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Abstract
Chinese fir is the most important native softwood tree in China and has significant economic and ecological value. Accurate assessment of the

growth  status  is  critical  for  both  seedling  cultivation  and  germplasm  evaluation  of  this  commercially  significant  tree.  Needle  leaf  chlorophyll

content  (LCC)  and  needle  leaf  water  content  (LWC),  which  are  determinants  of  plant  health  and  photosynthetic  efficiency,  are  important

indicators  of  the  growth  status  in  plants.  In  this  study,  for  the  first  time,  the  LCC  and  LWC  of  Chinese  fir  seedlings  were  estimated  based  on

hyperspectral  reflectance spectra and machine learning algorithms.  A line-scan hyperspectral  imaging system with a spectral  range of  870 to

1,720 nm was used to capture hyperspectral images of seedlings with varying LCC and LWC. The spectral data of the canopy area of the seedlings

were extracted and preprocessed using the Savitzky-Golay smoothing (SG) algorithm. Subsequently, the Successive Projection Algorithm (SPA)

and Competitive Adaptive Reweighted Sampling (CARS) methods were employed to extract the most informative wavelengths. Moreover, SVM,

PLSR and ANNs were utilized to construct models that predict LCC and LWC based on effective wavelengths. The results indicated that the CARS-

ANNs were the best for predicting LCC, with R²C = 0.932, RSMEC = 0.224, and R²P = 0.969, RSMEP = 0.157. Similarly, the SPA-ANNs model exhibited

the  best  prediction  performance  for  LWC,  with  R²C =  0.952,  RSMEC =  0.049,  and  R²P =  0.948,  RSMEP =  0.051.  In  conclusion,  the  present  study

highlights the significant potential of combining hyperspectral imaging (HSI) with machine learning algorithms as a rapid, non-destructive, and

highly accurate method for estimating LCC and LWC in Chinese fir.
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Introduction

Chinese  fir  (Cunninghamia  lanceolata),  the  most  important
native  softwood  tree  mainly  distributed  in  southern  China,
occupies an important place in the timber industry. It provides
essential  raw  materials  for  construction,  furniture  manufactu-
ring  and  other  related  industries.  The  plantation  area  of
Chinese  fir  covers  approximately  11  million  hectares,  which
accounts for around 12.9% of the total plantation forest area in
China[1,2].  In order to meet the demand for afforestation,  more
than  500  million  seedlings  are  cultivated  every  year.  It  is
increasingly  important  to  establish  a  powerful  estimation
method  to  effectively  evaluate  growth  status  during  seedling
cultivation and germplasm phenotyping.

Chlorophyll,  the primary pigment in plant photosynthesis, is
closely  associated  with  the  nutritional  status  of  plants,  specifi-
cally  in  terms  of  its  content  and  spatial  distribution.  It  plays  a
crucial  role  in  the  physiological  and  developmental  health  of
plants[3−6].  Similarly,  leaf  water  content  serves  as  a  significant
indicator  of  plant  vigor  and  photosynthetic  efficiency,  widely
used to assess the physiological status of plants[7,8]. The correla-
tion  between  chlorophyll  and  water  content  in  the  needles  of

Chinese  fir  seedlings  is  of  paramount  importance  for  the
growth  of  this  species.  Thus,  needles  leaf  Chlorophyll  Content
(LCC)  and  needles  leaf  Water  Content  (LWC)  can  serve  as  vital
indicators for evaluating the growth status of Chinese fir seed-
lings.  However,  conventional  methods  for  measuring  LCC  and
LWC  in  Chinese  fir  seedlings  are  destructive,  labor-intensive,
and  rely  on  chemical  reagents  in  the  laboratory.  To  develop  a
non-destructive  and  efficient  method  for  measuring  LCC  and
LWC  would  be  highly  valuable  for  monitoring  the  growth  of
seedlings  and  evaluating  the  germplasm  resources  of  Chinese
fir.

With  the  development  of  spectroscopy  technology,  hyper-
spectral  imaging  (HSI)  has  emerged  as  a  promising  tool  for
measuring traits  and evaluating phenotypes  in  the  laboratory,
glasshouse,  or  field[9,10].  For  instance,  researchers  have  used
hyperspectral  reflectance  data  to  predict  leaf  metabolite
concentrations and assess drought stress in several agronomic
species  grown  in  glasshouses[11].  Asaari  et  al.[12] developed  a
supervised data-driven method based on the machine learning
regression  (MLR)  algorithm  using  hyperspectral  images,  and
the  best  prediction  model  for  four  physiological  traits  was
successfully  applied  in  a  small-scale  phenotyping  experiment
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to study drought stress responses in maize plants. Additionally,
many  studies  have  explored  the  potential  of  HSI  in  various
aspects  of  plant  phenotyping including estimating physiologi-
cal  and  biochemical  traits[13−15],  detecting  plant  stress  and
diseases[16−18] and evaluating plant quality[19−21].

In  HSI  technology,  an  appropriate  algorithm  is  critical  for
establishing  the  correlation  between  reflectance  spectra  and
plant  traits.  Models  based  on  Machine  Learning  Regression
(MLR)  are  frequently  used  to  predict  plant  traits  from  reflec-
tance  spectra  due  to  their  flexibility  and  capacity  to  create
responsive input-output relationships[22,23]. For example, Xiong
et  al.,[24] employed  Partial  Least  Squares  Discriminant  Analysis
(PLS-DA), a variable-based regression technique, to construct a
predictive model for non-destructive grading and classification
of  litchi  fruits  using  hyperspectral  data  ranging  from  400  to
1,000  nm.  Similarly,  Pyo  et  al.[25] made  use  of  Artificial  Neural
Network  (ANN)  and  Support  Vector  Machine  (SVM)  to  effec-
tively classify and quantify cyanobacteria concentrations.

However, to our knowledge, there are no previous reports on
the  application  of  HSI  on  the  determination  of  physiological
indicators in Chinese fir. In this study, the objective was to esti-
mate the LCC and LWC in Chinese fir  seedlings based on non-
destructive HSI and machine learning. To achieve this goal, two
estimation  models  were  developed  by  exploring  and  valida-
ting  three  MLR  algorithms:  Partial  least  squares  regression
(PLSR),  Support  Vector  Machine  (SVM)  and  Artificial  Neural
Networks  (ANNs).  More  specific  goals  were  (i)  to  estimate  two
targeted physiological traits: LCC and LWC; (ii) to compare and
evaluate  the  superior  variable  selection  method  between  the
Successive  Projection  Algorithm  (SPA)  and  Competitive  Adap-
tive  Reweighted  Sampling  (CARS)  to  determine  the  optimal
wavelengths that provide the highest correlation with the two
physiological  indicators;  (iii)  to  develop  robust  and  accurate
estimation models (PLSR,  SVM, ANNs) to quantitatively predict
the  LCC  and  LWC  of  Chinese  fir  seedlings  using  the  optimal
wavelengths. 

Materials and methods
 

Plant sample preparation
The  seeds  were  obtained  from  a  bi-clonal  seed  orchard  of

Chinese  fir  clone  Long-15  and  Min-33  in  Kaihua  forest  farm  of
Zhejiang  Province,  China,  which  were  then  used  to  cultivate
seedlings  in  a  greenhouse  of  Zhejiang  A&F  University.  To
prepare seedlings with different LWC and LCC, artificial drought
stress was used to treat seedlings of about 20 cm in height. One
hundred  and  eighty  seedlings  were  used,  and  the  drought
stress was simulated by irrigating with 20% PEG 6000 solution.
Each  seedling  was  irrigated  with  30  mL  of  the  20%  PEG  6000
solution every 6 d,  and the treatment was conducted for 56 d.

Hyperspectral data and samples for determining LWC and LCC
were  collected  from  36  seedlings  every  two  weeks  in  the  lab.
Accordingly,  the  seedlings  were  categorized  into  five  groups:
D0  (day  0),  D14  (day  14),  D28  (day  28),  D42  (day  42),  and  D56
(day  56)  (Fig.  1).  To  enhance  the  overall  robustness  of  the
model,  the  collected  data  were  divided  into  two  sets:  one
comprising  126  seedlings  for  training  the  regression  models,
and the other including 54 seedlings for testing the prediction
of models. 

Hyperspectral image acquisition
As  shown  in Fig.  2,  the  system  for  hyperspectral  imaging

included  a  NIR  hyperspectral  imager  (GaiaField-N17E,  Dualix
Spectral Imaging, Sichuan Shuangli Hepu Technology Co., Ltd.),
an indoor test chamber (HSIA-BD), a set of four halogen lamps
(50 W), a lifting table, a computer, and the supporting software
(Optiplex  7080MT/SpecView).  The  NIR  hyperspectral  imager
had a spectral  range spanning from 870 to 1,720 nm, a spatial
resolution  of  640  pixels,  512  bands,  and  a  spectral  resolution
of  5  nm.  The  dimensions  of  the  lifting  table  were  300  mm  ×
300 mm, allowing for a lifting range between 90 and 370 mm.
To  ensure  high-quality  hyperspectral  images  of  the  samples,
the conveyor belt was set to move at a speed of 0.6 cm/s with a
distance of 25 cm. The sample-to-lens distance was maintained
at 30 cm, the angle between the light source and the horizon-
tal  plane  was  set  to  60  degrees,  and  the  exposure  time  was
7 ms.

To  avoid  the  effect  caused  by  uneven  light  source  intensity
distribution  and  dark  current  during  the  image  collecting
process,  the  white  reference  image  (W)  was  obtained  from
white  reference  panels  and  the  dark  reference  image  (D)  was
obtained by completely closing the lens of the camera with its
opaque cap. The image calibration was performed according to
the formula (1):

R =
I−D

W−D
(1)

Where, R represents the corrected image, I represents the original
image, W represents the white reference image and D represents
the black reference image. 

Destructive measurement of LCC and LWC
After  collecting  the  spectral  data,  needle  leaves  were

promptly collected to measure the LCC and LWC. To determine
the  LCC,  0.3  g  of  canopy  needle  leaves  were  chopped  into
pieces  and  soaked  in  95%  ethanol  solution  in  the  dark  for
24−36 h to extract chlorophyll. The absorbance of the extracted
components  was  then  measured  using  a  microplate  reader
(SpectraMax  190)  at  wavelengths  of  665,  649,  and  470  nm[26].
The LCC was calculated using the following formula:

Ca (mg/L) = 13.95×D665−6.88×D649 (2)

 

D0 D14 D28 D42 D56

Fig. 1    Chinese fir seedlings from different drought treatments.
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Cb (mg/L) = 24.96×D649−7.32×D665 (3)

CT (mg/L) = Ca+Cb (4)

LCC (mg/g) =
CT×VT×BT

W
(5)

Where,  LCC  (mg/g)  represents  the  content  of  chlorophyll,  CT
(mg/L)  represents  the  concentrations  of  chlorophyll  a  and
chlorophyll  b,  VT (mL) represents the volume of extract solution,
BT  represents  the  dilution  ratio,  and  W  (g)  represents  the  fresh
weight of needle leaves.

For LWC determination, the fresh weight of the needle leaves
was  initially  measured.  Subsequently,  the  needle  leaves  were
subjected  to  incubation  in  an  oven  at  105  °C  for  30  min,  and
then further dried at 80 °C for 48 h until a constant weight was
achieved[27].  The  LWC  was  calculated  using  the  following
formula:

LWC (%) =
M1−M2

M1
×100% (6)

Where,  M1 represents  fresh  needle  leaf  weight,  M2 represents
drought needle leaf weight. 

Raw spectral data extraction
Hyperspectral  imaging  data  were  analyzed  by  the  ENVI  4.5

software.  The  canopy  area  of  the  seedling  was  selected  as
region of interest (ROI) to extract NIR hyperspectral data. A flow
chart  (Fig.  3)  presents  the  procedure  for  extracting  the  NIR
hyperspectral  data.  Initially,  a  mask  was  created  using  a  mini-
mum threshold value of 0.45. Subsequently, the original image
was  masked to  yield  the  target  image.  Lastly,  the  raw spectral
data  were  obtained  by  calculating  the  mean  spectrum  of  all
pixels within the ROI. 

Hyperspectral data preprocessing
The data acquired from the NIR spectrometer contains back-

ground  information  and  noise,  in  addition  to  sample  informa-
tion. To ensure reliable, accurate, and stable calibration models,
it is necessary to preprocess the spectral data before modeling.
In  the present  study,  three preprocessing methods were  com-
pared and utilized: Savitzky-Golay (SG) smoothing[28],  standard
normal  variate  (SNV)[29],  and  multiplicative  scatter  correction
(MSC)[30].  The aim was to select the most optimal approach for
preprocessing the spectral data. 

Characteristic wavelength selection 

Successive Projection Algorithm (SPA)
SPA  is  a  variable-selection  method  for  multivariate  calibra-

tion,  which  utilizes  projection  operations  to  select  a  subset  of
variables  with  minimum  multi-collinearity[31].  In  the  SPA
method, multiple linear regression models are created by con-
sidering different subsets of the wavelength vector. The wave-
lengths that result in the lowest Root Mean Square Error (RMSE)
are considered the most significant wavelengths[32]. 

Competitive Adaptive Reweighted Sampling (CARS)
CARS, an effective strategy for selecting an optimal combina-

tion  of  key  wavelengths  present  in  the  full  spectrum,  is  deve-
loped  based  on  the  principle  of  'survival  of  the  fittest'  from
Darwin's  Theory  of  Evolution[33].  Briefly,  CARS  achieves  wave-
length selection by establishing PLS models on N (N = 50 in this
study)  feature  subsets  generated  through  the  Monte-Carlo
(MC)  sampling  method.  Subsequently,  the  combination  of
variables with the lowest RMSE during model cross-validation is
chosen as  the  optimal  selection[34,35].  CARS follows a  four-step
process in each sampling run: (1) Model sampling using Monte
Carlo  method;  (2)  Enforced  wavelength  selection  using  an
exponentially decreasing function (EDF);  (3)  Wavelength selec-
tion  through  adaptive  reweighted  sampling  (ARS);  (4)  Evalua-
tion of the subset through ten-fold cross-validation. 

Machine learning regression 

Partial Least Squares Regression (PLSR)
PLSR  is  a  widely  used  methodology  in  the  fields  of  remote

sensing,  chemometrics,  and  spectral  data  processing.  It  is
particularly  useful  for  handling  large  datasets  that  have  com-
plex relationships between variables. PLSR is distinguished as a
comprehensive  full-spectrum  approach,  leveraging  informa-
tion  spanning  the  entirety  of  wavelengths  within  the  original
spectrum to construct a refined calibration algorithm[36]. 
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Fig. 2    Hyperspectral imaging system.
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Fig. 3    Flow chart of hyperspectral data extraction from NIR hyperspectral images.
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Support Vector Machine (SVM)
SVM  is  a  widely  used  and  powerful  machine  learning  algo-

rithm that can be applied to both classification and regression
tasks[37].  Its  main  principle  is  to  find  the  optimal  hyperplane
that  can  separate  data  points  of  different  classes  in  a  high-
dimensional  space[38].  This  hyperplane  is  determined  through
the  selection  of  support  vectors,  which  are  the  data  points
closest to the decision boundary. The primary goal of SVM is to
maximize the margin,  which is  the distance between the deci-
sion  boundary  and  the  nearest  data  points  from  both  classes.
By  employing  techniques  like  the  kernel  trick,  SVM  can  effec-
tively  handle  nonlinear  data  by  mapping  them  to  a  higher-
dimensional  space  to  achieve  linear  separability.  This  makes
SVM  a  robust  and  adaptable  model  that  can  handle  complex
datasets. 

Artificial Neural Network (ANN)
Figure  4 demonstrates  the  structure  of  the  ANN  model,

comprising  three  essential  layers:  input,  hidden,  and  output
layers. The input layer plays a crucial role in seamlessly integra-
ting  with  external  systems,  assimilating  external  data  for  a
harmonious  connection.  On  the  other  hand,  the  output  layer
disperses  the  predictive  results  of  the  model  into  the  external
environment,  with  its  neuron  count  being  intricately  linked  to
the  specific  task  under  consideration.  In  contrast,  the  often
disregarded hidden layer  acts  as  a  mediator,  bridging the gap
between the input and output layers. Neurons within this layer
incorporate  activation  functions,  to  introduce  nonlinear  dyna-
mics during the transmission of information. This intermediary
layer  assumes  pivotal  responsibility  within  the  overall  model,
enabling  sophisticated  abstraction  and  subtle  feature  extrac-
tion  through  progressive  refinement  and  transformation  of
input data. The fundamental principle of hierarchical transmis-
sion  and  processing  empowers  neural  networks  to  meticu-
lously capture inherent data correlations, resulting in improved
accuracy in predictive and analytical results[39]. 

Model evaluation
By employing r-squared of the calibration set (R2

C), r-squared
of the prediction set (R2

P), root mean square error of the calibra-
tion set  (RMSEC)  and root  mean square  error  of  the  prediction
set (RMSEP), the evaluation of the model's predictive capability
was  conducted.  Through  a  thorough  examination  of  both  the
modeling  and  validation  accuracies,  the  most  optimal  predic-
tion model can be determined. The calculation formulas for R2

and RMSE can be defined as follows:

R2 = 1−
∑n

i (yi− ŷi)2∑n
i (yi− yi)2 (7)

RMSE =

√∑n
i=1 (yi− ŷi)2

n
(8)

yi ŷi
yi

Where,  and  are  the  measured  and  predicted  values,
respectively.  is the average of the measured value, n is the total
number of sample test data sets. 

Results and discussion
 

Measurement of LCC and LWC
After  capturing the  hyperspectral  images,  the  LCC and LWC

of  Chinese  fir  seedlings  were  destructively  determined  imme-
diately.  As  shown  in Fig.  5,  the  LCC  and  LWC  gradually

decreased  with  the  extension  of  drought  time,  and  significant
differences  were  observed  between  different  drought  treat-
ments. The average LCC of seedlings in D0 was 2.4 mg/g, while
in D56 it was only 0.1 mg/g (Fig. 5a). Similarly, the average LWC
of  seedlings  in  D0  was  68%,  whereas  in  D56  it  was  only  9%
(Fig.  5b).  These measured data  were used as  the ground truth
for model training and validation. 

Spectral features
The raw and average reflectance spectral curves for seedlings

with different LCC and LWC were shown in Fig. 6a & b, respec-
tively.  As  can  be  seen  in  the  figure,  the  spectral  curves  of  all
seedlings showed a similar  pattern (Fig.  6a),  while the spectral
data  was  sensitive  to  the  changes  in  LCC  and  LWC,  resulting
in  fluctuating  reflectance  with  the  changes  of  LCC  and  LWC
(Fig. 6b). The absorption peaks around 1,450 and 970 nm were
observed in all datasets (Fig. 6b), which are related to the O–H
first  and  second  overtones  of  water,  respectively[40−43].  Simi-
larly, an absorption peak near 1,100 nm appeared in all samples
is associated with the second overtone of N-H in chlorophyll[44].
Additionally, a broad absorption peak near 1,190 nm caused by
the C-H stretching vibration of CH3

[5]. The variation in this spec-
tral  reflectance could potentially  help discriminate the physio-
chemical properties between samples[45]. 

Hyperspectral data preprocessing
It  is  necessary  to  perform  spectral  preprocessing  to  remove

noise  and  invalid  information  introduced  by  environmental
factors  and  instrument  noise[46].  Many  spectral  preprocessing
methods have been reported, and the choice of preprocessing
method depends on the nature of the spectrum and the com-
ponent  features  that  need  to  be  predicted[47].  In  the  present
study, the raw hyperspectral data were pre-processed using SG,
MSC and SNV, respectively.  As shown in Fig.  7,  SG could effec-
tively  eliminate  spectral  deviation  caused  by  different  scatter-
ing levels and retain the spectral characteristics (Fig. 7a),  while
the  MSC  and  SNV  changed  the  spectral  curves  by  removing
many  spectral  information  (Fig.  7b & c).  Further  evaluation  on
these pre-processed data was also performed by employing the
partial  least  squares  discriminant  analysis  (PLS-DA)  to  develop

 

Fig. 4    ANNs structure.
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the multivariate models. As shown in Table 1, the SG derivative

exhibited  the  best  results  for  predicting  LCC  with  an  R2
C of

0.9166,  RMSEC of  0.2587,  R2
P of  0.8616,  and  RMSEP of  0.3547.

Furthermore,  the  SG  derivative-PLS-DA  model  also  achieved

the best results for LWC prediction with an R2
C of 0.9350, RMSEC

of 0.0552, R2
P of 0.9048, and RMSEP of 0.0661. These results indi-

cated  that  SG  pre-processing  could  enhance  the  correlation

between  spectrum  and  measured  data.  Based  on  these  find-

ings,  the  SG  pre-processed  spectral  data  were  chosen  as  the

optimal datasets for subsequent prediction analysis.
 

Selection of characteristic wavelengths
To  improve  the  prediction  performance  of  the  model  and

reduce  redundancy  and  collinearity  in  the  spectral  data,  the
SPA  and  CARS  selection  algorithms  were  utilized  to  extract
characteristic  wavelengths  from  the  SG  preprocessed  spectra.
Figure  8 illustrates  the  results  of  the  SPA  algorithm  for  wave-
length  selection  in  LCC  and  LWC  prediction.  The  variation  of
RMSE  relative  to  the  number  of  wavelengths  is  depicted  in
Fig. 8a & c. It  can be observed that the RMSE decreased as the
number  of  included variables  increased.  This  decreasing trend
continued  until  the  number  of  included  wavelengths  reached

 

a b

Fig. 5    Measured (a) LCC and (b) LWC in Chinese fir seedlings of the five drought treatment groups.

 

a b

Fig. 6    (a) Raw reflectance curves and (b) average reflectance curves of Chinese fir seedlings with different LCC and LWC.

 

a b c

Fig. 7    Comparison of different preprocessing methods for hyperspectral data. (a) Hyperspectral data preprocessed by SG. (b) Hyperspectral
data preprocessed by MSC. (c) Hyperspectral data preprocessed by SNV.
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10  (RMSE  =  0.33266)  for  LCC  prediction  and  13  (RMSE  =
0.07103) for LWC prediction, respectively. Therefore, 10 and 13
characteristic  wavelengths  were  selected  for  LCC  and  LWC
prediction, respectively. Figure 8b & d shows the distribution of
the selected characteristic wavelengths.

The CARS algorithm was also reported as an effective wave-
length selection method in various studies[48−50]. The processes
of  applying  the  CARS  algorithm  on  the  SG  preprocessed  data
for LCC and LWC prediction are presented in Fig. 9. As shown in
Fig.  9a,  it  can  be  seen  that  the  number  of  sampled  wave-
lengths  decreased  rapidly  during  the  initial  step  of  MC
sampling.  However,  the  decreasing  trend  became  milder  after
the  first  sharp  fall  during  the  refined  selection,  which  can  be
attributed  to  the  exponentially  decreasing  function  (EDF)  in

feature  selection.  The  variations  of  the  RMSE  value  of  tenfold
cross-validation  are  shown  in Fig.  9b.  The  RMSE  value
decreased  quickly  until  the  sampling  run  of  21,  after  which  it
increased  again.  The  optimal  number  of  wavelengths,  indi-
cated by the vertical  star  line in Fig.  9c,  was 53 out  of  the 512
wavelengths  (approximately  10.35%).  A  similar  process  was
followed  for  the  prediction  of  LWC  using  CARS  (Fig.  9d−f).  As
shown  in Fig.  9f,  at  the  26th sampling  run,  29  characteristic
wavelengths  (approximately  5.66%  of  512  bands)  were
obtained.

The  wavelengths  selected  by  SPA  and  CARS  algorithms  for
the prediction of LCC and LWC in this study are listed in Table 2.
For  LCC,  the  characteristic  wavelengths  are  mostly  concen-
trated  in  the  band  range  of  870−960,  1,100−1,200,  and
1,400−1,700  nm  (Table  2).  Among  the  selected  wavelengths,
the  wavelengths  distributed  between  1,425−1,440  and
1,600−1,700 nm are similar to the characteristic wavelengths of
1,420 and 1,694 nm for LCC in Toona sinensis samples[26]. Addi-
tionally,  the  selected  wavelengths  from  1,100−1,200  nm  have
shown  associations  with  the  vibrations  of  the  C-H  and  N-H
groups  found  in  chlorophyll[51].  As  for  the  LWC,  the  chosen
wavelengths  of  873.5,  881.9,  885.3,  895.3,  1,289.9,  1,389.3,
1,440.5,  1,549.4,  1,575.7,  1,580.7,  1,676.1,  1,689.2,  and  1,702.3
nm  display  similarities  to  the  characteristic  wavelengths  of
871.61,  880.42,  893.5,  1,285.05,  1,395.19,  1,587.44,  1,662.2,  and
1,703.41  nm  for  water  content  in  tea  needle  leaves[52].  The
chosen  wavelength  of  968.8  nm  is  associated  with  the  O-H
stretching  overtones,  including  the  first,  second,  and  third

 

Table 1.    Influence of different preprocessing methods on LCC and LWC
prediction.

Index Preprocessing
Calibration set Prediction set

R2
C RMSEC R2

P RMSEP

LCC None 0.8943 0.2835 0. 8198 0.3268
MSC 0.8140 0.3654 0.7756 0.4405
SG 0.9166 0.2587 0.8616 0.3547

SNV 0.8322 0.3491 0.7135 0.5053
LWC None 0.9023 0.0540 0.8904 0.0771

MSC 0.8983 0.0694 0.7832 0.1027
SG 0.9350> 0.0552 0.9048 0.0661

SNV 0.9120 0.0459 0.8714 0.1073

 

a b

c d

Fig. 8    Result of applying SPA wavelength selection on the SG pre-processed spectrum for predicting LCC and LWC. (a) Variation of RMSE vs
the number  of  wavelengths,  and (b)  the selected wavelengths  for  LCC prediction.  (c)  Variation of  RMSE vs  the number  of  wavelengths,  and
(d) the selected wavelengths for LWC prediction.
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overtones[53].  The  chosen  wavelengths  of  1,213.6,  1,394.2,  and
1,653,  1,664.6  nm  show  similarity  to  the  wavelengths  of
1,213.69,  1,395.72,  1,659.36,  and 1,662.5  nm reported by  Song
et al. for LWC in rice samples[54]. 

Modeling based on full wavelengths and selected
wavelengths

Previous studies have shown the great potential of machine
learning  models  in  predicting  chlorophyll  content  and  water
content of different plant samples[55,56]. In this study, full wave-
lengths  and  characteristic  wavelengths  selected  by  SPA  and
CARS were utilized to establish prediction models, respectively.
The  prediction  models  were  thus  built  using  three  machine
learning  algorithms:  PLSR,  SVM,  and  ANNs.  The  regression
results of the established models were evaluated based on the
determination  coefficient  (R2)  and  RMSE.  As  shown  in Table  3,

the  models  based  on  wavelengths  selected  by  SPA  and  CARS
exhibited better performance compared to those based on full-
band  spectral  data.  This  indicates  that  SPA  and  CARS  can
reduce  the  redundancy  of  input  variables  in  the  model  and
help improve its accuracy.

For LCC prediction, it  is obvious that the CARS-ANNs model,
using  53  characteristic  wavelengths  as  input  has  achieved  the
best performance with the values of R²C and R²P reaching 0.932
and 0.969,  and RMSEC and RMSEP are  0.224 and 0.157,  respec-
tively (Table 3).  Meanwhile,  the SPA-ANNs model,  requiring 13
feature wavelengths exhibited the most accurate prediction for
LWC,  and  the  obtained  R²C,  RMSEC,  and  R²P and  RMSEP were
0.952,  0.049,  and  0.948,  0.051,  respectively  (Table  3).  Further-
more,  the  performances  of  the  CARS-ANNs  and  SPA-ANNs
models  were  verified  by  correlation  analysis.  The  result  also
showed  high  prediction  accuracy  of  both  models  for  LCC  and

 

a b c

d e f

Fig.  9    Process  of  extracting  characteristic  wavelength  by  CARS.  (a)  Number  of  preferred  characteristic  wavelength  variables,  (b)  the  root
mean  square  error  of  cross-validation  variation,  and  (c)  regression  coefficient  path  map  for  LCC.  (d)  Number  of  preferred  characteristic
wavelength variables, (e) the root mean square error of cross-validation variation, and (f) regression coefficient path map for LWC.

 

Table 2.    Characteristic wavelengths selected by SPA and CARS.

Selection
method Index

Number
of feature

bands
Selected wavelengths (nm)

SPA LCC 10 873.5, 1,387.6, 1,394.2, 1,425.7, 1,577.4,
1,651.4, 1,671.1, 1,689.2, 1,697.4, 1,702.3

LWC 13 873.5, 895.3, 917, 968.8, 1,289.9, 1,389.3,
1,394.2, 1,575.7, 1,653, 1,689.2, 1,695.8,
1,700.7, 1,702.3

CARS LCC 53 880.2, 881.9, 883.6, 885.3, 890.3, 953.8,
955.5, 957.1, 958.8, 962.2, 967.2, 1,137.2,
1,138.8, 1,142.2, 1,152.2, 1,153.8, 1,158.8,
1,162.1, 1,213.6, 1,225.3, 1,231.9, 1,233.6,
1,424, 1,430.6, 1,432.3, 1,433.9, 1,435.6,
1,542.8, 1,544.4, 1,546.1, 1,547.7, 1,549.4,
1,552.7, 1,557.6, 1,559.3, 1,560.9, 1,565.9,
1,567.5, 1,574.1, 1,580.7, 1,662.9, 1,664.6,
1,666.2, 1,669.5, 1,671.1, 1,672.8, 1,674.4,
1,676.1, 1,677.7, 1,684.3, 1,699, 1,700.7,
1,702.3

LWC 29 881.9, 883.6, 885.3, 958.8, 1,213.6,
1,231.9, 1,233.6, 1,427.3, 1,433.9, 1,435.6,
1,440.5, 1,549.4, 1,552.7, 1,554.3, 1,556,
1,557.6, 1,560.9, 1,562.6, 1,565.9, 1,567.5,
1,580.7, 1,664.6, 1,669.5, 1,671.1, 1,672.8,
1,674.4, 1,676.1, 1,700.7, 1,702.3

 

Table 3.    The prediction results of LCC and LWC by PLSR, SVM and ANNs
models full and selected wavelengths.

Index Model Number
of bands

Calibration set Prediction set

R2
C RMSEC R2

P RMSEP

LCC Full-PLSR 512 0.797 0.363 0.839 0.359
SPA-PLSR 10 0.804 0.360 0.842 0.354

CARS -PLSR 53 0.805 0.358 0.843 0.353
Full-SVM 512 0.830 0.350 0.820 0.392
SPA-SVM 10 0.812 0.380 0.770 0.450

CARS-SVM 53 0.830 0.360 0.820 0.397
Full-ANNs 512 0.930 0.240 0.870 0.349
SPA-ANNs 10 0.920 0.267 0.924 0.300

CARS-ANNs 53 0.932 0.224 0.969 0.157
LWC Full-PLSR 512 0.856 0.070 0.901 0.082

SPA-PLSR 13 0.804 0.360 0.842 0.354
CARS -PLSR 29 0.858 0.072 0.901 0.079

Full-SVM 512 0.873 0.079 0.930 0.060
SPA-SVM 13 0.850 0.090 0.920 0.062

CARS-SVM 29 0.858 0.078 0.929 0.063
Full-ANNs 512 0.954 0.187 0.873 0.348
SPA-ANNs 13 0.952 0.049 0.948 0.051

CARS-ANNs 29 0.952 0.050 0.940 0.058

Hyperspectral analysis of Chinese fir seedlings
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LWC, respectively (Fig. 10). In summary, the use of wavelength
selection  techniques  significantly  enhanced  the  prediction
accuracy  of  LWC  and  LCC.  On  the  other  hand,  among  all  the
established models, ANN-based models achieved better perfor-
mance  than  SVM  and  PLSR  (Table  3).  This  suggests  the  great
potential of ANN in the phenotypic evaluation of plants[44,57]. 

Conclusions

This study aimed to investigate the application of hyperspec-
tral  imaging  in  predicting  the  needle  leaf  chlorophyll  content
(LCC)  and  needle  leaf  water  content  (LWC)  of  Chinese  fir
seedlings.  Reflectance  images  were  captured  from  seedlings
with  varying  levels  of  LCC  and  LWC.  Various  spectral  data
preprocessing algorithms were applied, followed by two wave-
length  selection  methods,  to  prepare  the  necessary  variables
for establishing prediction models. The results showed that the
Savitzky-Golay (SG) preprocessing method was the most effec-
tive  at  removing  background  noise  and  interference  factors.
Additionally,  the  wavelengths  selected  by  the  Successive
Projections  Algorithm  (SPA)  were  identified  to  be  the  optimal
features  for  predicting  LWC,  while  the  wavelengths  selected
by  the  Competitive  Adaptive  Reweighted  Sampling  (CARS)
method  were  the  most  suitable  variables  for  predicting  LCC.
Eventually, the CARS-ANNs model achieved the highest perfor-
mance in predicting LCC, with an R2

P value of 0.941 and RMSEP

value  of  0.240.  On  the  other  hand,  the  SPA-ANNs  model
showed  the  best  performance  in  predicting  LWC,  with  an  R2

P

value of 0.952 and RMSEP value of 0.049. These results suggest
that  combining  hyperspectral  imaging  with  machine  learning
models  enables  the  fast,  non-destructive,  and  highly  accurate
detection  of  LCC  and  LWC  in  Chinese  fir  seedlings.  This  study
introduces  a  new  method  for  rapidly  and  non-destructively
evaluating  physiological  traits  for  the  phenotyping,  breeding,
and cultivation of conifers like Chinese fir. 
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