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Abstract
This study aims to understand the genetic basis of key industrial traits in Slash pine (Pinus elliottii Engelm. var. elliottii) to enhance improvement

efficiency. Detailed analyses were conducted on inter-family differences, genetic parameters, correlations, and breeding values (BVs) for growth,

wood  properties,  and  resin  traits  of  Slash  pine  planted  in  Changle  Forest  Farm  of  Hangzhou,  leading  to  the  identification  of  elite  families.  It

indicates  that  growth  traits  are  primarily  influenced  by  environmental  effects,  while  wood  properties  exhibit  a  significant  impact  of  genetic

effects. The variation in resin traits arises from both genetic and environmental effects. Notably, Beta-pinene exhibits the highest variability and

genetic gains among the traits analyzed. The family heritability ranges for growth, wood properties, and resin traits are 0.543−0.794, 0.870−0.885,

and  0.285−0.695,  respectively.  Significant  positive  correlations  are  evident  between  growth  and  resin  traits,  while  a  negative  correlation  is

observed between growth and wood properties.  Elite families identified through single-trait and multi-trait combined selection are 8−126 for

growth traits, 2−325 and 0−373 for wood properties, and 8−131 for resin traits. The average genetic gains for these elite families are 7.44%, 7.17%,

and 8.84%, respectively.  These findings provide valuable insights for high-generation breeding of Slash pine and lay a genetic foundation for

formulating effective breeding strategies for conifers.
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Introduction

Wood,  known  for  its  renewable  and  eco-friendly  properties,
serves  diverse  purposes  in  construction,  furniture,  and  pulp
production[1].  Key  growth  parameters  like  diameter  at  breast
height  (DBH)  and  tree  height  (Ht),  alongside  wood  properties
such  as  wood  density  (WD)  and  modulus  of  elasticity  (MOE),
are  essential  for  breeding  programs  targeting  industrial
production[2,3].  Traditional assessment methods for these traits
are costly, time-intensive, and destructive, posing challenges in
forestry  research[4].  However,  non-destructive  wood  quality
assessment  technologies  like  Pilodyn and Resistograph offer  a
promising  solution,  enabling  rapid  and  accurate  target  detec-
tion in a cost-effective and high-throughput manner[5,6].  Resin,
a  viscous  fluid  mixture  of  secondary  metabolites  comprises
turpentine rich in monoterpenes and sesquiterpenes, and rosin
predominantly  composed  of  diterpenes[7].  Turpentine  finds
applications in fragrance,  pharmaceuticals,  and food additives,
while  rosin  is  extensively  used  in  agrochemicals  and
adhesives[8,9].  Resin  derivatives  have  diversified  applications
in  biodegradable  batteries,  green  plastics,  and  petroleum
alternatives[9,10]. Each resin component serves distinct purposes
in industrial applications[11,12].  For example, pinene, the predo-
minant  turpentine,  is  utilized  in  natural  insecticides,  pharma-
ceuticals,  and  food  additives[13−16].  Among  pinene  isomers,
Alpha-pinene  is  the  most  abundant,  while  Beta-pinene  holds
significant  value  in  the  chemical  industry[17].  Slash  pine  (Pinus

elliottii Engelm.  var. elliottii)  resin,  characterized  by  its  high
Beta-pinene content is of considerable industrial value[18,19].

Genetic  variation  is  crucial  for  genetic  improvement,  provi-
ding insights into trait breeding potential[12]. In forestry genetic
improvement,  breeders  often  aim  to  enhance  multiple  traits
simultaneously.  Therefore,  investigating  the  relationship
between  growth  traits  and  wood  properties  is  crucial.  Studies
have  indicated  a  positive  genetic  correlation  between  growth
traits and wood properties in P. taeda[20] and P. massoniana[21].
However,  the  correlation  between  growth  traits  and  WD  in P.
contorta[22] is  not  significant,  contrasting  with  other  research
suggesting  a  negative  correlation  between  growth  trait  and
wood  properties  in P.  taeda[23], Larix  kaempferi[24],  and P.
radiata[25].  Consequently,  achieving  rapid  wood  maturation
through  genetic  improvement  for  growth  traits  may  poten-
tially  have  adverse  effects  on  wood  quality[26,27].  Additionally,
research on resin traits has revealed significant negative corre-
lations  between  Alpha- and  Beta-pinene.  Furthermore,  resin
yield  and  resin  basic  density  exhibit  a  highly  significant  posi-
tive correlation, while turpentine content shows a highly signifi-
cant  negative  correlation  with  resin  basic  density[28].  Under-
standing  these  connections  is  crucial  for  implementing  multi-
trait  combined  selection,  optimizing  breeding  strategies,  and
achieving  balanced  improvements  in  growth-wood-resin
traits[18].

However,  economically  valuable  traits  in  tree  breeding
programs typically exhibit polygenic variation and are strongly
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influenced  by  environmental  factors.  Almost  all  commercially
important tree species have reported significant Genotype-by-
Environment  interactions  (G  ×  E),  including  Scots  pine[29],
Eucalyptus[30],  Douglas  fir[31],  Norway  spruce[32],  and  Poplar[33].
Multi-trait combined selection has the potential to mitigate the
impact of the environment on genotype stability and expedite
the breeding process[34].  Nonetheless,  addressing linkage dise-
quilibrium  (LD)  while  simultaneously  selecting  for  multiple
desirable  traits  has  led  to  various  methods  for  multi-trait
combined  selection[35],  such  as  index  selection[36],  sequential
selection[37],  and  multi-factor  comprehensive  evaluation[38].
Principal component analysis (PCA) is one such method, revea-
ling  the  intrinsic  characteristics  of  test  materials  by  extracting
factors  from  the  multifactorial  relationships  between  compo-
nents  and  performance,  which  has  demonstrated  efficacy  in
Larix kaempferi[39] and Camellia chekiangoleosa[40].

Slash  pine  plays  a  crucial  role  in  providing  wood  and  resin
material,  with genetic  improvement efforts  primarily  targeting
growth  rates,  wood  quality,  and  oleresin  yield  (OY)[41].  This
study aims to: (1) investigate the varied G × E effects on growth,
wood  properties,  and  resin  traits;  (2)  estimate  the  heritability,
correlations, and breeding values of these traits; and (3) employ
multi-trait  combined  selection  to  identify  elite  families.  These
findings  may  enhance  the  efficiency  of  genetic  improvement
for  key  industrial  traits  in  Slash  pine  and  accelerate  its  high-
generation breeding process. 

Materials and methods
 

Plant materials and experimental design
The  Slash  pine  clonal  seed  orchard  (located  at  30°20'  N,

119°50'  E)  comprises  300  elite  clone  genotypes  selected  from
Slash  pine  provenance test  forests  in  seven provinces:  Guang-
dong,  Fujian,  Jiangxi,  Jiangsu,  Hunan,  Hubei,  and  Zhejiang.
These clones, all exhibiting elite growth performance and unre-
lated to each other, were propagated in April 1976 by grafting
robust branches from the crown of selected elite trees onto 2-
year-old  Slash  pine  rootstocks  using  the  method  of  cambial
layer grafting.

In  1992,  seeds  from  the  clonal  families  of  the  orchard  were
collected,  and  seedlings  were  raised  in  1993.  In  1994,  a  clonal
stand  test  forest  was  established  at  coordinates  30°27'  N,
119°49'  E.  The  test  forest  comprises  33  families,  arranged  in  a
completely randomized design with six offspring in single-row
plots and six replications (blocks),  with trees spaced 2 m apart
within rows and rows spaced 3 m apart. The local annual aver-
age precipitation is 1,480 mm, and the annual average temper-
ature  is  17.0  °C.  The  planting  site  is  characterized  by  gently
sloping hills with yellow-red soil of moderate fertility. Thinning
was  carried  out  in  the  test  forest  after  10  years  of  establish-
ment.  The  test  forest  had  never  been  tapped  for  resin  before
the commencement of this experiment.

In  July  2019,  phenotypic  surveys  were  conducted  on  four
blocks  of  the  test  forest.  The  three  trees  with  the  largest  DBH
were  measured  in  each  plot,  and  trees  with  obvious  damage
were excluded. This resulted in a total of 240 individual pheno-
type data collected (Supplemental Table S1). 

Growth traits phenotyping
In  this  study,  the  phenotypic  traits  and  survey  methods  for

the growth traits of Slash pine are as follows:

(1)  DBH:  Measured  with  a  caliper  at  a  height  of  1.3  m  from
the ground on the trunk.

(2)  Ht  and  height  under  the  crown  (Huc):  Measured  using  a
height measuring pole.

(3)  Crown  width:  Diameter  of  the  crown  measured  in  both
east-west  and  north-south  directions,  with  the  average  result
taken and the area calculated.

(4)  Average  annual  ring  width  (ARW):  ARW  was  measured
using  the  Resistograph-IML-RESIPD500  (IML-RESI  GmbH,
Taufkirchen,  Germany).  The  drill  was  inserted  vertically  at  the
tree's  DBH,  recording  depth  and  amplitude  for  each  0.1  mm.
Peaks  and  valleys  correspond  to  annual  growth  cycles.  Data
selection  excluded  bark-induced  irregularities,  focusing  on
distinct resistance peaks. The ARW and resistance value (Moun-
tain peak, MP) were calculated. Due to needle height, the first-
year ring is often unclear, starting ring counting from the outer-
most.  Each tree's  data covered 24 years for  RW and yearly MP.
ARW and AMP were recorded,  followed by data analysis  using
PDToolsPro  software.  The  detailed  operational  method  has
been previously described in our earlier research[42]. 

Wood properties phenotyping

ρ

(1) WD: Using a growth increment borer with a diameter of 5
mm, cores were extracted from the trees at breast height in the
north-south  direction,  ensuring  that  the  borehole  penetrated
through the pith of  the tree.  Basic density ( )  was determined
using the saturated moisture content method[43]:

ρ =
1

Mw

Md
−0.3464

(1)

ρ Mw

Md

In Eqn (1),  is the basic density of wood (g·cm−3),  is the
mass  of  the  wood  core  when  saturated  with  water,  is  the
mass of wood core when completely dry.

v

v

ρ v

(2)  Determination  of  stress  wave  velocity  and MOE:  The
Hitman  ST300  (Fibre-gen,  Christchurch,  New  Zealand)  was
utilized to measure the  of the samples. The specific method is
detailed  in  the  research  findings  of  Zhang  et  al.[44].  Subse-
quently,  the MOE of  the  samples  was  calculated  using  Eqn  (2)
based on the  and .

MOE = ρv2 (2)
(3)  Pilodyn  (Pd)  detection:  Using  Pilodyn  (6J,  PROCEQ,

Switzerland),  cores  were extracted from the lower  2  cm of  the
stem of individual trees in both the south and north directions.
Two Pd resistance values (Ps and Pn) were measured, and only
values  with  a  difference  of  no  more  than  2  mm  were  consid-
ered  valid.  Otherwise,  the  two  values  with  the  smallest  differ-
ence were selected. The average resistance values in the south
and north directions were denoted as Pd.

(4)  The  AMP  data  acquisition  method  is  as  described  in  the
section 'Growth traits phenotyping'. 

Resin traits phenotyping
(1)  OY: A specialized plastic tube with a diameter of 1.8 mm

and  a  volume  of  15  mL  is  fixed  in  the  borehole  on  the  sunny
side  of  the  trunk.  After  waiting  for  24  h,  the  resin  is  collected,
and  then  its  yield  is  measured  using  a  balance.  The  detailed
installation method is described in Li et al.[45].

(2)  Relative amount of  resin components:  Gas  chromatogra-
phy  experiments  were  carried  out  with  a  GC  6890  gas  chro-
matograph  (Agilent  5975B,  Santa  Clara,  CA,  USA)  equipped
with  a  DB-5MS  capillary  column  cross-linked  with  5%  Ph  Me
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silicone (60 m/0.25 mm/0.25 mm) and coupled with a Hewlett
Packard  GC  5975B  mass  spectrometer.  The  qualitative  and
quantitative  analysis  of  resin  composition  with  the  chromato-
graphic conditions was as follows: GC: 0.05 g of pine resin was
dissolved  in  0.5  mL  of  ethyl  alcohol  containing  50 μL  tetram-
ethylammonium  hydroxide.  The  initial  column  temperature
was 60 °C, held for 2 min, increased at 8 °C·min−1 to 80 °C, and
reached a maximum of 280 °C at a rate of 2 °C·min−1 for 5 min.
The helium gas flow was set at 1 mL·min−1. The temperature of
the  injector  was  260  °C,  and  the  volume  was  1 μL  with  a  1/50
split  ratio.  Mass  spectra  were  recorded  under  electron  impact
ionization at an electron energy of 70 eV in the range from m/z
30 to 600 along with solvent delay for 3 min.

Resin compositions were identified by matching experimen-
tal  fragmentation  patterns  in  mass  spectra  with  the  NIST08
database through the data processing system of Agilent Chem
Station and then compared with the relevant literature. Mono-
terpene  content  was  determined  by  isobutylbenzene  content,
and diterpene content was determined by heptadecanoic acid
content.  The  resin  component  contents  were  calculated  by
comparing  their  peak  areas.  We  then  selected  four  compo-
nents  believed  to  have  broad  industrial  utility  for  subsequent
analysis, including two monoterpenes (Alpha- and Beta-pinene)
and two diterpenes (Abietic and Levoprimaric acid). 

Statistical analysis method
The  linear  model  for  each  observation  of  the  resin  compo-

nent trait yijk in each tree was shown as follows:

yijk = µ+ fi+bj+fbij+eijk (3)

Where  the  observed  values  (yijk)  for  individual  plants  within
each  family  (i),  block  (j),  and  specific  plant  (k)  are  considered,
The μ represents  the  average  value  across  all  observations.
Family  effects  are  denoted  by fi.  Similarly, bj refers  to  block
effects.  The  interaction  effect  between  family  and  block  is
represented  by fbij.  Environmental  error  effects  (eijk)  encapsu-
late random variations and unforeseen factors affecting indivi-
dual plant observations.

The genetic variation analysis employed the Restricted Maxi-
mum  Likelihood  (REML)  method  to  fit  the  Generalized  Linear
Mixed Model (GLMM). Cuevas et al. provided a detailed descrip-
tion of this approach, wherein the model equations are derived
by stacking the vectors for all individual plants[46]:

y = Xm+Z1f+Z2b+Z3fb+ e (4)
Where  the  vector  y  represents  the  observed  values  of  the

overall phenotype. The vector m denotes the population mean
values,  while  b,  f,  and e  represent  the  vectors  of  block  effects,
family effects, family and block interaction effects, and random
error effects,  respectively.  The design matrices X,  Z1,  Z2 and Z3

are  corresponding  correlation  matrices  used  to  link  the
observed  values  with  their  respective  effects.  We  define  the
expected value vector (E) and the discrete matrix (Var) as:

E
[
y
]
= Xm (5)

Var [f] = Z1⊗F0 (6)

Var [b] = Z2⊗B0 (7)

Var [fb] = Z1Z2⊗F0B0 (8)

Var [e] = Z⊕R0 (9)

and

F0 =

 σ2
f1
σ f1 f2

σ f2 f1 σ2
f2

 (10)

B0 =

 σ2
b1

σb1b2

σb2b1 σ2
b2

 (11)

F0B0 =

 σ2
f1b2

σ f1b2

σ f2b1 σ2
f2b2

 (12)

R0 =

 σ2
e1

σe1e2

σe2e1 σ2
e2

 (13)

⊗ ⊕
σ2

fi
σ2

bi
σ2

fibi
σ2

ei

σbib j

σ fi f j σeie j

Where  the  and  are  vector  product  and  vector  addition
respectively; , ,  and  represent  the  variances  of
the block effect,  family effect,  family × block interaction effect,
and  environmental  error  effect  for  trait i,  respectively; ,

 and  are  the covariances  effects  of  block,  family  and
environmental errors for traits i and j. The variance component
of the model was used to calculate the family mean heritability
(H2) and individual narrow-sense heritability (h2):

H2
i =

σ2
fi
+σ2

bi

σ2
fi
+σ2

bi
+σ2

fibi
/nb+σ2

ei
/nbnk

(14)

h2
i =

4(σ2
fi
+σ2

bi
)

σ2
fi
+σ2

bi
+σ2

fibi
+σ2

ei

(15)

rpi j rgi jPhenotypic  correlation  and  genetic  correlation  of
traits i and j:

rpi j =
σ fi j +σbi j +σei j√(

σ2
fi
+σ2

bi
+σ2

fibi
+σ2

ei

) (
σ2

f j
+σ2

b j
+σ2

f jb j
+σ2

e j

) (16)

rgi j =
σ fi j+σbi j√(

σ2
fi
+σ2

bi

) (
σ2

f j
+σ2

b j

) (17)

σ fi j σbi j σei j

σ2
fi

σ2
f j

σ2
bi

σ2
b j

σ2
ei

σ2
e j

σ2
bi fi

σ2
b j f j

nb

nk

Among  them, , ,  represent  the  covariance  of
family  effect,  block  effect  and  environmental  errors  effect  for

traits i and j;  and  represent the family variance estimate

of  traits i and j;  and  represent  the  block  variance  esti-

mate of traits i and j;  and  represent the environmental

errors  variance  estimate  of  traits i and j.  and  repre-

sent  the  variances  of  family  ×  block  interaction  effect;  The 
and  are block numbers and tree numbers per family, respec-
tively.

Coefficient of variation (CV/%):

CV = 100x/σ (18)
Coefficient  of  phenotypic  variation  (Ip)  and  Coefficient  of

genetic Variation (Ig) :

Ip =

√
σ2

p

/
x (19)

Ig =

√
σ2

g

/
x (20)√

σ2
p√
σ2

g

x

Among  them,  is  the  square  root  of  the  phenotypic

variance  component;  is  the  square  root  of  the  genetic

variance component;  is the trait mean value.
∆GThe genetic gain ( ) is estimated by equation (17) :

∆G = i ·H ·σg/t (21)
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H
σg

Among them, i is the selection intensity;  is represented by
the  square  root  of  the  heritability;  represents  the  square
root of the additive genetic variance; t represents the breeding
period. In this study, we employed varying selection intensities,
specifically  1.40,  1.75,  and  2.06,  to  simulate  diverse  selective
pressures.

Breeding value (BV) is estimated by the best linear unbiased
prediction (BLUP) model.

PCA  was  employed  in  the  process  of  conducting  multi-trait
combined selection of elite families. The principal components
(PCs)  for  growth  traits,  wood  properties,  and  resin  traits  were
derived  from  the  breeding  values  associated  with  each  trait.
Subsequently,  we  computed  the  loadings  of  each  trait  across
various  PCs,  along  with  eigenvalues,  eigenvectors,  contribu-
tion rates,  and cumulative contribution rates  for  each PC.  Elite
families  were  selected  based  on  the  comprehensive  scores
obtained from the PC factors (Ftotal) of each family. 

Statistical software
All data analyses were based on R software[47]. The analysis of

variance was calculated by the function aov, the pedigree rela-
tionship matrix was calculated by the R language 'pedigreemm'
software package[48], and the genetic parameters and breeding
values were estimated using the R language 'sommer' software
package[49].  PCA  analysis  was  performed  by  the  function
prcomp  and  the  software  package  'psych'[50].  All  result  visua-
lizations  were  implemented  using  the  R  language  'ggplot2'
software package[51]. 

Results
 

Descriptive statistics and variance analysis of
various traits

Table  1 presents  statistical  results  for  growth,  wood proper-
ties, and resin traits in the progeny test stand of Slash pine half-
sib  families.  Growth traits,  including DBH,  Ht,  Huc,  Crown,  and
ARW,  had  average  values  of  19.766  cm,  16.773  m,  9.439  m,
3.469  m2,  and  4.254  mm,  respectively,  with  CV  ranging  from
15.724%  to  26.931%.  For  wood  properties,  Pd,  MOE,  and  AMP
had average values of 19.836 mm, 3.006 GPa, and 0.415%, with
CVs  ranging  from  10.335%  to  29.488%.  Regarding  resin  traits,
average values for OY, Alpha-pinene, Beta-pinene, Abietic acid,

and  Levopimaric  acid  were  1.838  g,  14.790 μg·g−1,  10.661
μg·g−1,  8.183 μg·g−1,  and  21.631 μg·g−1,  respectively.  Beta-
pinene exhibited the highest CV at 42.126%, while levopimaric
acid  had  the  lowest  at  14.868%.  Significant  differences  (p <
0.05)  were  observed  in  all  traits  among  families.  Moreover,
except for DBH and ARW, all other traits were significantly influ-
enced by the block effect. Additionally, Ht, Crown, AMP, Alpha-
pinene,  and  Beta-pinene  exhibited  effects  from  family,  block,
and their interaction.

The variation in growth traits primarily stems from the inter-
action  between  family  and  block  effects  (Fig.  1).  Notably,  the
largest effect influenced by environmental factors is the Crown
variance  at  66.28%,  indicating  a  predominant  influence  of  the
environment on Slash pine growth traits.  Conversely,  variation
in wood properties is primarily attributed to family effects, with
a proportion of  78.08% for AMP, suggesting a lesser impact of
environmental  factors.  For  resin  traits,  environmental  effects
emerge  as  the  primary  source  of  variation,  while  the  OY  trait
shows  nearly  equal  contributions  from  genetic  and  environ-
mental factors at 47.40% and 48.33%, respectively. 

Estimation of genetic parameters of various traits
Based  on  the  variance  components,  genetic  parameters  for

various traits were estimated (Table 2). Among the three types
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Fig.  1    The  proportion  of  variance  components  of  different
effects for each trait.

 

Table 1.    Results of descriptive statistics and variance analysis.

Traits Mean SD CV/%
F-statistic

Family Block Block × family

DBH (cm) 19.766 4.026 20.370 1.518* 0.616 0.894
Ht (m) 16.773 2.637 15.724 2.901** 7.738** 1.902*
Huc (m) 9.439 2.334 24.730 1.393* 5.102** 0.875

Crown (m2) 3.469 0.934 26.931 1.529* 3.362* 1.463*
ARW (mm) 4.254 0.818 19.228 1.477* 0.427 0.622
Pd (mm) 19.836 2.050 10.335 2.637** 4.351** 1.007
MOE (Gpa) 3.006 0.368 12.244 1.750* 3.842* 1.239
AMP (%) 0.415 0.122 29.488 2.731** 2.902** 1.446*
OY (g) 1.838 0.710 38.622 1.618* 1.213* 0.972

Alpha_pinene (μg·g−1) 14.790 4.301 29.078 1.184* 0.649* 0.771*
Beta_pinene (μg·g−1) 10.661 4.491 42.126 1.274* 1.241* 0.929*
Abietic_acid (μg·g−1) 8.183 2.994 36.596 0.887* 1.221* 1.094
Levopimaric_acid (μg·g−1) 21.631 3.216 14.868 1.341* 2.703* 1.212

** denotes the significance level of p < 0.01, while * indicates p < 0.05.
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of  traits,  Crown,  AMP,  and  Beta-pinene  exhibited  relatively
greater  phenotypic  and  genetic  variability,  while  Ht,  Pd,  and
Levopimaric  acid  showed  lower  variability.  Ht,  Pd,  and  Beta-
pinene  demonstrated  relatively  high  family  heritabilities  of
0.794,  0.855,  and  0.695,  respectively,  indicating  significant
genetic  control.  Notably,  all  three  wood  properties  exhibited
relatively  high genetic  control.  The individual  heritability  of  all
traits  aligned  with  the  family  heritability.  Particularly,  Ht,  Pd,
and  Beta-pinene  achieved  the  highest  genetic  gain,  reaching
11.4%,  11.1%,  and  14.8%,  respectively,  at  a  5%  selection  rate.
These  findings  underscore  the  exceptional  breeding  potential
of Ht, Pd, and Beta-pinene among all traits in this study. 

Correlation analysis of various traits
Further  phenotypic  and  genetic  correlation  analyses  were

conducted  among  the  13  traits  (Fig.  2).  Positive  correlations
were observed within growth traits and wood properties, while
some  negative  correlations  were  noted  within  resin  traits.
Notably,  Beta-pinene  showed  the  highest  phenotypic  and
genetic correlations with OY (rp = 0.62; rg = 0.67),  while Alpha-
pinene exhibited negative phenotypic (rp = −0.03) and genetic
(rg = −0.02)  correlations  with  Beta-pinene  and  Abietic  acid.
Among  wood  properties  and  resin  traits,  the  lowest  pheno-
typic  correlation  was  between  MOE  and  abietic  acid  (rp =
−0.28). Among growth and resin traits, the highest phenotypic
correlation was between DBH and Beta-pinene (rp = 0.79), with
a  higher  genetic  correlation  (rg =  0.45).  In  addition,  negative
phenotypic  (rp = −0.32)  and  genetic  (rg = −0.09)  correlations
were observed with DBH and MOE. 

Estimation of breeding value of Slash pine
The BVs for growth traits are outlined in Supplemental Table

S2.  Family  8-126  showed  the  highest  BV  (0.719)  for  DBH,
whereas family  11-26 had the lowest  (BV = −0.821).  Elite  fami-
lies for DBH, selected at a 20% rate, included 8-126, 8-131, 4-49,
7-258,  0-53,  2-296,  and  0-1339.  Similarly,  elite  families  for  Ht
comprised 0-1027, 0-53, 8-126, 0-1339, 7-258, 10-105, and 11-6.
For  Huc,  selected elite  families  were  3-1,  2-90,  0-636,  8-126,  7-
258,  10-73,  and  5-12.  For  ARW,  the  top  20%  selected  families
were 2-296, 8-13, 11-6, 8-49, 3-1, 0-636, and 10-73. Supplemen-
tal  Table  S3 presents  the  BVs  for  wood  properties.  For  MOE,
selected elite families were 2-325, 0-464, 0-53, 0-373, 5-12, 4-9,
and  11-26.  Selected  elite  families  for  AMP  included  2-325,

10-105,  8-126,  0-465,  0-1339,  4-49,  and  0-1077. Supplemental
Table  S4 provides  BVs  for  resin  traits.  The  top  20%  selected
families for OY were 0-53, 7-77, 3-1, 0-1339, 8-131, 2-325, and 3-
1.  Alpha-pinene  had  the  highest  BV  (1.314)  in  family  7-77  and
the  lowest  BV  (−1.226)  in  family  2-101.  Selected  families  for
Alpha-pinene were 7-77, 8-131, 7-258, 0-373, 0-636, 0-510, and
0-1027.  Families  selected  for  Beta-pinene  matched  those  for
Alpha-pinene. 

Multi-trait combined selection elite families of
Slash pine

The results of PCA for growth traits are summarized in Table
3.  Following  the  principle  of  achieving  a  cumulative  contribu-
tion  rate  of  over  85%,  the  study  selected  the  top  three  PCs,
which accounted for 91.5% and represented the main features
of five growth traits.  The eigenvalues for these three PCs were
1.689, 1.088, and 0.944, with contributions of 66.4%, 17.3%, and
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Fig. 2    The analysis of phenotypic and genetic correlation within
and  among  various  traits.  The  upper  triangular  matrix  displays
phenotypic  correlation,  while  the  lower  triangular  matrix  repre-
sents the genetic correlation results. AP, BP, AA, and LA represent
Alpha-pinene,  Beta-pinene,  Abietic  acid,  and  Levopimaric  acid,
respectively.

 

Table 2.    Genetic parameter estimation results for various traits.

Traits Ip Ig h2
i H2

i

∆G
r = 0.05
i = 2.06

r = 0.10
i = 1.75

r = 0.20
i = 1.40

DBH 0.205 0.041 0.172 (0.017) 0.593 (0.296) 0.107 0.091 0.073
Ht 0.155 0.092 0.355 (0.021) 0.794 (0.151) 0.114 0.097 0.077
Huc 0.240 0.091 0.145 (0.017) 0.543 (0.033) 0.052 0.045 0.036
Crown 0.268 0.115 0.183 (0.017) 0.610 (0.284) 0.026 0.022 0.017
ARW 0.194 0.113 0.338 (0.024) 0.781 (0.181) 0.035 0.030 0.024
Pd 0.099 0.072 0.524 (0.024) 0.885 (0.100) 0.111 0.094 0.075
MOE 0.121 0.063 0.273 (0.019) 0.870 (0.219) 0.015 0.012 0.010
AMP 0.297 0.170 0.281 (0.020) 0.874 (0.214) 0.005 0.005 0.004
OY 0.379 0.150 0.157 (0.023) 0.566 (0.042) 0.017 0.015 0.012
Alpha_pinene 0.290 0.143 0.244 (0.020) 0.694 (0.234) 0.146 0.124 0.099
Beta_pinene 0.421 0.202 0.245 (0.020) 0.695 (0.251) 0.148 0.126 0.101
Abietic_acid 0.366 0.061 0.173 (0.013) 0.285 (0.049) 0.022 0.019 0.015
Levopimaric_acid 0.147 0.061 0.172 (0.010) 0.592 (0.031) 0.084 0.071 0.057

r represents the selection rate, and i represents the selection intensity.
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7.7%,  respectively.  The  weighted  sum  of  individual  PC  scores,
calculated based on the proportion of their eigenvalues to the
total  selected  eigenvalues  was  utilized  to  determine  the
comprehensive  scores  for  growth  traits.  The  comprehensive
evaluation  model  was  defined  as: FTotal =  0.454F1 +  0.292F2 +
0.254F3.  Utilizing  this  model,  comprehensive  scores  for  each
family  were  computed  (Fig.  3),  ranging  from −4.032  to  3.431.
The  top  seven  families,  identified  as  elite  for  growth  traits
based on a 20% selection rate,  were 3-1,  8-126,  2-90,  0-636,  0-
1027, 10-73, and 0-53.

For  wood  properties,  PCA  results  are  presented  in Table  4.
The  cumulative  contribution  rate  of  the  top  three  principal
components  reached  100%,  representing  all  features  of  the
three  wood  properties.  Eigenvalues  for  these  PCs  were  1.182,

0.984, and 0.833, contributing 39.4%, 32.8%, and 27.8%, respec-
tively.  The comprehensive  evaluation model  for  wood proper-
ties was defined as: FTotal = 0.394F1 + 0.328F2 + 0.278F3. Compre-
hensive  scores  ranged  from −4.167  to  2.730  (Fig.  4),  with  elite
families  identified as  2-325,  0-1077,  0-373,  0-465,  10-105,  5-12,
and 0-510.

The  PCA  results  for  resin  traits  are  presented  in Table  5,
where  the  cumulative  contribution  rate  of  the  top  three  PCs
reached  91.5%.  Eigenvalues  for  these  PCs  were  2.290,  1.291,
and 0.993,  contributing 45.8%, 25.8%, and 19.9%, respectively.
The  comprehensive  evaluation  model  for  resin  traits  was
defined as: FTotal = 0.501F1 + 0.282F2 + 0.217F3.  Comprehensive
score for each family ranged from −3.243 to 3.816 (Fig. 5), with
elite families identified as 0-1077, 8-131, 7-258, 7-77, 0-1027, 0-
510, and 3-1, based on a 20% selection rate. 

Discussion
 

Enormous genetic improvement potential in
breeding populations of Slash pine

Genetic  variations  are  pivotal,  directly  influencing  genetic
gains  and  guiding  breeding  strategies  in  forests[12].  The  study
revealed significant differences among different family lines in
traits.  Growth traits  were notably  more influenced by environ-
mental factors, whereas timber traits were primarily shaped by
familial  effects  and  resin  traits  were  impacted  by  both  family
and  environment  in  comparable  proportions.  These  findings

 

Table 3.    PCA of growth traits of P. elliottii half-sib families.

Summary Traits
PCs

PC1 PC2 PC3

Feature vector DBH −0.457 0.654 0.000
Ht 0.740 0.322 −0.300

Huc 0.425 0.695 0.177
Crown −0.769 0.246 0.249
ARW 0.400 −0.116 0.872

Eigenvalue 1.689 1.088 0.944
Contribution rate (%) 0.664 0.173 0.077
Cummulative contribution rate (%) 0.664 0.837 0.915
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Fig.  3    PC  factor  scores  of  growth  traits  in P.  elliottii 33  half-sib  families.  The  color  of  the  squares  transitions  from  blue  to  red,  indicating
increasing PC scores.
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align  with  previous  research  on  Slash  pine[18] and  Japanese
black  pine[52,53].  Crown,  AMP,  and  Beta-pinene  display  higher
variability  in  this  study  when  contrasted  to  Korean  pine,
whereas DBH and Ht show comparatively lower variations[54].

Additionally,  the  heritability  of  growth  traits  in  Slash  pine
surpassed  previous  findings[18],  while  that  of  wood  properties
was  slightly  higher  than  those  related  to  radiata  pine[55],
suggesting  a  stronger  genetic  influence  on  wood  properties
compared  to  growth  traits.  Family  heritability  estimates  for
monoterpenes were akin to the study of Lei et al.[56] but slightly
lower than the result of Li et al.[57], likely influenced by location-
specific  factors.  Moreover,  Ht,  Pd,  and  Beta-pinene  exhibit
higher  genetic  gains  at  varying  selection  rates  and  intensities,
slightly  exceeding  those  reported  in  previous  studies  for
growth  and  wood  properties[18,58],  but  demonstrating  lower
gains for resin traits[12]. 

Correlations analysis informs breeding strategy
for Slash pine

In  practical  breeding,  considering  multiple  traits  simulta-
neously  is  essential  for  selecting  improved  genes,  yet  past
studies  indicate  a  trade-off  between  growth  and  wood
quality[59],  underscoring  the  need  for  a  comprehensive  under-
standing  of  trait  interrelationships  to  devise  rational  breeding
strategies. This study reveals either non-significant or negative
correlations  between  growth  and  wood  properties,  consistent
with  findings  in  other  tree  species  like  Norway  spruce[60] and
poplar[61],  posing  a  significant  challenge  to  genetic  improve-
ment  in  forestry[62].  Additionally,  selecting  trees  at  different
growth stages may yield varying results[63]. Correlative research
on  Japanese  black  pine  identified  significant  genetic  correla-
tions between growth, morphological, and OY, such as a corre-
lation  of  0.73  between  DBH  and  OY[53].  Similarly,  this  study
shows  comparable  results,  with  a  correlation  of  0.79  between
DBH and Beta-pinene content,  and 0.77 between Ht  and resin
yield,  possibly  due  to  vigorous  growth  promoting  resin  duct
formation[64,65]. Furthermore, weak positive or negative correla-
tion  between  wood  properties  and  resin  traits,  uncommon  in
other  tree  species,  were  observed.  Overall,  breeders  must
meticulously  consider  trait  correlations  when  selecting  for
improved  genes,  and  the  observed  correlations  in  Slash  pine
offer valuable insights for effective breeding strategies. 

 

Table 4.    PCA of wood properties of P. elliottii half-sib families.

Summary Traits
PCs

PC1 PC2 PC3

Feature vector Pd 0.750 0.000 0.659
MOE 0.673 0.464 −0.576
AMP −0.409 0.875 0.260

Eigenvalue 1.182 0.984 0.833
Contribution rate (%) 0.394 0.328 0.278
Cummulative contribution rate (%) 0.394 0.722 1.000
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Fig. 4    PC factor scores of wood quality traits in P. elliottii 33 half-sib families. The color of the squares transitions from blue to red, indicating
increasing PC scores.
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Substantial achievable genetic gains in elite
families of Slash pine

For  a  considerable  duration,  combined  selection  of  multiple
traits  has  been  central  in  both  animal  and  plant  breeding[66,67],
with  models  addressing the impact  of  LD between traits.  PCA,  a
multivariate  selection  technique,  facilitates  the  exploration  of
relationships  between  explanatory  variables  and  correlated
traits[68]. In this study, a combined approach using single-trait and
PCA-based  selection  identified  elite  families  for  growth,  wood
properties,  and resin  traits.  Achievable  average genetic  gains  for
the three trait categories were 7.4%, 7.2%, and 8.8%, respectively,
consistent  with  a  prior  study  on  Slash  pine[18].  Genetic  gains  for
growth  traits  exceeded  the  10%  for  Scots  pine,  while  those  for
wood  properties  were  comparable  to  its  WD  related  traits[69].

However,  genetic  gains  for  resin  traits  were  lower  than  those
reported  for  Slash  pine[45].  Quantitative  traits  are  subject  to
varying  degrees  of  gene-environment  interactions,  with  diverse
outcomes influenced by factors such as experimental design, the
number of tested families, and different growth periods. 

Conclusions

This  study  conducted  a  comprehensive  assessment  of
genetic  variation  among  33  half-sib  families  of  Slash  pine,
aiming  to  identify  elite  families  suitable  for  industrial  use
through a multi-trait  combined selection approach. Significant
differences  were  noted  among  families  across  13  traits,  with
growth traits primarily influenced by block × family interaction,
wood  properties  mainly  affected  by  family  effects,  and  resin
traits  showing  variation  attributed  to  both  family  effects  and
block  ×  family  interaction.  Strong  genetic  control  was  evident
for  several  traits,  notably  Beta-pinene,  which  exhibited  the
highest  variations,  and  genetic  gains,  indicating  significant
breeding  potential.  Negative  correlations  were  observed
between  growth  and  wood  properties,  while  positive  correla-
tions  were  found  between  growth  and  resin  traits.  The  multi-
trait combined selection successfully identified elite families for
growth,  wood  properties,  and  resin  traits.  This  study  provides
important  references  for  the  long-term  breeding  strategies  of
Slash  pine,  offering  rich  genetic  resources  for  genomic
breeding and molecular breeding. 

 

Table 5.    PCA of resin traits of P. elliottii half-sib families.

Summary Traits
PCs

PC1 PC2 PC3

Feature vector OY −0.334 0.717 0.494
Alpha_pinene 0.934 0.330 0.000
Beta_pinene 0.933 0.331 0.000
Abietic_acid −0.660 0.572 0.000
Levopimaric_acid 0.000 −0.481 0.856

Eigenvalue 2.290 1.291 0.993
Contribution rate (%) 0.458 0.258 0.199
Cummulative contribution (%) 0.458 0.716 0.915
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Fig. 5    PC factor scores of resin traits in P. elliottii 33 half-sib families. The color of the squares transitions from blue to red, indicating increasing
PC scores.
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