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Abstract
In forestry genetics and industry, tree morphological traits such as height, crown size, and shape are critical for understanding growth dynamics

and productivity. Traditional methods for measuring these traits are limited in efficiency, scalability, and accuracy, posing challenges for large-

scale  forest  assessments.  This  study  focuses  on  integrating  unmanned  aerial  vehicle  (UAV)  technology  with  GWAS  to  improve  genomic

association studies in slash pine (Pinus elliottii). Seven key morphological traits have been identified (canopy area (CA), crown base height (CBH),

crown  length  (CL),  canopy  volume  (CV),  crown  width  (CW),  crown  width  height  (CWH),  and  tree  height  (H))  through  advanced  UAV-based

phenotyping.  These  associations  account  for  a  remarkable  range  of  heritability  in  slash  pine,  with  traits  such  as  CBH,  CL,  CV,  and  H  showing

relatively high heritability across both Single nucleotide polymorphisms (SNP) and pedigree methods, indicating strong genetic influence, while

traits such as CWH show lower heritability, suggesting greater environmental influence or non-additive genetic variance. The GWAS identified 28

associations, including 22 different SNPs localized to 16 candidate genes, that were significantly associated with the morphological traits of Slash

Pine.  Notably,  two of these candidate genes,  annotated as putative DEAD-like helicase and ethylene-responsive element binding factor (ERF),

were present at different mutation sites and were significantly associated with CW and CA traits, respectively. These results demonstrate that the

UAV  imaging  enables  a  comprehensive  analysis  of  the  Morphological  growth  response  of  slash  pine  and  can  facilitate  the  discovery  of

informative alleles to elucidate the genetic structure underlying complex phenotypic variation in conifers.
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Introduction

The  morphological  phenotypes  of  trees,  including  tree
height, crown spread, crown length, crown width, height to the
lowest branch, crown volume, and height at the widest part of
the  crown,  are  fundamental  to  understanding  ecological  and
environmental  dynamics[1,2].  These  phenotypic  attributes  are
critical not only as indicators of a tree's health and growth pat-
terns but also as integral components in the broader context of
global  ecological  balance.  The  study  of  these  morphological
traits  extends  beyond  simple  physical  measurements,  signifi-
cantly contributing to our understanding of ecosystem services,
biodiversity,  and  the  impact  of  environmental  changes  on
forest health[3].

Digital  Whole-Community  Phenotyping  (DWCP)  exemplifies
advancements in capturing these essential phenotypic data by
collecting  high-resolution  multispectral  and  structural  data  on
plant  communities[4].  This  novel  approach  underscores  the
importance of precise phenotypic data collection in advancing
ecological research.

In  the  field  of  forestry  genetics  and  tree  breeding,  the
detailed  analysis  of  tree  morphological  phenotypes  is  para-
mount. Tree architecture and functional traits are closely inter-
linked, providing insights into tree life history and demography,

essential for genetic studies and breeding programs[5−7].  These
characteristics  directly  influence  the  timber  industry,  impac-
ting  wood  quality,  yield,  and  overall  forest  productivity.  Rapid
advancements  in  sensor  technologies  and  image-based  phe-
notyping  are  transforming  how  these  traits  are  measured  and
analyzed,  offering  new  avenues  for  accelerating  forest
breeding[8].  Accurate  measurement  and  analysis  of  these  phe-
notypic  traits  are  crucial  for  advancing  genetic  selection  and
breeding programs aimed at enhancing timber production and
forest  sustainability.  Ongoing  research  and  development  in
forest tree functional genomics and breeding highlight the cri-
tical role of these traits in meeting the growing global demand
for  wood  fiber  and  other  bioproducts  from  forest  trees[9].  The
development  and  improvement  of  these  traits  through  selec-
tive  breeding  and  genetic  studies  hold  immense  potential  for
the  future  of  the  timber  industry  and  ecological  conservation
efforts globally[10].

In  forestry  research,  traditional  methods  for  assessing  tree
morphological  phenotypes  have  primarily  relied  on  manual
and  direct  observational  techniques.  These  approaches  invol-
ved  measuring  various  physical  attributes,  including  tree
height, crown dimensions, and other relevant phenotypic traits.
While  these  methods  have  historically  provided  foundational
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insights,  they  have  notable  limitations  in  efficiency  and
scalability[8,11,12]. Manual measurements are labor-intensive and
subjective,  often  resulting  in  significant  time  investments  and
potential inconsistencies in data accuracy. These limitations are
particularly  pronounced when dealing with extensive datasets
or  conducting  wide-area  forest  surveys,  where  rapid  and
accurate  data  collection  is  essential[13].  Additionally,  the  low-
throughput  nature  of  traditional  methods  poses  a  significant
challenge in  large-scale  ecological  studies  and comprehensive
forest monitoring efforts.  The difficulty in applying these tech-
niques in varied and often inaccessible terrains further restricts
their utility across diverse ecological landscapes[14].

The  demands  of  contemporary  forestry  research,  especially
in contexts requiring prompt and precise data gathering—such
as monitoring dynamic environmental impacts on forest health
or managing extensive commercial forestry operations—neces-
sitate  the  evolution  of  phenotyping  methodologies[15,16].  This
need has driven the exploration and adoption of more sophisti-
cated,  efficient,  and  accurate  phenotypic  data  collection  tech-
niques,  paving  the  way  for  innovative  approaches  in  forestry
and ecological studies[17].

The  advent  of  Unmanned  Aerial  Vehicle  (UAV)  technology
and Structure from Motion (SFM) imaging methods has revolu-
tionized  forestry  phenotyping.  SFM,  a  photogrammetric  tech-
nique  that  uses  2D  images  to  reconstruct  3D  structures,  has
emerged  as  a  powerful  tool  in  forestry  research.  By  capturing
multiple  overlapping  images  of  a  forested  area  from  different
angles,  SFM  processes  these  images  to  create  a  3D  model  or
point  cloud  of  the  area.  This  method  is  particularly  advanta-
geous  for  providing  high-resolution  data  on  forest  canopy
structure  and  tree  morphology,  which  are  essential  for  asses-
sing biomass, forest health, and growth patterns[18].

The  superiority  of  SFM  methods  lies  not  only  in  their  accu-
racy  and  detail  but  also  in  their  ability  to  cover  large  areas
rapidly  and  frequently,  allowing  for  dynamic  monitoring  of
forests[19].  This technology offers a non-invasive, cost-effective,
and  highly  scalable  approach  to  forest  monitoring,  making
it  invaluable  for  modern  forestry  management,  ecological
research,  and  conservation  efforts.  By  facilitating  detailed  and
regular assessments of forest structures, UAV technology helps
in understanding forest dynamics, carbon sequestration poten-
tial, and the impact of environmental changes, playing a crucial
role  in  sustainable  forest  management  and  climate  change
studies[20].

Genome-Wide  Association  Studies  (GWAS)  have  become
increasingly  vital  in  forest  genetics,  particularly  for  identifying
key  genes  associated  with  morphological  phenotypic  traits[21].
This molecular breeding approach holds significant promise for
enhancing  our  understanding  of  the  genetic  basis  of  critical
traits  like  tree  height,  crown  architecture,  and  overall  growth
patterns.  Identifying  these  key  genes  is  crucial  for  advancing
forestry  genetics  and  breeding  programs,  as  it  enables  the
development  of  tree  varieties  with  improved  timber  quality,
disease  resistance,  and  adaptability  to  environmental
changes[22−24].

Despite  the  popularity  of  UAV  technology  in  phenotyping
and the significance of  GWAS in  molecular  breeding,  the  inte-
gration  of  high-throughput  phenotyping  with  genotyping
remains  underexplored,  especially  in  species  like  slash  pine
(Pinus  elliottii)[25].  The  challenges  are  compounded  by  the  fact
that slash pine, a large coniferous tree, and a gymnosperm, has

not  yet  had its  genome fully  sequenced.  The complexity  of  its
genome, typical of many large woody perennials, adds another
layer of difficulty. While UAV and GWAS individually contribute
significantly  to  the  field,  their  combined  application  in  the
genetic  improvement  and selection of  key  candidate  genes  in
species  like  slash  pine  represent  a  burgeoning  field  of  study
with immense potential yet to be fully explored[26,27].

In response to these challenges,  the present research group
is pioneering the resequencing of slash pine. Utilizing genomic
data  from closely  related sequenced species  and combining it
with  transcriptome  sequencing,  a  51k  liquid-phased  probe
array  has  been  developed  and  specifically  designed  for  slash
pine[28]. This tool enables targeted resequencing to capture the
genetic variations most pertinent to slash pine's morphological
traits.  This  approach significantly  enhances  our  understanding
of slash pine's genetic architecture and paves the way for future
breeding  programs.  By  linking  phenotypic  traits  with  their
genetic  underpinnings,  the  aim  is  to  improve  the  growth  rate
and wood quality in slash pine.

Therefore,  in  this  study,  we  used  a  slash  pine  plantation  to
achieve two primary objectives:

1) Employ UAV imaging for efficient, high-throughput quan-
tification of slash pine morphological phenotypes. The aim is to
systematically  collect  detailed data  on vital  traits  (canopy area
(CA),  crown  base  height  (CBH),  crown  length  (CL),  canopy
volume (CV), crown width (CW), crown width height (CWH) and
tree  height  (H)),  which  are  essential  for  deciphering  growth
patterns and structural variations in slash pine.

2)  Integrate  phenotypic  data  derived  from  UAV  technology
with genomic resequencing data to perform a targeted GWAS.
This phase focuses on identifying candidate genes that show a
significant  correlation  with  the  morphological  attributes  of
slash pine, thereby providing valuable insights into the genetic
determinants  of  these  traits  within  the  constraints  of  our
sample size.

By achieving these objectives,  this  study addresses  a  critical
gap  in  current  research  by  combining  advanced  UAV  pheno-
typing  with  genomic  analyses,  providing  comprehensive  in-
sights into the genetic and phenotypic variations in slash pine. 

Materials and methods
 

Site description
This study was conducted across two meticulously managed

slash pine (Pinus elliottii) plantations within the Matou National
Forest Farm, located in Jingxian County, Xuancheng City, Anhui
Province, China. The first site is positioned precisely at the coor-
dinates  of  30°45'N  and  118°29'E,  while  the  specifics  of  the
second  site's  location  remain  closely  aligned  within  the  same
geographic  and  climatic  zone,  ensuring  comparable  environ-
mental  conditions.  Both  sites  are  typified  by  a  temperate  cli-
mate, exhibiting an average annual temperature of 15.7 °C. The
thermal  profile  spans from the chilliest  month,  January,  avera-
ging  2.9  °C,  to  the  peak  of  warmth  in  July,  averaging  28.1  °C.
Precipitation across these regions averages 1,525 mm annually,
coupled  with  an  average  relative  humidity  of  84%.  The  soil  in
these  plantations  predominantly  consists  of  yellow  loam,  cha-
racterized  by  an  acidic  to  neutral  pH  of  5.5  to  6.0  and  depths
ranging  from  70  to  150  cm.  Established  in  2013,  each  planta-
tion  spans  three  hectares,  collectively  covering  six  hectares,
and  is  composed  of  20  genetically  diverse  open-pollinated

 
UAV-based phenotyping in slash pine genomics

Page 2 of 15   Yan et al. Forestry Research 2024, 4: e025



families,  each  tracing  back  to  the  same  maternal  progenitor.
The plantation's design is a lattice incomplete block with single
tree plots, where each block, measuring 20 trees with a spacing
of  6  m  ×  8  m,  represents  an  individual  family  without  replica-
tion within the block. The entire experimental area across both
sites  comprises  40  such  blocks,  effectively  splitting  the  pre-
viously  singular  experimental  setup into two distinct  but  simi-
lar environments for comparative analysis. Detailed characteris-
tics  and  historical  data  of  these  plantations  have  been  docu-
mented  in  preceding  publications  by  the  same  research
team[29−31]. 

UAV RGB images acquisition
The UAV imagery  was acquired using a  DJI  Matrice  300 RTK

(M300RTK)  drone,  which  was  equipped  with  a  P1  35  mm
camera,  provided  by  Dà-Jiāng  Innovations  Science  and  Tech-
nology Co., Ltd., China. The flight operation was conducted on
December 24, 2023, under optimal weather conditions charac-
terized  by  clear  skies  and  minimal  wind.  The  M300RTK  drone,
renowned  for  its  stability  and  precision,  was  remotely  con-
trolled to maintain a consistent flight altitude, ensuring uniform
image quality and coverage.

The  camera,  designed  for  advanced  aerial  photography,
employed  a  swing  shooting  mode  to  capture  detailed  images
of  the  plantation.  We  meticulously  planned  the  flight  path  to
mirror a double grid pattern, similar to our previous methodo-
logy, ensuring 80% image overlap. This strategic approach was
crucial  for  achieving  comprehensive  coverage  of  the  entire
plantation  area  in  a  single  flight.  The  M300RTK's  advanced
flight  capabilities  allowed  us  to  maintain  a  forward  speed  of
8 m/s, optimizing the efficiency of the image capture process.

One of the key features of the M300RTK drone is its integra-
tion  with  a  networked  real-time  kinematic  (RTK)  positioning
system.  This  system  provided  highly  accurate  waypoint  posi-
tioning,  significantly  reducing  horizontal  and  vertical  positio-
ning errors to 0.03 m and 0.06 m, respectively. The precision of
this  technology  was  instrumental  in  ensuring  the  high  quality
of  the  spatial  data  acquired  during  the  flight,  which  lasted
approximately 40 min.

To  ensure  the  reproducibility  and  robustness  of  the  data,
multiple flights were conducted under similar conditions, main-
taining  the  same  flight  altitude  of  40  m  and  clear  weather  for
each  session.  The  use  of  RTK  precise  positioning  across  all
flights  ensured  consistency  and  accuracy  in  georeferencing.
These  repeated  flights  validated  the  reproducibility  of  the
image acquisition process,  as  evidenced by the consistency of
the  phenotypic  data.  Previous  studies  have  further  confirmed
the  reliability  and  robustness  of  the  UAV-based  phenotyping
approach[29,30]. 

Image processing
Utilizing  high-precision  RGB  imagery,  the  data  processing

employed  the  DJI  Terra  software  (version  3.3.0,  Shenzhen,
China) for generating orthoimages and 3D point cloud data. In
this study, the algorithm originally proposed by Song et al. was
refined  and  enhanced,  focusing  on  increased  accuracy  and
speed  in  data  extraction[29].  The  approach  minimized  manual
intervention  by  employing  automated  processes,  significantly
improving  the  efficiency  of  handling  large  data  volumes.  Pre-
vious  studies  have  validated  the  accuracy  of  these  methods
using  field  data  such  as  tree  height  and  diameter  at  breast
height  (DBH)[29−31].  These  validations  demonstrated  that  the

UAV-based  measurements  are  highly  reliable  and  consistent
with traditional ground-truth measurements.

The  lidR  package  (version  4.0.0)  and  the  terra  package
(version 1.7-39)  in  R  (R  Core  Team,  2023)  were  instrumental  in
our individual tree analysis and phenotypic data extraction. The
workflow  commenced  with  the  generation  of  Digital  Terrain
Models  (DTMs)  and  Digital  Surface  Models  (DSMs)  from  the
3D  point  cloud  data.  The  Cloth  Simulation  Filtering  (CSF)
algorithm[32] effectively  differentiated  ground  points  to
produce DTMs, while DSMs were constructed using a point-to-
raster  algorithm.  Subsequently,  the  Canopy  Height  Model
(CHM)  was  derived  from  the  differential  between  DTM  and
DSM.

For  tree  detection  and  segmentation  within  the  plantation,
the  dalponte2016  function  from  the  lidR  package  was  used.
This  function  was  configured  to  detect  trees  with  a  minimum
height of 2.6 m and a maximum crown radius of 2.5 m. Subse-
quently,  individual  tree  point  clouds  were  extracted,  with  a
focus  on  removing  noise  and  irrelevant  data  points  to  ensure
the purity of the dataset.

Following this initial processing of the point cloud, the atten-
tion  turned  to  the  in-depth  analysis  of  individual  tree  data  to
accurately  determine  morphological  traits.  This  intricate
process was facilitated by a series of custom-developed R func-
tions,  designed  to  handle  specific  aspects  of  the  point  cloud
data. The following steps delineate the methodology:

The  calculate_CBH_LAS  function  estimated  Crown  Base
Height  by  identifying  the  branching  point  above  the  trunk,
using a  combination of  height  thresholds  and standard devia-
tion calculations.

calculate_canopy_height_outside_trunk  assessed  the
canopy height  outside the trunk's  radius,  providing a  compre-
hensive view of the tree's overall height.

The  calculate_crown_width  function  evaluated  the  crown's
maximum width by calculating the greatest horizontal distance
across the canopy.

calculate_extreme_points_height determined the maximum
height  reached by  the  canopy,  offering insights  into  the  verti-
cal extent of the tree's growth.

Finally,  calculate_crown_volume_ellipsoid  computed  the
crown  volume,  applying  an  ellipsoidal  model  to  the  canopy
dimensions derived from the point cloud.

These  functions,  fine-tuned  for  slash  pine  characteristics,
were  applied  to  the  individual  tree  point  cloud  data.  By
processing the point  cloud through these custom R functions,
detailed  morphological  measurements  for  each  tree  were
extracted. This included data on tree height, crown base height,
crown width,  the height at  the widest  part  of  the canopy,  and
overall  crown  volume.  By  integrating  these  measurements,  a
comprehensive  phenotypic  profile  for  each  tree  was  ensured,
providing a detailed dataset for subsequent GWAS studies. 

SNP probe
The  genotyping  aspect  of  the  present  study  was  under-

pinned by the creation of a novel 51k SNP probe array for slash
pine,  devised  using  the  genotyping  by  target  sequencing
(GBTS)  method  based  on  solution  hybridization.  This  develop-
ment was informed by a comprehensive collection of SNP data
and EST-probe sequences from related pine species,  as well  as
the  present  research  groups  own  extensive  slash  pine  speci-
men  and  transcriptome  data.  Specifically,  the  following  were
incorporated:

UAV-based phenotyping in slash pine genomics
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1. A combination of SNP loci from loblolly pine (Pinus taeda),
fast-growing  slash  pine  specimens,  and  transcriptomes  of
open-pollinated slash pine offspring.

2. EST-probe sequences from loblolly pine.
3. SNPs associated with various traits in loblolly pine.
These  components  were  meticulously  mapped  against  the

loblolly pine reference genome, resulting in a robust SNP array
encompassing  over  51,000  probes.  In  December  2022,  a  tar-
geted  collection  of  1-year-old  needle  samples  from  200  trees,
spanning  20  families,  across  four  canopy  directions  was
conducted.  These  samples  were  immediately  preserved  and
processed for targeted sequencing using the custom SNP array.
The  initial  dataset  comprised  hundreds  of  thousands  of  SNP
loci.  After  stringent  filtering  for  biallelic  genes,  minor  allele
frequency (MAF),  and call  rate criteria,  this dataset was refined
to  approximately  51,630  high-quality  SNP  loci.  These  loci
formed  the  basis  of  our  GWAS  analysis,  providing  a  critical
genetic  insight  into  the  studied  population.  Details  on  the
development  and  validation  of  the  51k  SNP  probe  array  are
provided  in  a  recently  published  article[28],  which  thoroughly
describes  the  SNP  array  design  pipeline,  the  number  of  high-
quality  validated  SNPs,  and  the  distribution  of  SNPs  across
various functional groups and chromosomes. 

Genetic variation and correlations for
morphological traits

In this study,  three types of data were integrated: individual
morphological phenotypes (CA, CBH, CL, CV, CW, CWH, and H),
pedigree  information,  and  SNP  data.  This  combination  pro-
vided  the  input  data  for  estimating  the  genetic  parameters  of
growth  traits  in  slash  pine.  A  Generalized  Linear  Mixed  Model
(GLMM) was  applied,  using the restricted maximum likelihood
(REML) method via the Sommer package in R software[33]. In the
GLMM:

y =

 y1
y2
yi

 = Xm+Z1b+Z2 f + e (1)

Xm
Z1b Z2 f

y represents  the  vector  of  observed  growth  traits  (crown  area,
tree  height,  etc.).  captures  the  fixed  effects,  including
environmental and treatment effects.  and  represent the
random effects matrices for block and family effects, respectively.
b is the vector of random block effects. f is the vector of random
family effects. e denotes the residual effects.

rgi j

To  estimate  the  narrow-sense  heritability  (h2)  and  genetic
correlations  ( )  between  traits,  both  pedigree-based  and
SNP-based methods were utilized. The pedigree-based method
inferred  heritability  based  on  familial  relationships,  and  the
SNP-based  method  provided  a  more  precise  estimation  by
using individual genetic variants.

rgi jThe equations for  calculating h2 and using the pedigree-
based method were:

h2
i =

2.5σ2
f i

σ2
f i+σ

2
bi+σ

2
ei

(2)

σ2
f i σ

2
bi σ2

eiwhere , ,  and represent  the  variances  due  to  family,
block, and residual effects, respectively.

rgi j=

σfi j√
σ2

fi
+σ2

f j

(3)

σfi jwhere  is  the  covariance  between traits i and j due  to  family
effects.

For the SNP-based method:

h2
S NP =

2.5σ2
g

σ2
g+σ

2
e

(4)

σ2
g σ2

ewhere  and  are  the  variances  due  to  genotype  and
environmental effects, respectively.

rgi j =

∑
(βi1βi2)/m√∑β2

i1

m

∑β2
i2

m


(5)

βi1 βi2with  and  being the effect  sizes of  the i-th SNP on traits  1
and  2,  and m representing  the  total  number  of  SNPs.  The
Breeding Value (BV)  was  calculated as  BV = G + G × E,  where,  G
represents  the  Genetic  Effect,  encompassing  additive  genetic
effects, and G × E indicates the gene-by-environment interaction.

Analysis  and  visualization  of  these  genetic  parameters,
particularly in relation to the morphological traits of slash pine,
were  conducted  using  the  ggplot2  package[34] in  R.  This
methodology enabled a detailed understanding of the genetic
influences on the growth and development of slash pine. 

GWAS for morphological traits
In  this  study,  the  statgenGWAS  package[35] was  utilized  for

GWAS analysis, focusing on the association between individual
SNPs  and  specific  morphological  traits  of  slash  pine,  namely
crown area and tree height. Each SNP locus was independently
assessed  through  a  generalized  least  squares  (GLS)  model,
where  the  correlations  with  the  morphological  traits  were
determined.  This  approach  was  critical  for  revealing  genetic
factors influencing the growth characteristics of slash pine.

A  kinship  matrix,  calculated  using  the  'Yang'  method  from
the  Genome-wide  Complex  Trait  Analysis  software[36],  was
incorporated  as  a  covariate  in  the  model  to  account  for  fine-
scale  genetic  differentiation.  This  inclusion  allowed  for  a
comprehensive analysis of genetic relationships and variations
among the slash pine samples.

The  GWAS  results  were  visualized  using  the  CMplot  R
package[37].  The  kinship  heatmap  was  illustrated  with  the
ggplot2  package.  Detection  thresholds  were  established  at  4
and  5  for  significance  levels  of α <  0.05  and α <  0.01,  respec-
tively.  SNP  annotation  was  conducted  using  snpEff  sv4.5[38].
This  process  included  generating  a  Generic  Feature  Format
(GFF) file of slash pine probe sequences, constructing a specific
snpEff database for slash pine, and annotating the SNP array for
the 210 analyzed slash pine samples. 

Results

The UAV imaging provided detailed three-dimensional point
clouds  of  slash  pine  trees,  capturing  significant  variations  in
canopy architecture  and trunk visibility,  as  illustrated in Fig.  1.
The figure shows three distinct structural forms of the trees. In
Fig. 1a, the tree features a lower canopy structure, allowing for
clear  visibility  of  the  trunk.  This  structural  form  can  be  critical
for  studies  focused  on  trunk  accessibility  and  lower  canopy
dynamics. Figure  1b depicts  a  tree  with  an  elevated  canopy,
characterized by a pronounced lower crown and visible under-
story. The separation between the crown base and the trunk is
more  distinct  in  this  structure,  which  can  be  useful  for  analy-
zing crown-base height and understory interactions. Figure 1c
shows  a  tree  with  a  notably  low  crown  base,  resulting  in
minimal  trunk  visibility  and  a  denser  understory.  This
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configuration  might  affect  light  penetration  and  understory

growth,  making  it  relevant  for  ecological  stratification  studies.

These  phenotypic  variations  among  the  trees  highlight  the

diversity  within  the  slash  pine  plantation.  Such  diversity  is

pertinent  to  understanding  adaptive  traits,  photosynthetic

efficiency,  and  the  overall  ecological  dynamics  of  the  forest

canopy. The precise UAV imagery facilitates detailed analysis of

structural  complexity  and  functional  dynamics  in  forest  envi-

ronments.  This  tripartite  representation  underscores  the

phenotypic diversity observed within this slash pine plantation,

offering  insights  into  the  structural  complexity  and  functional

dynamics of forest canopies.

Figure  2 provides  a  detailed  illustration  of  the  methodolo-

gies  used  to  measure  morphological  traits  in  slash  pine,
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Fig.  1    Three-dimensional  point  cloud visualizations  of  slash  pine trees  derived from UAV imaging.  (a)  Tree  with  a  lower  canopy structure,
(b) elevated canopy structure, and (c) lower crown with understory.
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utilizing three-dimensional point cloud data acquired from UAV
imagery. This figure delineates key morphological features such
as  canopy  area  (CA),  crown  base  height  (CBH),  crown  length
(CL),  canopy  volume  (CV),  crown  width  (CW),  crown  width
height  (CWH),  and  tree  height  (H).  The  top  view  inset  offers  a
comprehensive  perspective  of  the  crown  area,  allowing  for
accurate  measurement  of  the  canopy's  spatial  dimensions.
These  measurements  are  critical  for  understanding  the  physi-
cal  structure  and  potential  growth  patterns  of  the  trees.  To
evaluate  the accuracy of  the present  model,  correlation analy-
sis was conducted between the measured and predicted values
of these morphological traits. The results, shown in Supplemen-
tal  Fig.  S1,  illustrate  the  relationship  between  the  actual  and
predicted values through scatter plots and calculate the coeffi-
cient of determination (R2). The R2 values for each morphologi-
cal trait were all above 0.9, indicating the high predictive accu-
racy of  the present  model.  This  high level  of  accuracy demon-
strates the reliability of  using UAV-derived 3D point clouds for
detailed phenotypic analysis in forestry research.

Figure 3 illustrates the spatial distribution of various morpho-
logical  traits  in  slash  pine  as  assessed  by  UAV-derived  pheno-
typing.  The  collection  of  scatterplots  shows  individual  pheno-
typic  traits  of  the  trees,  with  each  subplot  representing  a

different  trait:  CA,  CBH,  CL,  CV,  CW,  CWH,  H.  CW  values  are
predominantly  high  across  the  sampled  population,  sugges-
ting  either  trait-wide  robustness  or  environmental  conditions
that  favor  wide  crowns.  Conversely,  the  majority  of  CBH
measurements  are  significantly  low,  indicating  a  commonality
in lower crown initiation across trees. Both CL and H show simi-
lar ranges in value distribution, suggesting a correlative growth
pattern  between  vertical  crown  extent  and  total  tree  height.
These  spatial  distributions  provide  valuable  insight  into  the
phenotypic  variability  and  potential  environmental  influences
on morphological traits of lodgepole pine. Mapping these traits
to  geographic  coordinates  provides  a  comprehensive  under-
standing  of  their  growth  dynamics  and  structural  diversity
across the sampled terrain.

Principal  component  analysis  (PCA),  shown  in Fig.  4,  eluci-
dates  the  underlying  structure  of  variability  in  morphological
traits  within  a  slash  pine  population.  This  analysis  distills  a
multidimensional  data  set  into  principal  components,  high-
lighting  the  primary  axes  of  variance  and  covariation  among
key  traits.  Dimension  1  (Dim1)  encapsulates  50.6%  of  the  trait
variability, suggesting a strong gradient of correlated morpho-
logical  features  within  the  dataset.  Dimension  2  (Dim2)
accounts for an additional 19%, capturing additional variability
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related  to  specific  morphological  traits.  Vector  orientations  in
the  biplot,  depicted  as  arrows,  manifests  the  loadings  of  indi-
vidual  traits  on  the  principal  components.  The  proximity  and
orientation of the vectors corresponding to crown width (CW),
canopy  area  (CA),  and  crown  width  height  (CWH)  suggest  a
notable  positive  correlation  among  these  traits.  Similarly,  the
orientation of the vectors for crown length (CL), canopy volume
(CV), and tree height (H) also indicate a strong positive correla-
tion,  demonstrating  that  these  traits  tend  to  vary  in  concert
across  the  studied  tree  individuals.  In  contrast,  crown  base
height (CBH) is predominantly associated with Dim2 and shows
a distinct pattern of variation orthogonal to the main trait clus-
ter,  possibly reflecting divergent growth dynamics or adaptive
responses  to  environmental  heterogeneity.  The color  intensity
of each data point representing individual trees is calibrated to
its cos2 value, a measure of how well the data are represented
on  the  principal  components.  Data  points  shaded  toward  the
red end of the spectrum denote a higher cos2 value, indicating
a  more  reliable  representation  on  the  PCA  plot,  while  those
shaded  toward  green  indicate  a  lower  correspondence.  This
analysis highlights the major patterns of trait variation and their
interrelationships within the population, providing insight into
the  genetic  and  environmental  factors  influencing  these  mor-
phological traits.

Figure 5 presents a correlation matrix heatmap showing the
pairwise correlation coefficients between different morphologi-
cal traits of slash pine trees. The color intensity and sign of the
correlation  coefficient  values  range  from −1  to  +1,  with  blue
shades representing positive correlations and red shades repre-
senting negative correlations. A correlation value of 1 indicates
a  perfect  positive  relationship, −1  indicates  a  perfect  negative
relationship,  and  0  indicates  no  correlation.  The  heatmap
provides an immediate visual interpretation of the strength and
direction  of  relationships  between  traits.  Crown  Base  Height
(CBH)  shows slightly  negative  correlations  with  all  other  traits,
suggesting that as CBH increases, other traits tend to decrease
slightly. However, the strength of these relationships is weak, as
the  values  are  close  to  0.  Canopy  area  (CA)  and  crown  width

height  (CWH)  show  a  moderate  positive  correlation,  indicated
by a lighter blue,  meaning that trees with wider crowns gene-
rally  have greater  width at  a  given height.  The strongest  posi-
tive  correlations  are  observed  between  canopy  area  (CA)  and
canopy volume (CV), CV and tree height (H), and crown length
(CL).  This  means  that  increases  in  canopy  area  are  strongly
related  to  increases  in  crown  volume,  and  similarly,  crown
volume  is  closely  related  to  tree  height  and  crown  length.
These  results  highlight  the  interrelated  growth  patterns  of
different  morphological  traits  in  lodgepole  pine  and  provide
insight into their structural and functional relationships.

Figure  6 illustrates  a  lollipop  plot  showing  heritability  esti-
mates for several morphological traits in slash pine, comparing
heritabilities  derived from pedigree-based analyses  with those
obtained  from  SNP-based  approaches.  The  vertical  lines  with
colored dots at the end represent the heritability estimates for
each  trait  at  different  locations.  The  color  of  the  dots  corre-
sponds to the different sites, with dark purple representing site
1,  teal  representing  site  2,  and  yellow-green  representing  the
pooled data  across  all  sites.  The left  side of  the graph,  labeled
'Pedigree', shows the heritability estimates for traits such as CA,
CBH,  CL,  CV,  CW,  CWH,  and  H  as  calculated  using  traditional
pedigree  information.  The  right  side,  labeled  'SNP',  shows  the
heritability estimates for the same set of traits, but derived from
SNP marker data. A comparison between the pedigree and SNP
approaches shows that the SNP-based estimates tend to show
similar or slightly higher heritabilities for traits such as CBH, CL,
and  CV.  This  suggests  that  SNP  markers  may  capture  more  of
the  additive  genetic  variance  for  these  traits.  Conversely,  for
traits such as CW, pedigree-based estimates appear to be more
conservative, which may reflect the different efficiency of each
method  in  capturing  the  underlying  genetic  architecture.
Notably, the heritability for traits such as CBH, CL, CV, and H are
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relatively high for both methods, indicating that these traits are
potentially  more  influenced  by  additive  genetic  factors  and
could be effectively selected in breeding programs. In contrast,
traits  such  as  CWH  have  lower  heritabilities,  suggesting  a
greater  influence  of  environmental  factors  or  non-additive
genetic  variance.  This  comparative  analysis  highlights  the
strengths and limitations of  each approach to estimating heri-
tability, providing valuable insights for slash pine selection and
breeding.

Figure  7 consists  of  four  radar  plots  showing  the  standard-
ized  breeding  values  of  morphological  traits  for  twenty  family
lines  of  slash  pine.  Panels  A  and  C  correspond  to  Site  1,  while
panels  B  and  D  correspond  to  Site  2.  The  spokes  of  the  radar
charts represent different families,  and their radial  extent from
the  center  indicates  the  magnitude  of  the  standardized  bree-
ding values for each trait. Panels A and B contrast the pedigree-
derived breeding values for Site 1 and Site 2. Families 16 and 12
at Site 1 (Panel A) are notable for their high CBH values, indica-
ting their  genetic  advantage for  this  trait.  In  contrast,  at  Site  2
(Panel B), families 11 and 9 excel in CW, while families 5 and 15
show negative values for the same trait. Families 18, 19, and 20

 

1.00 1Site
Pedigree SNP

2 All

0.75

0.50h2

0.25

0.00

Traits

CA
CBH CL CV

CW
CWH H CA

CBH CL CV
CW

CWH H

Fig.  6    Comparative  heritability  estimates  of  slash  pine
morphological  traits  using  pedigree  and  SNP  data,  The  vertical
lines  with  colored  dots  at  the  end  represent  the  heritability
estimates  for  each  trait  at  different  sites.  The  color  of  the  dots
corresponds  to  different  sites,  with  dark  purple  indicating  Site  1,
teal  representing  Site  2,  and  yellow  green  denoting  the  pooled
data across all sites.

 

2
a

1
0

St
an

da
rd

iz
ed

 v
al

ue
s −1

−2
−3
−4

2

Family Family

Family Family

c d

1
0

St
an

da
rd

iz
ed

 v
al

ue
s

−1
−2
−3
−4

2

Traits
H
CWH
CV
CW
CA
CBH
CL

Traits
H
CWH
CV
CW
CA
CBH
CL

1
0

−1
−2
−3
−4

2
b

1
0

−1
−2
−3
−4

Fig. 7    Comparative analysis of pedigree and SNP-based breeding values for morphological traits in slash pine across two sites. (a) Pedigree-
based in Site 1, (b) pedigree-based in Site 2, (c) SNP-based in Site 1, (d) SNP-based in Site 2.

 
UAV-based phenotyping in slash pine genomics

Page 8 of 15   Yan et al. Forestry Research 2024, 4: e025



at Site 2 show strong breeding values for H, CWH, and CL, indi-
cating their overall genetic superiority for these traits. Panels C
and D, which show the SNP-derived breeding values, present a
more  nuanced  picture.  At  Site  1  (Panel  C),  there  is  a  general
trend toward lower  breeding values  for  most  traits,  with  fami-
lies  18,  1,  8,  and  9  showing  negative  values  for  CBH,  while
family 10 shows a significantly positive value. Conversely, Site 2
(panel  D)  is  more  consistent  with  the  pedigree-derived  data,
with families 18,  19,  and 20 maintaining high breeding values.
Notably,  several  families  (2,  3,  4,  11,  and  15)  have  negative
breeding values for multiple traits, indicating potential genetic
limitations.  By  juxtaposing  pedigree  and  SNP-based  analyses,
Fig. 7 underscores the complexity of genetic evaluation and the
importance of a multifaceted approach to breeding value esti-
mation.  The  integration  of  both  types  of  data  is  critical  for  a
comprehensive  understanding  of  the  genetic  potential  within
the breeding program. This comparative analysis highlights the
strengths and limitations of  each approach and provides valu-
able insights for the selection and breeding of slash pine.

Figure  8 shows  a  circular  Manhattan  plot  visualizing  the
results  of  a  genome-wide  association  study  (GWAS)  for  seven

growth  traits  in  slash  pine  throughout  2023.  Each  concentric
circle in the plot corresponds to one of the traits, ordered from
the innermost circle to the outermost as follows: CWH, CV, CW,
CA, CBH, CL, and H.

The  angular  coordinates  are  mapped  to  the  genomic  loca-
tions of the SNPs, and the radial distance from the center quan-
tifies the significance level  of  each SNP association.  The outer-
most  circle  provides  a  visual  representation  of  SNP  density
across  the  genome,  with  the  significance  scale  detailed  in  the
legend. Blue and red markers highlight SNPs that reach signifi-
cant  (α <  0.05)  and  highly  significant  (α <  0.01)  association
levels, respectively. The thin purple solid and red dashed circle
lines  indicate  threshold  lines  for  significant  associations  with
different  phenotypes  at α <  0.05  and α <  0.01  levels,  respec-
tively. The gray solid circle lines correspond to the tick marks on
the  vertical  axis.  Key  SNPs  identified  for  CWH  include
'scaffold22007_82420'  and  'scaffold44702_108111',  suggesting
a  robust  genetic  association  with  this  trait.  Similarly,  for  CV,
SNPs  such  as  'scaffold114212_305642'  and  'scaffold78970_
13765' have been pinpointed as significant. The SNPs associated
with CW, such as 'Gene.216560_1274' and 'Gene.216560_1286'
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Fig.  8    GWAS of  the performance of  the seven growth traits  (from inner  to outer:  CWH,  CV,  CW,  CA,  CBH,  CL,  H)  of  slash pine in  2023.  The
outermost circle represents SNP density, and the grade division is indicated in the legend. Blue dots represent SNP loci reaching a significant
association level (α < 0.05), and red dots represent SNP loci reaching a highly significant association level (α < 0.01). The thin purple solid circle
lines and red dashed circle lines indicate threshold lines for significant associations with different phenotypes at α < 0.05 and α < 0.01 levels,
respectively. The gray solid circle lines correspond to the tick marks of the vertical axis. Only the red significant SNPs identified at the α < 0.01
level are marked by gray dotted lines distributed vertically.
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indicate  important  loci  for  this  trait.  The  SNPs  associated  with
CA  and  CBH  are  also  mapped  accordingly,  with  SNPs  such  as
'scaffold124904_157642'  and  'scaffold136313_20762'  of  note.
Significant  SNPs  affecting  both  CL  and  H,  such  as
'scaffold114212_305642'  and  'scaffold78970_13765',  are  found
on  the  outer  rings,  indicating  possible  pleiotropic  effects  or
genetic linkage. The plot is highlighted with threshold lines for
the α <  0.05  and α <  0.01  levels  to  help  distinguish  different
levels  of  significance.  The  identification  of  these  significant
SNPs  provides  a  foundation  for  further  genetic  research  and
potential  breeding  program  improvements  in  slash  pine.  This
analysis  highlights  the  genetic  architecture  underlying  impor-
tant  growth  traits  and  helps  to  identify  loci  that  could  be
targeted for selection in breeding programs.

Figure  9 presents  an  UpSet  plot  showing  the  overlap  of
significant genetic loci for seven growth traits in slash pine. The
horizontal  bars  represent  the  number  of  significant  loci  asso-
ciated  with  each  trait,  with  CW  having  the  largest  number  of
unique  loci  (8),  followed  by  CA  with  7,  and  CWH  with  2.  The
vertical bars represent the size of the intersection, which repre-
sents  the  number  of  loci  shared  between  trait  combinations.
The plot highlights an intersection between H and CL, where all
identified loci are shared, suggesting a potential genetic corre-
lation.  In  contrast,  the  CW  trait  is  distinguished  by  its  unique
loci,  highlighting  a  specific  genetic  influence  that  is  distinct
from  the  other  traits.  The  Viridis  color  scheme  enhances  the
visualization  by  distinguishing  the  sets  by  the  number  of  loci
they  share.  At  the  base  of  the  matrix,  filled  circles  indicate  a
trait's participation in an intersection, with lines connecting loci
shared  by  different  traits,  delineating  their  commonality.  The

intersection  involving  traits  H,  CL,  CA,  and  CV  is  particularly
highlighted, as indicated by the connected solid circles, indica-
ting a shared genetic basis. In Table 1, a substantial number of
genes  and  SNPs  have  been  identified,  each  associated  with
major  morphological  traits  in  slash pine.  For  CWH,  two signifi-
cant SNPs were associated with one gene, PITA_34108. CV was
characterized by associations with two genes and two SNPs. CA
had a more complex pattern,  with seven SNPs associated with
six different genes, suggesting a diverse genetic influence. CW
was  associated  with  eight  SNPs  and  six  genes.  For  CBH,  five
SNPs  and four  genes  were  identified.  Similarly,  H  and CL  were
each  associated  with  two  genes  and  two  SNPs.  These  results
provide  valuable  insights  into  the  genetic  architecture  of
important growth traits in slash pine and highlight both unique
and common genetic influences that can be targeted for selec-
tion in breeding programs. 

Discussion

Understanding  the  nuances  of  phenotypic  trait  variations  is
fundamental  in  the  realm  of  genetic  breeding  research.  Such
insights are instrumental in optimizing the planning and execu-
tion  of  field  trials,  as  well  as  in  the  meticulous  selection  of
germplasm resources, thereby elevating the precision and effi-
cacy  of  the  breeding  selection  process[39−41].  In  the  present
study,  the application of UAV technology played a pivotal  role
in accurately capturing spatial phenotypic traits. This approach,
having  demonstrated  its  effectiveness  in  agricultural  contexts
for  growth estimation and yield prediction,  is  equally  valuable
in  forestry  research[20,42,43].  The  integration  of  detailed  drone-
derived phenotypic data with comprehensive GWAS analysis in
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our  slash  pine  study  offers  a  novel  perspective  in  understan-
ding the genetic underpinnings of these traits. 

Enhanced extraction of tree morphological traits
using UAV-derived point cloud data

The  extraction  of  tree  morphological  traits  like  CBH,  CL,  H,
CA,  CW,  and  CWH  from  UAV-derived  point  cloud  data  repre-
sents  a  significant  leap  in  forest  phenomics.  This  method,  as
seen in the present study, harnesses the potential of advanced
UAV technology to capture these complex traits accurately. The
same study was found in eucalyptus trees[44], where UAV LIDAR
and  RGB  images  were  used  for  competitive  extraction  of
morphological structural traits of eucalyptus trees, such as tree
height,  diameter  at  breast  height  (Dbh),  crown,  trunk,  and
branches  and  they  demonstrated  that  these  morphological
traits  obtained  based  on  a  3D  point  cloud  were  better  than
those  measured  manually.  Liu  et  al.[45] found  that  point  cloud
data is outperforms in coniferous tree (Yunnan pine) than other
morphological  forest  species  in  terms  of  applicability  and
accuracy (DBH: Root Mean Square Error (RMSE) = 1.17 cm, Tree
Height:  RMSE  =  0.54  m).  Furthermore,  the  present  methodo-
logy aligns with the findings of Thiel & Schmullius[46] in terms of
the  reliability  of  UAV-derived point  clouds,  which were  shown
to be comparable  to  lidar  point  clouds.  This  suggests  that  the
UAV  imagery-based  point  cloud  is  not  only  a  valid  approach
but  also  a  potentially  more  accessible  and  cost-effective
method  for  extracting  tree  structural  traits.  The  comparative
ease  of  data  acquisition  and  processing  with  UAVs  could
significantly  streamline  forest  phenomics,  making  it  an  attrac-
tive tool for researchers and forest managers alike.

This side by side proves that 3D point cloud-based morpho-
logical  features  of  conifers  can  be  better  extracted.  In  the
present  study,  it  was  found  that  many  of  the  under-branch
heights  were  lower  than  1.3  m,  so  the  information  of  the  dia-
meter  at  breast  height  (DBH)  was  not  obvious,  and  the  DBH
metrics were not extracted.

The present approach utilized a series of  custom-developed
functions,  each  tailored  to  measure  specific  aspects  of  slash
pine  morphology.  The  calculate_CBH_LAS  function,  for
instance, identified the branching point above the trunk using
the height thresholds and standard deviation calculations. The
calculate_crown_width  function  and  calculate_canopy_
height_outside_trunk function provided a comprehensive view
of  the  tree's  overall  height,  mirroring  the  precision  noted  in
Ghanbari Parmehr & Amati's[47] study on forest canopy traits.

Moreover,  the  calculate_extreme_points_height  function
determined the maximum height reached by the canopy, offe-
ring  insights  into  the  vertical  growth  extent.  The  calculate_
crown_volume_ellipsoid  computed  the  crown  volume,  appl-
ying  an  ellipsoidal  model  to  the  canopy  dimensions  derived
from  the  point  cloud  data.  This  comprehensive  approach  to
morphological assessment not only highlights the efficiency of
UAV  technology  but  also  its  accuracy,  as  validated  against
manually annotated field data, with precision levels exceeding
90% (Supplemental Fig. S1).

The  integration  of  these  functions  with  UAV-derived  point
cloud  data  overcomes  the  limitations  of  traditional  field
measurement  methods,  as  noted  by  Dandois  &  Ellis[48],  who
discussed  the  challenges  of  manual  tree  trait  measurement  in

 

Table 1.    Information for 23 canditate genes with 28 significant SNPs that were annotated as growth-related.

Trait SNPa Geneb Allelec Effectd Gene function

CWH scaffold22007_82420 PITA_34108 C > T missenset Neurofilament heavy polypeptide-like
scafold44702_108111 − − − −

CV scaffold114212_305642 PITA_24813 A > T missense Ubiquitin family
scaffold78970_13765 PITA_16597 G >A downstream_gene PAR1 protein

CA scaffold124904_157642 PITA_04981 A >G synonymous Fe2OG dioxygenase domain-containing protein
scaffold125333_242817 PITA_17436 A > C downstream_gene KH domain
scaffold165935_108445 PITA_23370 T > C downstream_gene −
scaffold200020_15423 PITA_24554 C > G missense Ethylene-responsive element binding factor
scaffold200020_15465 PITA_24554 G >A missense Ethylene-responsive element binding factor
scaffold71840_181523 − G > A intergenic −
scaffold78970_13765 PITA_16597 G > A downstream PAR1 protein

CW Gene.216560_1274 Gene.216560 G > A missense Putative DEAD-like helicase
Gene.216560_1286 Gene.216560 A > G missense Putative DEAD-like helicase

Gene.22986_174 Gene.22986 T > C synonymous Twinkle homolog protein, chloroplastic/mitochondrial isoform X2
scaffold10289_45294 PITA_04230 A > C synonymous Peptide N-acetyl-beta-D-glucosaminyl asparaginase amidase A

scaffold103964_286446 − C > T intergenic −
scaffold230610_125905 PITA_01330 G > A downstream Hsp20/alpha crystallin family
scaffold41862_112441 PITA_00750 G > T intron Zinc finger protein CONSTANS-LIKE 6
scaffold59196_160287 PITA_40818 T > C intergenic Arogenate dehydrogenase 2

CBH scaffold136313_20762 PITA_21834 G > A missense Two-component response regulator ORR22
scaffold139188_163347 PITA_38848 G > C upstream Annexin
scaffold29915_108204 − T > C intergenic −
scaffold76835_129711 − A > G intergenic −

super3003_478531 PITA_04633 G > A downstream MFS domain-containing protein
H scaffold114212_305642 PITA_24813 A > C missense Ubiquitin family

scaffold78970_13765 PITA_16597 G > A downstream PAR1 protein
CL scaffold114212_305642 PITA_24813 A > C missense Ubiquitin family

scaffold78970_13765 PITA_16597 G > A downstream PAR1 protein

aThe number after '_' represents the SNP position on the corresponding unigene or scaffold; bdepending on the location of the SNP, it is annotated with the
corresponding  unigene  or  the  gene  corresponding  to  the  scaffold; cthe  first  nucleotide  is  the  reference  nucleotide,  and  the  second  nucleotide  is  the
nucleotide following the substitution event. dthe annotation of the SNP, i.e. where the mutation occurred.
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dense  forest  environments.  UAV  technology,  in  contrast,
provides a non-invasive, high-throughput,  and highly accurate
alternative,  critical  for  both  growth  studies  and  genetic  bree-
ding  in  trees.  While  the  high  accuracy  and  efficiency  of  UAV-
based methods are clear, challenges remain in data processing
and expertise requirements for handling large datasets. Future
research should focus on refining data analysis techniques and
developing  more  user-friendly  tools  to  enhance  the  applica-
tion  of  UAV  technology  in  forest  phenomics  and  ecosystem
management. 

Genetic variation and GWAS analysis
The  present  study's  heritability  estimates  and  breeding

values  provide  pivotal  insights  into  slash  pine's  genetic  archi-
tecture, revealing a spectrum of heritability for various morpho-
logical  traits.  Notably,  the  findings  on  tree  height  heritability
surpass those in previous slash pine studies[49]. This divergence
highlights  the  comprehensive  nature  of  our  phenotypic  data
and suggests a broader genetic influence on these traits.

The  results  of  this  study  demonstrate  significant  disparities
in  heritability  estimates  for  various  morphological  traits  in
slash  pine  when  comparing  SNP-based  and  pedigree-based
approaches[50]. Specifically, the SNP method exhibits a trend of
similar or slightly higher heritability estimates compared to the
traditional pedigree approach for traits such as CBH, CL, and CV,
suggesting  that  SNP  markers  may  be  more  effective  in  captu-
ring  additive  genetic  variance  for  these  traits,  similar  results
were found by Soleimani et al.[51].

In the context of breeding programs, the relatively high heri-
tability  estimates  for  traits  like  CBH,  CL,  CV,  and  H  imply  a
substantial  influence  of  additive  genetic  factors[52],  making
them  viable  candidates  for  selection.  Conversely,  traits  with
lower  heritability,  such  as  CWH,  suggest  a  greater  impact  of
environmental factors or non-additive genetic variance[53].

The  breeding  value  analysis  presented  in Fig.  7 further
underscores  the  complexity  of  genetic  evaluation.  While  both
pedigree and SNP data highlight genetic advantages for speci-
fic  families  across  traits,  SNP-derived data  introduces  nuances,
occasionally  deviating  from  pedigree-based  results[54],  which
calls  attention  to  potential  genetic  limitations.  Consequently,
a  comprehensive  understanding  of  genetic  potential  within
breeding  programs  necessitates  the  integration  of  both  pedi-
gree and SNP data[55].

A total of 28 associations were identified by GWAS, including
22 different SNPs localized to 16 different candidate genes. Two
of  these  candidate  genes  were  present  at  two  different  muta-
tion  sites  and  were  significantly  associated  with  CW  and  CA
traits,  respectively,  and  were  annotated  as  putative  DEAD-like
helicase  and  ethylene-responsive  ERF,  respectively.  DEAD-like
helicase  belongs  to  the  largest  subfamily  of  RNA  deconjuga-
ting enzymes SF2 and regulates various aspects of plant growth
by  participating  in  all  biological  processes  of  RNA  metabolism
in the plant  kingdom[56],  such as  seed development and seed-
ling  growth[57],  pollen  tube  formation[58],  and  post-maturation
processing of 23S ribosomes[59].  The gene has also been found
to  play  an  important  role  in  somatic  embryonic  processes  in
Lobelia,  where  it  is  not  only  significantly  expressed  at  the
syncytial embryo stage but also induced in response to abiotic
stress signals such as JA[60].  ERF has also been reported to play
an  important  role  in  biological  processes  such  as  agronomic
traits  of  wheat[61],  flower  and  seed  development  in
Arabidopsis[62], and floral control in maize[63].

Of  interest,  the  mutant  locus  scaffold114212_305642  was
detected  in  CV,  H,  and  CL  traits,  respectively.  While
scaffold78970_13765  was  recognized  in  CV,  CA,  H,  and  CL,
respectively.  The  former  corresponds  to  a  candidate  gene
belonging  to  the  ubiquitin  family,  which  modifies  the  plant
proteome to differentiate into appropriate cell and tissue types
for  maximum  adaptation  to  the  environment[64].  The  latter  is
annotated  as  PAR1  protein,  which  is  able  to  influence  photo-
morphogenesis  in  plants  and  can  form  a  network  of  hetero-
dimeric  complexes  with  the  flavonoid  sterol-activated  HLH
transcription  factor  PRE1  and  phytochrome-interacting  factor
(PIF)  to  regulate  cell  elongation  and  growth[65].  The  candidate
gene  significantly  associated  with  CA  is  also  annotated  as
Fe2OG  dioxygenase  domain-containing  protein,  which  has
been  shown  to  interact  with  gibberellins  and  participate  in
plant growth[66].

The regulation of gene expression at the post-transcriptional
level is mainly achieved by proteins that bind RNA recognition
motifs  (RRMs)  and  K-homology  structural  domains  (KHs)[67].  In
this study, the KH domain was recognized in CA, which may be
involved  in  the  important  transcriptional  level  regulation
during  the  growth  of  slash  pine.  Twinkle  homolog  protein,
chloroplastic/mitochondrial  isoform  X2  was  significantly  asso-
ciated  with  CW,  which  is  involved  in  the  regulation  of  maize
ectodermal  development[68].  Peptide  N-acetyl-beta-D-
glucosaminyl asparaginase amidase A is involved in regulating
the  activity  of  macromolecules  such  as  sugars  and  reducing
misfolded proteins in plants[69]. Hsp20/alpha crystallin family as
an  important  chaperone  protein  under  heat  stress  can  ensure
high  productivity  of  rice[70].  The  CO  (CONSTANS)  genes  of
Arabidopsis,  rice  and  barley,  which  play  an  important  role  in
the regulation of flowering by photoperiod[71], were also identi-
fied  as  CW  significantly  related  genes.  For  CBH  trait,  three
candidate  genes  were  identified,  namely  Two-component
response regulator ORR22, Annexin,  and MFS domain-contain-
ing  protein.  Among  them,  Annexin  binds  to  membrane  phos-
pholipids  in  a  calcium-dependent  manner  and is  widely  invol-
ved in the regulation of plant growth and MFS proteins are the
largest  group  of  secondary  membrane  transporter  proteins  in
the cell, and can function as transporter proteins with a variety
of substrates in plant growth and development[72].  These asso-
ciations highlight the link between significant SNPs and known
functional genes or biological pathways, providing an intuitive
understanding  of  their  biological  significance.  Consequently,
the above results indicate that the GWAS in this study has effec-
tively  revealed  the  genetic  basis  of  growth  trait  variations  in
slash pine. 

Limitations and future directions

In  our  study  on  slash  pine  morphological  traits  and  genetic
breeding,  several  limitations  and  future  research  directions
merit consideration.

Firstly, the sample size, while substantial, may not fully repre-
sent  the  genetic  diversity  within  slash  pine  populations.
Expanding  the  sample  size  and  including  individuals  from
diverse geographical  regions could enhance the robustness of
the present genetic findings.

Secondly,  environmental  factors  such  as  soil  composition,
climate, and inter-tree competition are known to influence tree
growth.  Integrating  environmental  data  into  the  analyses
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would  enable  a  more  comprehensive  understanding  of  gene-
environment interactions.

Furthermore,  while  the  GWAS  analysis  identified  candidate
genes  associated  with  morphological  traits,  further  functional
studies  and validation experiments  are  needed to  confirm the
roles of these genes in slash pine growth and development.

Lastly, future research directions may involve the integration
of multi-omics data, including transcriptomics and proteomics,
to  unravel  the  intricate  regulatory  networks  involved  in  tree
growth and morphology. 

Conclusions

In summary, the present study delves into the realm of slash
pine  genetics  and  morphology,  shedding  light  on  key  aspects
of  phenotypic  variation  and  genetic  breeding.  Through  the
innovative  use  of  UAV  technology,  efficient  and  highly  accu-
rate  measurements  of  critical  morphological  traits  were  achie-
ved,  revolutionizing  the  way  we  collect  data  in  forestry
research.  The  present  results  underscore  the  importance  of
morphological  traits,  such  as  tree  height  and  crown  dimen-
sions,  in  understanding  growth  patterns  and  structural  varia-
tion  in  slash  pine.  UAV  technology  has  proven  to  be  a  game
changer,  providing  rapid  and  accurate  data  collection  com-
pared  to  traditional  labor-intensive  methods.  In  addition,  the
integration  of  detailed  drone-derived  phenotypic  data  with
comprehensive  GWAS  provided  a  new  perspective  on  the
genetic  basis  of  these  traits.  The  identification  of  candidate
genes  associated  with  specific  morphological  traits  paves  the
way  for  more  precise  genetic  improvement  and  breeding
strategies in slash pine.

In addition, the practical implications of the present findings
for  forest  management  and  breeding  programs  are  profound.
Forest  inventory  processes  and  monitoring  efforts  can  be
greatly enhanced by the ability to quickly and accurately assess
morphological  traits  using UAV technology.  This  technological
advance  will  allow  foresters  to  make  more  informed  decisions
regarding  forest  health,  growth  patterns,  and  resource  alloca-
tion.  In  addition,  the  identification  of  candidate  genes  asso-
ciated with key morphological traits provides valuable markers
for  selective  breeding  programs  aimed  at  improving  growth
rates, disease resistance, and overall  productivity of slash pine.
Implementation  of  these  genetic  findings  in  breeding  pro-
grams may lead to the development of superior slash pine cul-
tivars  that are better  able to withstand environmental  stresses
and meet the demands of sustainable forestry practices.

While the present study represents a significant leap forward,
it  is  important to acknowledge the limitations,  such as sample
size  constraints  and  the  need  for  further  validation  of  candi-
date  genes.  These  limitations  guide  us  toward  future  research
directions  that  include  expanding  sample  diversity,  refining
data  processing  methods,  considering  environmental  factors,
and  integrating  multi-omics  data  for  a  more  comprehensive
understanding. 
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