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Abstract
Effectively evaluating and estimating the photosynthetic capacities of different poplar genotypes is essential for selecting and breeding poplars

with high productivity. This study measured leaf hyperspectral reflectance, net photosynthetic rate (Pn), transpiration rate (Tr), intercellular CO2

concentration  (Ci),  and  stomatal  conductance  (Gs)  across  the  upper-,  middle- and  lower-layer  leaves  of  six  poplar  genotypes.  Photosynthetic

capacities  and  spectral  differences  were  assessed  among  these  genotypes.  By  analyzing  the  correlation  of  photosynthetic  parameters  and

spectral characteristics, the photosynthetic parameters were also estimated from hyperspectral parameters using BP neural networks. Significant

differences  were  observed  in  the  photosynthetic  parameters  among  six  poplar  genotypes. Populus  tremula  ×  P.  alba exhibited  the  highest

photosynthetic  rate,  while Populus  hopeiensis showed the lowest.  Leaves  in  the middle  layer  demonstrated greater  photosynthetic  capacities

than those in the other layers. Leaf reflectance among the six poplar genotypes differed significantly in the ranges of 400−760 nm, 800−1,300 nm,

1,500−1,800  nm,  and  1,900−2,000  nm.  Values  for  MTCI,  WI,  REP,  PRI,  and  first-order  derivative  at  891  nm  also  showed  significant  differences.

Hyperspectral parameters, including first-order derivative spectra (FDS), raw spectral reflectance, and photosynthetic parameters, showed strong

correlations in the red light (670 nm), near-infrared (760−940 nm), and short-wave infrared (1,800−2,500 nm). Four photosynthetic parameters

including Pn, Tr, Ci, and Gs were estimated using BP neural network models and R2 were 0.56, 0.44, 0.35, and 0.35, respectively. The present results

indicate that hyperspectral reflectance can effectively distinguish between different poplar genotypes and estimate photosynthetic parameters,

highlighting its great potential for studying plant phenomics.
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Introduction

Poplar (Populus L.) is an important species for protection and
timber  forests  in  China.  It  is  widely  planted  in  northern  and
central  China,  and it  has  many cultivated varieties.  The photo-
synthetic capacity of poplar influences its growth and develop-
ment  process;  higher  photosynthetic  efficiency  can  enhance
the  growth  of  fast-growing  species  such  as  poplar[1].  Under-
standing  the  photosynthetic  characteristics  of  various  poplar
varieties  is  essential  for  their  promotion,  application,  and
management.  Current  studies  focus  on  comparing  the  photo-
synthetic  performance  of  different  poplar  species  to  identify
those  best  suited  for  enhancing  productivity  or  resisting  envi-
ronmental stresses such as drought[2], salinity stress[3], and pest
impact[4]. Although photosynthetic rate is a primary indicator of
a  plant's  photosynthetic  capacity[5],  water  use  efficiency  also
affects plant growth. Poplar species that accumulate more orga-
nic matter while consuming less water are considered suitable
for  cultivation  in  arid  regions  of  China[6,7].  For  many  studies,
four  basic  metric—net  photosynthetic  rate  (Pn),  transpiration
rate  (Tr),  intercellular  CO2 concentration  (Ci),  and  stomatal
conductance  (Gs)—are  measured to  fully  assess  the  photosyn-
thetic  performance  of  plants[8−10].  However,  measuring  these

parameters  is  often  time-consuming  and  laborious.  Given  the
relationship  between  light  absorption  and  leaf  physiological
substances  such  as  pigments[11],  water[12],  and  dry  matter[13],
remote  sensing  methods  hold  great  potential  for  quickly
accessing photosynthetic differences among plant species[14] or
genotypes[15].

Studies based on remote sensing have long employed vege-
tation  indices  to  explore  relations  between  leaf  spectral  and
photosynthetic  properties[16−19].  Several  vegetation indices  are
commonly  used  to  estimate  photosynthetic  parameters.  The
photochemical  reflectance  index  (PRI)  has  been  successfully
applied to assess photosynthetic functioning[20] and has proven
sensitive  to  changes  in  photosynthesis  under  environmental
stresses[21].  Other  vegetation  indices  include  the  normalized
difference  vegetation  index  (NDVI)  for  detecting  leaf  chloro-
phyll  absorption[22],  the  normalized  difference  nitrogen  index
(NDNI)  for  mapping  nitrogen  and  content[23],  and  the  enhan-
ced  vegetation  index  (EVI)  for  monitoring  photosynthetic
phenology[24].  However,  vegetation  indices  may  have  limita-
tions  due  to  the  restricted  number  of  bands  that  comprise
them. In this case, hyperspectral techniques offer more detailed
insights  from  raw  spectra,  reflecting  essential  information
about  physiological  materials.  Despite  the  redundance  of
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hyperspectral  data,  partial  least  regression  (PLSR)  models  are
increasingly  used  to  predict  photosynthetic  capacity,  specifi-
cally to estimate the maximum rate of carboxylation (Vcmax) and
the maximum rate of electron transport (Jmax)[14,25−27]. However,
few studies have considered both raw spectral reflectance and
vegetation  indices  to  explicitly  estimate Pn, Tr, Ci,  and Gs to
compare  photosynthetic  abilities  across  different  poplar
genotypes.

In  this  study,  six  genotypes  of  poplar  (P.  davidiana  ×  P.
bolleana, triploid P. tomentosa, P. tremula × P. alba, P. hopeiensis,
P.  deltoides  ×  P.  euramericana 'Nanlin895', P.  alba  ×  P.  glandu-
losa)  were  used  as  experimental  materials.  Photosynthetic
factors  and  hyperspectral  reflectance  (400–2,500  nm)  were
measured  in  the  upper,  middle,  and  lower  leaf  layers  to  com-
pare  the  photosynthetic  and  hyperspectral  differences  among
the  poplar  genotypes.  A  correlation  analysis  was  conducted
between  photosynthetic  parameters  and  spectral  traits.  A  BP
neural  network  was  then  employed  to  develop  a  photosyn-
thetic  inversion  model  based  on  hyperspectral  data  from  the
leaves.  Key  spectral  variables  were  identified  to  offer  a  rapid
method  for  assessing  the  photosynthetic  capacity  of  poplar
seedlings. 

Materials and methods
 

Study materials
P.  davidiana  ×  P.  bolleana,  triploid P.  tomentosa, P.  tremula  ×

P.alba, P.  hopeiensis, P.  deltoides  ×  P.  euramericana 'Nanlin895'
and P. alba × P. glandulosa were used as experimental materials.
The poplar tissue culture seedlings of these six genotypes were
transferred  to  pots  and  cultivated  in  a  growth  chamber  set  at
25 °C. Once the seedlings reached a height of 30 cm, they were
transplanted to a greenhouse for further cultivation. Five seed-
lings of each genotype, totaling 30 plants, were selected for the
experiment.  The  mean  height  and  ground  diameter  of  the
seedlings  for  the  six  genotypes  are  shown  in Supplementary
Table S1. 

Measurement of leaf photosynthetic parameters
and spectral reflectance

The  photosynthetic  parameters  of  poplar  leaves  were  mea-
sured  using  a  portable  gas  exchange  system  (LI-6800,  LICOR
Biosciences,  Lincoln,  NE,  USA).  Measurements  were conducted
on sunny days between 9:00 and 11:00 a.m.  The conditions of
the measurements were set as follows: temperature in the leaf
chamber  was  25  °C,  light  intensity  was  1,800 μmol  photon
m−2·s−1 and  CO2 concentration  was  400 μmol·mol−1.  Measure-
ments  were  taken  from  three  leaves  per  seedling,  one  each
from  the  upper,  middle,  and  lower  layers.  Each  leaf  was
measured  three  times  to  obtain  an  average  value.  The  photo-
synthetic parameters assessed include net photosynthetic rate
(Pn, μmol·m−2·s−1), transpiration rate (Tr, mmol·m−2·s−1), intercel-
lular  CO2 concentration  (Ci, μmol·mol−1)  and  stomatal  conduc-
tance (Gs, mol·m−2·s−1).

The spectral reflectance of all leaves was measured using the
PSR-3500 portable spectroradiometers which had a band range
of  350−2,500  nm.  The  spectral  resolution  was  1  nm  before
1,006 nm, and 3.5 nm after that. A leaf clip was used to measure
the radiance on the leaf surface, which was attached to a plant
probe with an artificial light source. The reflectance of each leaf
was  the  leaf  radiance  divided  by  the  radiance  of  a  spectral
panel  in  the  leaf  clip[20].  Leaf  spectral  reflectance  and

photosynthetic parameters were measured on the same leaves
simultaneously. 

Extracting leave spectral vegetation index and
first-order derivative spectra

To reduce the noise in leaf reflectance and emphasize spec-
tral  characteristics,  vegetation  index,  and  first-order  derivative
spectra  (FDS)  were  extracted from the leaf  hyperspectral  data.
These  were  used  for  modeling  and  selecting  important  spec-
tral  features.  In  total,  14  vegetation  indices  were  selected  and
calculated,  as  listed  in Table  1.  Normalized  vegetation  index
(NDVI),  ratio  vegetation  index  (RVI),  soil-adjusted  vegetation
index (SAVI), and enhanced vegetation index (EVI) were related
to  vegetation  coverage  and  leaf  structure.  MERIS  terrestrial
chlorophyll  index  (MTCI),  chlorophyll  index  (CI),  chlorophyll
index  at  green  band  (CIgreen),  chlorophyll  index  at  red  band
(CIred),  Vogelmann red edge index (VOG),  modified chlorophyll
absorption  ratio  index  (MCARI),  red  edge  position  (REP),  and
greenness index (GI)  were related to high chlorophyll  content.
The  photochemical  reflectance  index  (PRI),  and  water  index
(WI)  were  related  to  radiation-use  efficiency  and  leaf  water
content.

FDS can capture the changing trend of the spectral curve at
specific  bands,  effectively  highlighting  its  characteristics.  FDS
across the full  spectral range was calculated using the formula
in Eqn (1).

Di = (Ri−1−Ri+1)/(λi−1−λi+1) (1)
Where  Di was  the  first-order  derivation  of  the  band  i,  R  was

spectral reflectance, and λ was the band interval.
To  reduce  data  redundancy  due  to  the  high  correlation

between adjacent bands in hyperspectral data, subsampling of
leaf reflectance and first-order derivatives were performed. One
out of every five bands were retained in the range of 400−2,500
nm. The final spectral features for modeling included 125 origi-
nal  reflectance  spectra,  125  first-order  derivative  spectra,  and
14 vegetation indices. 

 

Table 1.    Formula of vegetation index.

Vegetation index Formula Ref.

NDVI NDVI = (NIR−RED)/(NIR+RED) [28]
RVI RVI = NIR/RED [29]
SAVI

SAVI =
NIR−RED

1.5× (NIR+RED+0.5)
[30]

MTCI MTCI = (NIR−REG)/(REG−RED) [31]
EVI

EVI =
2.5× (NIR−REG)

(1+NIR+2.4×RED)
[32]

CI CI = (R640−R673)/R673 [33]
CIgreen CIgreen = NIR/Green−1
CIreg CIreg = NIR/REG−1
PRI PRI = (R531−R570)/(R531+R570) [34]

VOG VOG = R740/R720 [35]
WI WI = R900/R970 [36]
MCARI MCARI = [(R700−R670)−0.2 ×

(R700−R550)]× (R700/R670)

[37]

REP
REP =

700+40× [(R670+R780)/2−R700]
R740−R700

[38]

GI GI = R554/R667 [39]

NIR  (780−800  nm)  represents  the  near-infrared  band,  RED  (660−680  nm)
represents  the  red  band,  and  REG  (710−730  nm)  represents  the  red  edge
band.
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Analysis of photosynthetic parameter difference
and spectral difference of poplar varieties

The  photosynthetic  parameters  and  spectral  features  of
different poplar genotypes were analyzed using one-way Ana-
lysis  of  Variance (ANOVA),  with comparisons made among the
leaves  of  the  upper,  middle,  and  lower  layers  respectively.
Before ANOVA analysis, Bartlett's test was used to assess homo-
geneity of the variance. Multiple comparisons were performed
using  Fisher's  Least  Significant  Difference  (LSD)  test,  with p-
values less than 0.05 considered significant. The variance analy-
sis was conducted using the 'car' and 'agricolae' packages in R,
and the results were mapped in MATLAB. 

Correlation analysis of leaf photosynthesis and
spectra

The  Pearson  correlation  coefficient  between  the  original
spectral reflectance, FDS, and photosynthetic parameters were
calculated  and  plotted  for  each  wavelength.  Pearson  correla-
tion  coefficients  were  computed  for  all  vegetation  indices  in
relation to the photosynthetic parameters, and the results were
visualized  in  heat  maps.  For  each  photosynthetic  parameter,
spectral features with strong correlation were identified, clarify-
ing  the  relationship  between  photosynthesis  and  the  spectral
characteristics  of  different  poplar  genotypes.  The  analysis  also
revealed  the  spectral  characteristics  that  could  predict  photo-
synthetic differences among the varieties. 

Photosynthesis inversion model based on BP
neural network

m = 2√a+b

As  a  non-parametric  model,  a  neural  network  is  not  limited
by  data  distribution,  while  is  more  efficient  than  traditional
regression  when  handling  numerous  variables  and  large
sample  sizes[40].  After  removing  three  unnormal  values,  the
modeling  data  contains  87  leaf  samples.  The  training  set  and
test set were divided into a ratio of  3:1 for model training and
testing.  The  original  reflectance,  first  order  derivation,  and
vegetation index were used as input spectral characteristic vari-
ables. Four photosynthetic parameters, including Pn,  Ci,  Gs,  and
Tr,  were taken as the target variables.  The selection of  spectral
features  was  determined  according  to  the  Pearson  correlation
coefficient  (r)  between  photosynthetic  parameters  and  each
spectral  feature.  In  each  type  of  spectral  feature,  the  spectral
features  with  stronger  correlation  were  selected  first.  While
ensuring the accuracy of the model, as few spectral features as
possible  were  used,  and  combinations  of  spectral  features  of
different  classes  were  tried.  After  model  training,  the  Coeffi-
cient of determination (R2) and Root Mean Square Error (RMSE)
of the training set and test set were calculated to determine the
optimal  photosynthetic  inversion  model.  Using  a  three-layer
simple  neural  network,  the  empirical  formula  was
used for  the number  of  nodes  in  the middle  layer,  where m is
the  number  of  middle  layer  nodes,  a  is  the  number  of  input
layer nodes, and b is the number of output layer nodes. There-
fore,  the  structure  of  the  neural  network  changes  dynamically
according  to  the  number  of  selected  spectral  features.  In  this
study,  AdamW  optimizer[41],  which  comes  with  the  pytorch
package,  was  used.  The  learning  rate  was  set  to  0.01.  The
appropriate  iterations  were  determined  by  observing  the
performance of the training set and the test set. The BP neural
network inversion model  was performed using the python 3.9
pytorch  package.  After  completing  the  model  training,  the
variables  that  appeared  frequently  among  the  four  optimal

photosynthesis  models  were  defined  as  important  spectral
features, and these features were further analyzed. 

Results
 

Differences in leaf photosynthesis of different
poplar genotype

Significant  differences  in  photosynthesis  were  observed
among various poplar  genotypes.  The net  photosynthetic  rate
(Pn)  of  leaves,  from highest  to lowest,  were as  follows: Populus
tremula × P. alba, Populus davidiana × P. bolleana, Populus alba
× P. glandulosa,  triploid Populus tomentosa, Populus deltoides ×
P.  euramericana,  and Populus  hopeiensis. Populus  tremula ×
P.  alba exhibited  the  highest  photosynthetic  performance
(Pn =  9.46 μmol·m−2·s−1, Tr =  5.11  mmol·m−2·s−1, Ci =  333.64
μmol·mol−1, Gs =  0.34  mol·m−2·s−1)  (Fig.  1).  Leaf  position had a
clear  influence  on  photosynthesis,  with  differences  observed
across  poplar  genotypes.  In Populus  tremula × P.  alba, Populus
hopeiensis,  and Populus  alba × P.  glandulosa,  the  middle-layer
leaves  exhibited  significantly  higher Pn, Tr,  and Ci values  than
the  upper  and  lower  layers  (Supplementary  Fig.  S1).  In  the
upper layer, Populus hopeiensis showed a significantly lower Pn
compared  to  other  poplar  genotypes.  In  the  middle  layer, Pn
and Gs of Populus  tremula × P.  alba were  higher  than  in  the
other two genotypes, the photosynthetic parameters of triploid
Populus  tomentosa were  the  lowest.  In  the  lower  layer,  signifi-
cant  differences  were  observed  in  all  four  photosynthetic
parameters. Populus  tremula × P.  alba had  the  highest  net
photosynthetic  rate  (Pn =  6.30 μmol·m−2·s−1),  whereas  triploid
Populus  tomentosa had  the  lowest Tr (1.50  mmol·m2·s−1), Ci
(1.49 μmol·mol−1), and Gs (0.06 mol·m2·s−1). 

Differences in leaf spectral reflectance among
poplar genotypes

The spectral reflectance of different poplar genotypes varied
significantly  across  the visible  light  range (400−760 nm),  near-
infrared (800−1,300 nm),  short-wave infrared (1,500−1,800 nm
and  1,900−2,000  nm)  (Fig.  2).  In  the  visible  light  region,  the
spectral  reflectance,  from  highest  to  lowest,  was  as  follows:
Populus tremula × P.  alba, Populus hopeiensis, Populus alba × P.
glandulosa, Populus  davidiana × P.  bolleana,  triploid Populus
tomentosa, and Populus deltoides × P. euramericana. In the near-
infrared  region,  spectral  reflectance  from  high  to  low  was:
Populus  tremula × P.  alba, Populus  deltoides × P.  euramericana,
Populus  alba × P.  glandulosa, Populus  davidiana × P.  bolleana,
triploid Populus tomentosa, and Populus hopeiensis.

MTCI,  WI,  REP,  PRI,  and  first-order  derivative  at  891  nm
appeared  more  frequently  in  the  four  photosynthesis  models
(Table  2),  and  therefore  were  considered  important  spectral
features  related  to  photosynthesis.  There  were  significant
differences  in  the  important  spectral  traits  of  poplar  leaves
among  different  genotypes  (Fig.  3).  In  the  upper  leaf  layer,
Populus alba × P. glandulosa had the highest MTCI, while Popu-
lus  hopeiensis had  the  lowest.  WI  was  highest  in Populus
hopeiensis and  lowest  in Populus  davidiana × P.  bolleana.  The
highest  PRI  was  observed  in Populus  deltoides  ×  P.  eurameri-
cana,  whereas  the  lowest  was  in Populus  hopeiensis.  The  first-
order derivative at 891 nm was highest in Populus deltoides × P.
euramericana and  lowest  in Populus  tremula  ×  P.  alba.  In  the
middle layer, MTCI was highest in Populus tremula × P. alba and
the lowest in Populus deltoides × P. euramericana. WI was high-
est  in Populus  tremula × P.  alba and  lowest  in  triploid Populus
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tomentosa.  REP was highest  in Populus  deltoides × P.  eurameri-
cana and  lowest  in Populus  hopeiensis.  The  first-order
derivative at 891 nm was highest in triploid Populus tomentosa,
and lowest in Populus tremula × P. alba. In the lower layer, MTCI

was highest in Populus tremula × P. alba and lowest in Populus
deltoides × P. euramericana. WI was highest in Populus deltoides
× P. euramericana and lowest in triploid Populus tomentosa. REP
was highest in Populus tremula × P. alba and lowest in Populus
deltoides × P.  euramericana.  For  PRI, Populus  deltoides × P.
euramericana had  the  highest  value,  while Populus  hopeiensis
had the lowest.  The first-order derivation at 891 nm was high-
est in Populus davidiana × P. bolleana and the lowest in Populus
tremula × P. alba.

It was found that the spectral differences between the poplar
genotypes  with  the  highest  and  lowest  photosynthetic
parameters  were  relatively  stable  (Fig.  3).  By  conducting
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Fig.  1    (a)−(c)  Differences  in  net  photosynthetic  rate,  (d)−(f)  transpiration  rate,  (g)−(i)  intercellular  CO2 concentration,  and  (j)−(l)  stomatal
conductance among different genotype of poplar leaves. Same letters in the figures indicate no significant difference and the error line was the
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Fig.  2    Original  leaf  spectral  reflectance  from  400−2,500  nm  of
different poplar genotypes. Pdb, Pto, Pta, Pho, Pag, and Pde were
Populus davidiana × P. bolleana, triploid Populus tomentosa, Populus
tremula × P. alba, Populus hopeiensis, Populus alba × P. glandulosa,
and Populus deltoides × P. euramericana 'Nanlin895'.

 

Table  2.    Selected  variables  in  the  optimal  model  of  different
photosynthetic parameters.

Photosynthetic
parameters Selected feature

Pn MTCI, REP, VOG, CIreg, MCARI, GI, CI, RVI, WI, PRI

Ci WI, NDVI, SAVI, EVI, PRI, D826.8, D918.4, D1207.5, D907.6,
D885.4

Gs MTCI, REP, GI, EVI, CI, D891, D978.5, D491.1, D1001, D550.1

Tr MTCI, WI, REP, VOG, CIreg, D891, D491.1, D826.8, D918.4,
D978.5

D represents first-order derivation.
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pairwise  comparisons  of  the  poplar  genotypes  that  exhibited
the  highest  and  lowest  performance  in  each  photosynthetic
parameter  (Supplementary  Fig.  S2),  it  was  found  that  in  the
two-dimensional  space  of  photosynthetic  parameters  and
spectral  features,  the data points for the two genotypes in the
mid-layer leaves are more spread out. Therefore, in the middle
layer,  leaf  spectral  features  can  more  effectively  reflect  the
differences in photosynthetic parameters. 

Correlation of photosynthetic and spectral
characteristics of poplar leaves among different
genotypes

The  correlation  between  the  four  photosynthetic  parame-
ters  and  leaf  spectral  reflectance  ranged  from −0.20  to  0.40.
Leaf  reflectance  at  450,  670,  760,  and  1,920  nm  was  highly

correlated  with  the  photosynthetic  parameters. Pn exhibited  a
significant negative correlation with spectral reflectance at 710
nm, with an r-value of −0.15. Tr showed significant correlations
with spectral reflectance at 450, 670, 760, and 1,920 nm across
all  bands.  Additionally,  the  correlation  trend  between Ci and
reflectance in the 700–1,800 nm range differed from that of the
other  parameters  (Fig.  4a).  Photosynthetic  parameters  and
the  first-order  derivation  of  leave  reflectance  were  highly
correlated at 763, 491, 891, 936, 827, and 859 nm, with correla-
tion  coefficients  ranging  from −0.55  to  0.46  (Fig.  4b).  Vegeta-
tion  index  also  showed  a  strong  correlation  with  photosyn-
thetic  parameters,  with  correlation  values  ranging  from −0.28
to 0.42. MTCI and REP were the most closely associated with Pn,
with correlation values of 0.42 and 0.37, respectively.  WI had a
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strong  relationship  with Ci and  the  correlation  coefficient  was
0.32.  MTCI and REP also showed relatively strong relationships
with Gs and  the  correlation  was  0.24  and  0.20,  respectively
(Fig. 5). 

Estimation of poplar photosynthetic parameters
based on the vegetation index

The accuracy of the net photosynthetic rate was higher than
that of the other three parameters, with R2 of 0.56 and RMSE of
2.37 μmol·m−2·s−1.  R2 ranged  from  0.35  to  0.44,  with  RMSE  of
1.64  mmol·m−2·s−1,  38.64 μmol·mol−1,  and  0.11  mol·m−2·s−1 for
transpiration rate, intercellular CO2 concentration and stomatal
conductance (Fig. 6). All metrics were calculated on the test set.
The  optimal  parameters  selected  for  estimating  photosyn-
thetic  characteristics  are  listed  in Table  1.  Chlorophyll-related
vegetation  indices,  such  as  MTCI,  were  more  effective  than
other  parameters.  WI  also  performed  well  in  estimating  inter-
cellular  CO2 concentration  and  transpiration  rate.  PRI  proved
useful  for  modeling  net  photosynthetic  rate  and  intercellular
CO2 concentration.  Most  of  the  first-order  derivatives  selected
for estimating poplar photosynthetic parameters were found in
the 800−1,000 nm range. 

Discussion

This  study  compared  the  photosynthetic  differences  and
spectral differences among poplar genotypes by measuring the
photosynthetic  factors  and  full-band  leaf  spectral  reflectance.
The BP neural  network  was  employed to  develop a  photosyn-
thetic  parameter  inversion  model  based  on  leaf  hyperspectral
data.  Among  the  six  genotypes, P.  tremula × P.  alba exhibited
higher  photosynthetic  performance,  while  triploid P.  tomen-
tosa showed  lower  performance.  As  key  substrates  for  photo-
synthesis, water and CO2 significantly influence the net photo-
synthetic  rate  of  plants[42].  In  the  middle  layer, P.  tremula  ×  P.
alba showed a much higher transpiration rate and intercellular

CO2 concentration  compared  to  triploid P.  tomentosa,  indica-
ting a  stronger  capacity  to  absorb water  and CO2 under  suita-
ble  external  conditions.  Increased  stomatal  conductance
typically  leads  to  higher  transpiration  and  intercellular  CO2

concentration[43],  and  the  ability  of  stomata  to  remain  open
depends  on  the  maintaining  a  stable  water  condition  in  the
leaves[44].  The  higher  stomatal  conductance  of P.  tremula  ×  P.
alba allowed  for  greater  CO2 uptake  from  the  air,  enhancing
transpiration,  and  promoting  photosynthesis.  However,  the
high  transpiration  rate  of P.  tremula × P.  alba also  suggests  a
larger  water  requirement[6],  meaning  its  high  photosynthetic
performance relies on sufficient water availability.

The  leaf  layer  affects  the  photosynthetic  capability  of  diffe-
rent  poplar  genotypes.  In  the  middle  layer,  the  differences  in
photosynthetic  parameters  were  more  obvious  compared  to
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the  upper  and  lower  layers,  and  the  differences  among  geno-
types were relatively stable (Fig. 2).  Light availability can cause
variations  in  the  photosynthetic  capacity  of  leaves  at  different
positions  within  a  tree[45].  Lower-layer  leaves  compensate  for
reduced  light  by  increasing  leaf  area,  which  enhances  their
photosynthetic capacity[46]. Differences in leaf development can
also  account  for  variations  in  photosynthesis  at  the  seedling
level, for mature leaves exhibiting stronger photosynthetic abili-
ties than younger leaves. The stomatal conductance of middle-
layer  leaves  are  higher  than  that  of  upper-layer  leaves.  Wu  et
al.[47] suggest that the slower increase in stomatal conductance
in  young  leaves,  compared  to  their  carbon  assimilation  capa-
city, limits photosynthesis and may explain the superior photo-
synthetic  performance  of  middle-layer  leaves.  Middle-layer
leaves  are  more  mature  than  upper-layer  leaves  and  receive
more  light  than  lower-layer  leaves,  which  likely  accounts  for
their more robust and stable photosynthetic activity.

The  vegetation  indices  selected  by  the  optimal  model
reflects different aspects of photosynthesis: chlorophyll content
(MTCI),  water  content  (WI),  and  radiation-use  efficiency  (PRI).
The selected first-order derivation (891 nm) is located in the red
edged region.  In the middle layer with relatively stable photo-
synthetic  differences,  the  photosynthetic  features  were  the
most  different  between P.  tremula × P.  alba and  triploid P.
tomentosa.  MTCI  and  WI  of P.  tremula × P.  alba were  signifi-
cantly  higher  than  those  of  triploid P.  tomentosa.  The  net
photosynthetic rate and PRI of leaves from different parts of P.
tremula × P.  alba was  significantly  higher  than  those  of P.
hopeiensis,  and  the  difference  of  net  photosynthetic  rate
between  the  upper  and  lower  leaves  was  the  largest.  The
photosynthetic  and  spectral  features  of  other  poplar  varieties
did  not  show  consistent  differences.  The  above  results  show
that only the varieties with great differences in photosynthetic
performance can the spectral differences reflect the photosyn-
thetic differences stably.

Previous studies have found that visible spectra are strongly
related  to  chlorophyll  content,  while  shortwave  infrared  is
linked to nitrogen concentration[15],  and water content[48].  Red
edge  position  has  shown  strong  correlations  with  Vcmax and
Jmax

[27]. Most vegetation indices are calculated using visible and
near-infrared bands[49].  In the present study,  the optimal spec-
tral  regions  for  estimating  photosynthetic  parameters  were
primarily located in the visible (450–700 nm), and near-infrared
ranges  (700–1,500  nm).  Moreover,  short-wave  infrared  (1,500–
2,500 nm) also contains important information regarding vege-
tation  physiological  activities[50].  It  was  observed  that  photo-
synthetic factors had a high correlation with the original spec-
tral  reflectance  and  the  first-order  derivative  spectra  in  the
short-wave  infrared  region  of  1,800–2,000  nm.  However,  the
original spectral reflectance and the first-order derivative spec-
tra  of  different  varieties  had  greater  differences  in  the  visible
and  near-infrared  regions  (Fig.  3),  which  was  consistent  with
the  study  on  alpine  deciduous  forests.  Based  on  the  PLSR
algorithm,  Barnes  et  al.[51] found  that  the  near-infrared  band
has a greater contribution than the shortwave infrared band to
estimate the photosynthetic capacity of vegetation. Visible and
near-infrared spectra  are  more sensitive to  the photosynthetic
differences between poplar varieties and improve the accuracy
of  the photosynthetic  inversion model.  The spectral  traits  sen-
sitive to chlorophyll are the most prominent for the evaluation
of  photosynthetic  performance,  which  is  consistent  with  the

previous  study[51]and  implies  that  leaf  chlorophyll  content
may  be  the  main  factor  leading  photosynthetic  variations
across  poplar  genotypes  and  leaf  positions  under  suitable
environments.

Among the four  photosynthetic  parameters,  inversion accu-
racy of net photosynthetic rate was the highest, which may be
attributed to the net photosynthetic rate closely relating to the
pigment content. Liu et al.[52] believed that the inversion of net
photosynthetic  rate  without  photosynthetically  active  radia-
tion  is  not  feasible.  Zhou  et  al.[53] used  hyperspectral  data  to
invert  the  CO2 assimilation  rate,  stomatal  conductance,  and
transpiration  rate  of  lemon  trees  under  drought  stress,  and
found  that  the  model  based  on  random  forest  algorithm  was
optimal  (0.88  <  R2 <  0.92).  In  this  study,  the  photosynthetic
inversion model based on the BP neural network was found to
have good accuracy (0.35 < R2 < 0.56). 

Conclusions

The close relations between leaf optical features and photo-
synthetic process allows for effective evaluation of plant photo-
synthetic  performance  through  hyperspectral  data.  This  study
found  that Populus  tremula  ×  P.  alba exhibited  the  highest
photosynthetic rate among the six poplar genotypes evaluated.
Additionally, critical spectral bands and vegetation indices were
also  identified  to  distinguish  different  poplar  genotypes  using
non-destructive and rapid measurements of  leaf  hyperspectral
reflectance.  Moreover,  the  photosynthetic  parameters  inclu-
ding Pn, Tr, Ci,  and Gs,  with R2 of 0.56, 0.44, 0.35, and 0.35, were
estimated  respectively.  Therefore,  hyperspectral  data  effec-
tively distinguish between different poplar genotypes and esti-
mate photosynthetic  parameters,  highlighting its  great  poten-
tial for studying plant phenomics. 
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