registration  of  the  two  datasets;  8)  Identifying  associated
point  subset:  Selecting  the  optimal  subset  from  the  results  of
graph  matching  for  coordinate  transformation.  The  results
demonstrated  that  this  method  achieved  an  average  registra-
tion accuracy of 0.66 m, confirming the feasibility and effective-
ness  of  applying  ground  photogrammetric  point  clouds  in
forest scenes.  At the same time, the high spatiotemporal reso-
lution and strong maneuverability of UAVs have made them an
effective  complement  in  the  field  of  aerial  photogrammetry.
Tian et al.[50] explored the possibility of using low-cost UAVs to
replace  ALS  for  forest  measurements.  This  method,  relying  on
distinct  landmark  contour  features  and ground control  points,
achieved  a  registration  accuracy  of  0.06  m  through  precise
geometric  correction,  significantly  enhancing  the  application
potential of UAVs in forest mapping.

 Methods for registration between aerial platforms
In general, data registration between aerial platforms has not

been  widely  explored  in  forest  PCR.  Nevertheless,  utilizing
aerial platforms for long time-series data holds crucial value for
monitoring  the  growth  changes  in  forests  and  conducting
refined  resource  management.  Due  to  significant  differences
among aerial platforms in flight altitude, scanning angle, cove-
rage  area,  and  data  density,  the  registration  process  faces
notable challenges. Ferraz et al.[52] achieved the registration of
ALS  point  clouds  from  different  time  points  by  taking  advan-
tage  of  the  stable  features  of  coniferous  tree  tips  for  time-
variant  analysis.  The  results  indicate  that  this  method  effec-
tively  reduces  estimation  biases  to  0.38  m  in  horizontal  and
0.12  m  in  vertical  direction,  mitigating  spatial  discrepancies

caused  by  platform  trajectory  and  motion  uncertainties.  Fekry
et al.[53] proposed a comprehensive strategy for  forested areas
using automated UAV-mounted LiDAR with adjustment  based
on hierarchical  density  clustering analysis  of  vegetation cover.
The method consists of three key stages: 1) The scanned vege-
tation cover is clustered using the HDBSCAN algorithm, and key
points are labeled by employing topological persistence analy-
sis for each cluster;  2) Feature similarity is computed by taking
into account the linear and angular relationships between each
point  and  the  centroid  of  the  point  set.  The  Kuhn-Munkres
algorithm  is  then  utilized  to  address  the  assignment  problem
based  on  the  similarity  score  function,  resulting  in  a  set  of
matched  pairs  that  establish  one-to-one  feature  correspon-
dences.  3)  The  3D  rigid  transformation  parameters  are  deter-
mined by exploring all potential one-to-one pairings within the
correspondence.  The optimal pairing is  defined as the set that
includes  the  maximum  number  of  matching  points,  all  adhe-
ring to a specified tolerance for distance residuals. Due to their
cost-effectiveness,  point  clouds  generated  using  UAV  photo-
grammetry are increasingly common in related studies. Huang
et al. employed the Global Registration Method Using a Robust
61  Phase  Correlation  method  for  registering  TLS  and  UAV
image  point  clouds[54].  The  main  steps  include:  1)  Voxelizing
point  clouds  into  three-dimensional  cubic  signals  and  trans-
forming  them  into  the  frequency  domain  to  estimate  phase
differences.  2)  Calculating  the  linear  function  coefficients
between  phase  difference  angles  and  displacement  parame-
ters, followed by the application of a robust estimator to solve
linear  equations.  As  a  result,  the  method  effectively  estimates
three-dimensional  offsets.  By  leveraging  the  low-frequency
components  of  the  normalized  cross-power  spectrum,  this
approach  efficiently  filters  out  noise  and  unrelated  parts  from
the signal,  making it  adaptable  for  PCR tasks  with low overlap
and poor detail correspondence.

 Comparison and summary
Registration between ground platforms represents the most

fundamental  type  of  forest  PCR,  involving  point  clouds  from
the  same  ground  scanning  device  at  different  locations  or
times. Challenges in this registration task include issues arising
from occlusion, scanning range limitations, and uneven ground
surfaces.  As  ground  scanning  provides  detailed  information
about tree stems and the ground layer, registration algorithms
typically need to identify stable reference features, such as the
positions and structural attributes of specific trees.

Registration  between  ground  and  aerial  platforms  poses  a
more  complex  problem.  Aerial  platforms  often  offer  canopy
information from a top-down perspective,  with less capture of
details  regarding tree trunks and the ground.  Therefore,  regis-
tering  ALS  and  TLS  data  requires  consideration  of  the  geo-
metric  and scale differences between these two types of  data.
Researchers commonly rely on advanced feature matching and
sophisticated algorithms to bridge the gaps in perspective and
scale.

Registration  between  aerial  platforms  usually  involves  data
from  different  flight  missions  or  various  UAV  platforms.  It  is
primarily employed for the registration of long time-series data
to monitor forest growth changes and enable refined resource
management.  However,  research  on  registration  between
aerial platforms is currently limited.
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 Forest PCR benchmark datasets and
evaluation criteria

 Forest PCR benchmark datasets
Forest  PCR  is  mostly  based  on  closed  datasets  curated  by

various research institutions and data providers. These datasets
are  typically  sourced  from  forest  point  cloud  data  obtained
through  different  platforms.  To  facilitate  a  reliable  assessment
and  comparison  of  forest  PCR  methods,  there  is  a  pressing
need for open benchmark datasets featuring a substantial data
volume  and  diversity.  Unfortunately,  the  currently  available
datasets are limited in size.

 Evaluation criteria
To  impartially  and  effectively  assess  the  performance  of

forest  PCR  methods,  a  unified  evaluation  framework  must  be
established,  incorporating  both  quantitative  and  qualitative
analyses.

 Qualitative metrics
Qualitative metrics play a crucial role in assessing the perfor-

mance  of  forest  PCR  methods  by  providing  intuitive  detailed
close-up diagrams of the registration outcomes[25,31,43]. In prac-
tical  applications,  comparing  cross-sectional  plots,  as  well  as
the  smoothness  of  curves  before  and  after  registration,  effec-
tively  demonstrates  the  continuity  and  consistency  achieved
through registration.

 Quantitative metrics
Quantitative  metrics  are  pivotal  for  evaluating  the  perfor-

mance  of  forest  PCR  methods.  These  metrics  can  be  catego-
rized  into  three  main  types:  feature  extraction  and  matching,
rigid  transform  estimation,  and  runtime.  Feature  extraction-
based metrics include Feature-Match Recall (FMR) and Registra-
tion Recall (RR)[32].  Metrics based on rigid transform estimation
typically  include  Mean  Absolute  Error  (MAE)[36],  Mean  Square
Error  (MSE),  and  Root  Mean  Square  Error  (RMSE)[31,48,55],  focu-
sing on the rotation matrix and translation vectors in the rigid
transform.  These  metrics  evaluate  the  precision  and  accuracy
of  estimating  the  rigid  transform  post-registration.  Finally,
runtime reflects the computational efficiency and speed of the
algorithm[35,43].

(1) FMR
The  FMR  is  the  ratio  of  correct  point  pairs  extracted  from

features to all the point pair data in the point cloud.
(2) RR
The  RR  is  calculated  by  assessing  how  well  a  registration

method  recovers  point  clouds  with  overlapping  regions  from
two sets of point clouds, both having rigid transformations and
overlapping parts.

(3) MAE
The  MAE  is  the  average  of  the  absolute  errors  between  the

true and predicted values in the rigid transformation. It can be
expressed using formula (1).

MAE =
1
n

n∑
i=1

|yi− yi| (1)

yi yiwhere  is the predicted value of the registration method, and 
is the true value of the rigid transformation.

(4) MSE
The MSE is  the  average of  the  squared differences  between

the true and predicted values in the rigid transformation. It can
be expressed using formula (2).

MSE =
1
n

n∑
i=1

(yi− yi)2 (2)

yi yiwhere  is the predicted value of the registration method, and 
is the true value of the rigid transformation.

(5) RMSE
The RMSE is the average square root error between the true

and  predicted  values  in  the  rigid  transformation.  It  can  be
expressed using formula (3).

RMSE =

√√
1
n

n∑
i=1

(yi− yi)2 (3)

yi yiwhere  is the predicted value of the registration method, and 
is the true value of the rigid transformation.

 Future outlook

Through  an  analysis  of  forest  PCR  methods  across  various
platforms, we have obtained initial  insights into the methodo-
logical  framework  of  forest  PCR.  While  existing  methods  for
forest  PCR  are  relatively  mature  within  individual  platforms,
there  is  presently  a  deficiency  of  universal  algorithms  suitable
for  all  platforms.  With  the  ongoing  advancement  of  registra-
tion  algorithms,  GNSS  technology,  feature  matching,  artificial
intelligence,  and  computer  vision,  we  are  confident  in  the
future advancement of forest PCR (Fig. 2). Specifically, we antici-
pate advancements in the following areas:

The  development  of  high-precision,  rapid,  and  automated
forest  PCR  algorithms  remains  a  critical  focus  of  current
research.  Presently,  forest  PCR  methods  typically  operate  on
small scales, employing feature matching to achieve coarse and
fine  registration[16,32,43].  However,  existing  methods  primarily
perform  registration  on  preprocessed  point  clouds,  which
struggle  to  handle  datasets  with  significant  real-world  noise.
Additionally,  point  cloud  downsampling  is  often  necessary  to
enhance efficiency, but this may compromise registration accu-
racy.

The  utilization  of  cutting-edge  positioning  technologies,
such as GNSS and Real-Time Kinematic (RTK) positioning, repre-
sents  a  significant  advancement[14,56].  Despite  the  persistent
challenge of canopy occlusion in intricate forest environments,
continuous  technological  progress  is  anticipated  to  enhance
the  signal  quality  and  coverage  of  GNSS  systems,  thereby
bolstering  their  resilience  against  interference.  Consequently,
we  foresee  these  technologies  evolving  to  become  increas-
ingly reliable and precise in forest settings and their associated
applications.

The  utilization  of  more  efficient  feature  matching  tech-
niques is paramount. Presently, forest PCR algorithms predomi-
nantly  prioritize  feature  point  selection[24,31,32].  However,  a
universally  applicable  set  of  feature  points  for  all  platforms
remains  elusive.  As  feature-matching  technology  continues  to
evolve, we anticipate the emergence of more adaptable feature
point  selection  methods  capable  of  accommodating  forest
point cloud data from diverse platforms and complex environ-
ments.

The utilization of more efficient deep learning methods is an
important trend in the future. Despite the current early stage of
application  of  deep  learning  in  forest  PCR[22],  the  continuous
development  of  technology  will  enhance  the  precision,  auto-
mation,  and adaptability  of  registration.  Future research direc-
tions may include constructing larger-scale forest PCR datasets

Forest point cloud registration
 

Liu et al. Forestry Research 2024, 4: e018   Page 7 of 10



to  facilitate  effective  network  training  and  addressing  adap-
tability issues across various forest environments.

In  addition,  with  the  continuous  advancement  of  computer
vision,  photogrammetric  point  clouds  hold  vast  potential  for
future  applications[57,58].  Presently,  forest  PCR  methods  are
primarily  focused  on  processing  LiDAR  point  clouds,  with
limited  research  on  photogrammetric  point  clouds.  However,
as  image matching and point  cloud reconstruction algorithms
evolve,  the  advantages  of  low  cost  and  high  information
output  of  image-based photogrammetric  techniques will  offer
new possibilities for forest PCR.

 Conclusions

To help researchers face the current challenges of forest PCR,
this  paper  first  systematically  classified  methods  developed
over  the  past  20  years,  summarized  and  categorized  them
based on the classification, introduced datasets and evaluation
metrics in this field, and finally concluded the research work as
follows:

This  paper  comprehensively  classified  and  summarized
forest  PCR  methods.  1)  In  the  early  stage  of  research,
researchers used methods based on artificial markers for forest
PCR.  These  methods  have  advantages  such  as  high  accuracy
and  reliability,  but  the  process  of  placing  markers  is  time-
consuming  and  labor-intensive,  limiting  their  practicality  and
efficiency.  2)  Subsequently,  researchers  proposed  methods
based on feature  matching for  PCR,  which has  received consi-
derable attention in the past decade. These methods can auto-
matically detect and match feature points, with a wide range of
applications. However, different methods are sensitive to point
cloud  quality  and  environmental  changes,  often  requiring
parameter  tuning  and  data  preprocessing.  3)  In  recent  years,
learning-based  forest  PCR  algorithms  have  been  proposed
successively,  mainly  utilizing  their  powerful  feature-learning
capabilities  as  well  as  end-to-end  training  frameworks.
Although  these  methods  are  still  in  their  early  stages,  their
potential is promising.

This  paper further subdivided forest  PCR methods based on
the different sources of point clouds to more comprehensively
explore registration issues between different platforms. 1) Regi-
stration  between  ground  platforms  is  the  most  fundamental
type  of  forest  PCR,  typically  using  point  cloud  data  obtained
from  the  same  type  of  ground  scanning  equipment,  mainly
addressing  consistency  and  matching  between  data  collected
at different locations or times. 2) Registration between ground
and  aerial  platforms  is  a  more  complex  task,  with  researchers
relying on advanced feature matching and complex algorithms
to  bridge  differences  in  perspective  and  scale.  3)  Registration
between aerial  platforms typically  involves data from different
flight  missions  or  different  UAV  platforms,  mainly  addressing
inconsistencies caused by differences in flight height, scanning
angle,  coverage  area,  and  data  density.  However,  research  in
this area is relatively scarce.

It should be noted that we also summarized the mainstream
databases  and  evaluation  metrics  in  the  field  of  forest  PCR.
Currently, most forest PCR algorithms lack a unified dataset and
evaluation system, making it difficult to make fair comparisons
among  existing  algorithms.  The  summary  of  databases  and
evaluation metrics offered in this  paper can guide subsequent
evaluations  and  comparisons  of  the  performance  of  existing
algorithms.
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Fig. 2    Future outlook of forest PCR.
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