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Abstract
A key objective of forest tree breeding programs is to enhance traits related to growth and stem form, to cultivate plantations that exhibit rapid growth,

straight trunks with minimal taper,  and superior wood quality to meet the demands of modern timber production. Notably, Liriodendron species exhibit

notable  heterosis  in  interspecies  hybrids,  with  hybrid Liriodendron displaying  rapid  growth  rates,  straight  trunks,  and  wide  adaptability.  However,  the

genetic  architecture  underlying  growth  and  stem  form  traits  remains  unclear,  hindering  the  progress  of  genetic  improvement  efforts.  Genome-wide

association study (GWAS) emerges as an effective approach for identifying target genes and clarifying genetic architectures. In this study, a comprehensive

analysis was conducted using an artificial population of 233 hybrid progeny derived from 25 hybrid combinations and resequenced to obtain genome-wide

single  nucleotide  polymorphism  (SNP)  and  insertion  and  deletion  (InDel)  variants.  After  filtering,  a  total  of  192,972  SNP  loci  and  60,666  InDel  loci  were

obtained, which were subsequently analyzed for associations using the R package GAPIT. We identified 97 significant SNP loci and 58 significant InDel loci

(−Log10(P) ≥ 4.50), respectively, culminating in the identification of 161 candidate genes. The functions of these candidate genes were annotated, revealing

potential associations between Lchi_2g03172 and Lchi_10g19986 genes with the growth of hybrid Liriodendron, and highlighting the potential influence of

the Lchi_16g30522 gene  on  the  growth  and  branching  of  hybrid Liriodendron.  Overall,  this  study  serves  as  a  foundational  step  towards  unraveling  the

genetic architecture underpinning growth and stem form in Liriodendron plants.
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Introduction

Growth and stem form traits are critical economic attributes with
significant  implications  for  timber  production  in  forest  trees.  The
crown, which serves as the primary apparatus for photosynthesis in
trees, plays a vital role in influencing tree growth and wood produc-
tion.  Traits  such  as  clear  bole  height  and  crown  length  ratio  are
essential  for  assessing  crown  development  in  forest  trees  and
provide key indicators of their growth status. In practice, cultivating
trees with straight and sturdy trunks is  a  major  breeding objective.
Traits such as trunk straightness, degree of forking, branching angle,
and  branch  number  are  commonly  used  to  evaluate  trunk  shape.
This  evaluation  process  seeks  to  identify  trees  with  straight  trunks,
minimal  knots,  and  high  timber  production  potential.  These  traits
are  essential  for  selecting  trees  that  align  with  desired  production
outcomes.

Liriodendron plants, also known as tulip trees, belong to the genus
Liriodendron within the Magnoliaceae family and comprise only two
natural  species: L.  chinense and L.  tulipifera.  Known  for  its  graceful
tree  form,  distinctive  leaf  shape,  vibrant  flowers,  and  easily  pro-
cessed  wood, Liriodendron plants  serve  as  both  ornamental  trees
and a  valuable industrial  timber  species[1].  The interspecies  hybrids
between  two Liriodendron species  exhibit  distinct  advantages  in
traits  such  as  growth,  ornamental  value,  and  adaptability.  For
instance, Xia et al. conducted research on the progeny of 57 hybrid
combinations of six Liriodendron parents, studying dynamic changes
in  genetic  parameters  of  growth  traits  over  time.  This  study  pro-
vided insights into parental pair/combinations selection and hetero-
sis  prediction,  thus  expediting  genetic  improvement  processes  for
Liriodendron[2].  Forest  trees  typically  have  long  lifespans  and  are
influenced  by  various  environmental  factors  during  growth[3],

leading  to  genotype-by-environment  interactions  that  affect  indi-
vidual tree phenotypes[4]. In a previous study on hybrid Liriodendron
across three sites, genotype × environment interactions were exami-
ned,  identifying  four  superior  family  lines  in  terms  of  growth  and
adaptability[5].  Moreover,  previous  studies  mainly  focused  on
growth traits and rarely on stem-form traits that impact directly on
timber quality.

The advent of Next-Generation Sequencing (NGS) technology has
ushered  in  a  new  era  for  molecular  breeding  in  forest  trees.
Genome-wide  association  study  (GWAS)  using  single  nucleotide
polymorphism  (SNP)  molecular  markers  has  emerged  as  a  widely
recognized  method  with  vast  potential  for  elucidating  the  genetic
basis  of  complex traits  in  forest  trees[6].  Additionally,  linkage analy-
sis  or  linkage  disequilibrium  (LD)  mapping  leverages  the  diverse
phenotypic  and  genomic  variations  within  natural  populations  to
pinpoint  target  genes  governing  complex  quantitative  traits  in
forest trees[7]. GWAS has gained widespread acceptance for unrave-
ling genetic architecture in various crops such as soybean[8],  and in
forest  trees,  including  poplar  (Populus L.)[9−11],  eucalyptus  (Eucalyp-
tus spp.)[12−14],  loblolly  pine  (Pinus  taeda L.)[15,16],  and  spruce  (Picea
asperata Mast.)[17].  Chen  et  al.  achieved  the  first  complete  sequen-
cing  and  assembly  of  the  Chinese  tulip  tree  genome[18].  Subse-
quently, Xia et al. conducted resequencing of 233 hybrid progenies
from  25  cross  combinations  of  Chinese  tulip  trees,  measuring  tree
height  and  diameter  at  breast  height  over  11  consecutive  years,
then  performing  a  GWAS  using  SNPs,  revealing  62  SNPs  related  to
tree height and 52 related to diameter at breast height[19].

SNPs  are  widely  used  in  association  analysis  due  to  their  high
density and abundance. However, SNPs do not represent all types of
variants  in  the  genome,  and  InDels,  which  are  the  second  most
common  type  of  variant  after  SNPs  in  terms  of  distribution  and
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density,  alter  plant  traits  by  disrupting  gene  regulatory  or  coding
regions[20]. When an InDel occurs in coding regions or splice sites, it
may lead to alterations in protein structure and function, which can
affect the traits of the organism[21]. Some researchers utilized InDels
to reveal the genetic mechanisms underlying important plant traits.
For  example,  Hu  et  al.  conducted  a  GWAS  on  oilseed  rape  using
InDels and identified 628 locus-related candidate genes for 56 agro-
nomically  important  traits[22].  Therefore,  the  use  of  InDel  loci  for
GWAS  and  candidate  gene  screening  can  be  cross-validated  with
SNP loci and serve as a complementary approach[22,23].

In  this  study,  we  focused  on  the  growth  and  stem  form  traits  of
hybrid Liriodendron and conducted GWAS using various association
models on an artificial population derived from multiple hybrid com-
binations.  We  aimed  to  identify  SNP  and  InDel  loci  and  to  further
determine candidate genes influencing growth and stem form traits
in Liriodendron plants. Our findings may serve as a foundational step
towards  underlying  the  genetic  architecture  underpinning  growth
and stem form traits in Liriodendron plants. 

Materials and methods
 

Plant material
Fourteen  adult  trees  from  a  provenance  testing  plantation  were

used  as  mating  parents,  and  their  offspring  were  acquired  and
tested in a progeny trial  plantation.  Both plantations are located in
Xiashu Town, Jurong City, Jiangsu Province, China (latitude 32°12' N,
longitude 119°23' E), with an average altitude of 103 m, an average
annual temperature of 15.2 °C, and an average annual precipitation
of 1,055.6 mm. The soil type is yellow-brown loam, which is suitable
for  the  growth  of  hybrid Liriodendron.  The  progeny  testing  planta-
tion was established in 2008 using a randomized block design with
four  replications  and  a  plant  spacing  of  4  m  ×  4  m.  From  this  pro-
geny  population,  233  progenies  from  25  cross  combinations  were
selected  as  an  experimental  population  for  whole-genome  rese-
quencing and phenotyping. The data obtained were used for subse-
quent  GWAS.  The  hybrid  combinations  (MSL  ×  WYS  and  MSL  ×  S)
with significant differences in heterosis for growth were selected for
RNA-seq by analyzing the variance in growth of the progeny deter-
mination  stands  and  estimating  the  genetic  parameters.  Detailed
information on the experimental  population has been described in
previous studies[2]. 

DNA extraction, resequencing, and genotyping
In  July  2021,  healthy  and  fresh  leaves  were  collected  from  233

individual  forest  trees,  placed  in  liquid  nitrogen,  and  stored  in  a
cryogenic refrigerator at −80 °C after being transported to the labo-
ratory. DNA was extracted using the Plant Genomic DNA Extraction
Kit  (DP320-03)  from  Tiangen  Biologicals  (Beijing,  China).  The  DNA
was examined using 1% gel electrophoresis and analyzed with a UV
spectrophotometer  (NanoDrop  2000;  Thermo  Fisher  Scientific,
Waltham,  MA,  USA),  and  the  genomic  DNA  was  used  to  construct
DNA  fragment  libraries  using  the  TruSeq  Nano  DNA  LT  Sample
Preparation  Kit  (Illumina,  Inc.  San  Diego,  CA,  USA)  and  sequenced
with  double  ends  (PE)  at  150  bp  per  read  length  on  an  Illumina
HiSeq 4000 platform (OE Biotech. Co., Ltd, Shanghai, China).

Subsequently,  the  FASTP  software[24] was  used  to  filter  the  raw
data  for  high-quality  clean  data,  and  BWA  was  used  to  map  the
clean reads to the reference genome of Liriodendron, which is avail-
able  from: https://ftp.cngb.org/pub/CNSA/data2/CNP0000815/CNS
0044063/CNA0007303.  GATK  was  used  with  standard  filtering
parameters  (https://gatk.broadinstitute.org)  to  call  and  filter  SNP
variants[25].  VCFTOOLS[26] was  used  to  control  the  genotype  data,
removing SNP loci with a detection rate of less than 0.01, mass ≤ 30,

minimum allele frequency less than 0.05, and minimum sequencing
depth greater than 3 per SNP, and retaining only bi-alleles (i.e.,  AA,
coded  as  0;  Aa,  coded  with  1;  AA  coded  as  2).  Ultimately,  192,972
informative SNPs were retained, and BEAGLE[27] was used to further
estimate  missing  genotypes  for  subsequent  GWAS  analysis  and
annotate  the  SNPs  using  ANNOVAR[28].  The  quality  control  condi-
tions for  InDels  were QualBy Depth (QD) < 2.0,  RMS Mapping Qua-
lity (MQ) < 40.0, Fisher Strand (FS) > 200.0, Strand Odds Ratio (SOR)
>  10.0,  Mapping  Quality  Rank  Sum  Test  (MQ  Rank  Sum)  < −12.5,
Read Pos Rank Sum Test (Read Pos Rank Sum) < −20, and removed
individuals  with  deletion  rates  of  more  than  5%,  resulting  in  the
retention of 60,666 InDel loci  and BEAGLE was used to further esti-
mate the missing genotypes. 

Measurement of phenotypic traits
In  September  2023,  we  collected  the  phenotypic  data  of  233

sample trees.  The growth traits  measured included clear  bole height
(CBH), crown length ratio (CLR), tree height (H), and diameter at breast
height  (DBH).  CBH and H were measured using an ultrasonic  altime-
ter,  while  DBH  was  measured  at  1.3  m  of  tree  height  using  a  tape
measure, and CLR was calculated as the ratio of crown length to tree
height.  The  stem  form  traits  measured  included  straightness  (ST),
forking (FK),  number of branches (NB),  and branching angle (BA).  NB
was  determined  by  visually  counting  all  first-order  branches  of  indi-
vidual trees,  and the other three traits were measured using grading
scores  (Supplementary  Table  S1).  All  phenotypic  data  were  subse-
quently  summarized  (Supplementary  Table  S2).  Descriptive  statistics
for  the  phenotypic  data  included  mean,  maximum  (max),  minimum
(min), standard deviation (SD), and coefficient of variation (CV). 

Genome-wide association analysis
Principal component analysis was conducted on the filtered InDel

data  using  the  GAPIT  package[29],  and  the  first  three  principal
components were used to plot 3D scatter plots in R using the SCAT-
TERPLOT3D package.  Pritchard et al.  corrected for spurious correla-
tions  by  applying  group  structure  (Q)  estimated  using  a  set  of
random  markers  to  a  general  linear  model  analysis[30].  The  equa-
tions  for  the  general  linear  model  (GLM)  used  in  GWAS  was  as
follows:

y = Xβ+Qv+ e (1)
The  equation  for  the  mixed  linear  model  (MLM)  used  in  GWAS

was as follows[31]:

y = Xβ+Qv+Zu+ e (2)
where y represents the vector of observed phenotypes, X represents a
matrix  of  molecular  markers, β represents  an  unknown  vector  of
additive SNP effects as fixed effects, v represents a vector of population
structure  fixed  effects,  u  represents  a  multigene  vector  of  kinship
backgrounds as a random effect, Q and Z are their incidence matrices,
and e represents a random residual error. Using the GAPIT package in
R,  the  kinship  matrix  and  the  first  three  principal  components  in  the
principal  component  analysis  were  used  as  covariates  in  the  mixed
linear  model.  In  addition  to  these  two  models,  we  also  employed
CMLM, MLMM, BLINK, and FarmCPU models to identify significant loci
(−Log10(P)  ≥ 4.50).  The  association  effects  were  compared,  and  the
appropriate  models  were  ultimately  selected  for  association  analyses
of  the  different  traits.  The  R  package  ggplot  was  used  to  generate
Manhattan and quantile-quantile plots (QQ plots). 

Identification and functional annotation of candidate
genes

Candidate genes were identified within a 20.0 kb region upstream
and downstream of the significant SNP site.  The protein sequences
of the candidate genes were obtained from the TAIR website (www.
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arabidopsis.org), and their functions were inferred by comparing the
protein  sequences  of  homologous  genes  in Arabidopsis  thaliana,
filtering the results to select those with the highest matches. 

Expression assay of candidate genes
In  2019,  we  selected  young  spring  leaves,  stem  tips  during  the

twitching period, and summer-differentiated xylem as material. Leaf
blades  were  sampled  in  late  March  2019  from  the  secondary
branches  of  the  first  live  branch,  at  the  position  of  the  2nd to  3rd

leaves near the base of the branch, in both the southeast and north-
west directions. Stem tips were collected in late April 2019 from the
top buds of secondary branches of the first live branch in the south-
east and northwest directions during the peak twitching season. In
mid-July  2019,  the  surface  active  primary  xylem  cells  were  scraped

at  breast  height  after  peeling  the  bark  in  the  southeast  direction.
These  were  quickly  cooled  in  liquid  nitrogen,  transported  back  to
the  laboratory,  and  stored  in  a −80  °C  freezer  for  subsequent  tran-
scriptome  sequencing.  All  samples  included  three  tissues/organs
from three parents, each with two biological replicates; and two F1
full-sib  families,  with eight  progenies  from each family,  resulting in
66  total  samples  for  transcriptome  sequencing.  Subsequently,  a
differentially  expressed  gene  (DEG)  set  was  obtained,  which  was
obtained by comparing the differences in gene expression between
the  dominant  cross  combination  (MSL  ×  WYS)  and  the  non-domi-
nant cross combination (MSL × S) and filtering out the genes with a
p-value < 0.05 and log2FC > 1. The two cross combinations showed
significant  differences in  growth,  so the candidate genes identified
in this study were cross-referenced with the DEG set to preliminarily
validate the candidate genes selected from association analysis. 

Results
 

Statistical analysis of phenotypic data
Descriptive analyses for five quantitative traits was conducted: H,

DBH, NB, CBH, and CLR (Table 1). The results showed that H ranged
from  12.10  to  25.80  m,  DBH  ranged  from  11.40  to  38.70  cm,  NB
ranged  from  3  to  43,  CBH  ranged  from  1.70  to  16.20  m,  and  CLR

 

Table 1.    Statistical analysis of tree height (H), diameter at breast height (DBH),
number of branches (NB), clear bole height (CBH), crown length ratio (CLR) traits.

Traits Minimum
values

Maximum
value

Average
value

Standard
deviation CV (%)

H 12.10 25.80 21.21 2.28 0.11
DBH 11.40 38.70 26.64 4.91 0.18
NB 3.00 43.00 20.40 7.29 0.36
CBH 1.70 16.20 8.15 3.00 0.37
CLR 0.16 0.91 0.62 0.13 0.21
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Fig.  1    Scatterplot  matrix,  density  distribution plot,  and correlation coefficients  (Pearson's  r)  for  quantitative traits  (tree height  (H),  diameter  at  breast
height (DBH), number of branches (NB), clear bole height (CBH), crown length ratio (CLR)). * 0.01 < p < 0.05; ** 0.001 < p < 0.01; ***p < 0.001.
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ranged  from  0.16  to  0.91.  The  coefficients  of  variation  for  the  five
traits  ranged  from  11%  (H)  to  37%  (CBH),  indicating  significant
differences among individuals. We plotted frequency histograms for
the three graded traits of ST, FK, and BA (Supplementary Fig. S1) to
better  visualize  the  structure  of  the  data.  Subsequently,  we
performed normality tests for the five quantitative traits and found
that  they  generally  conformed  to  a  normal  distribution  (Fig.  1),
allowing  for  subsequent  GWAS.  The  results  of  phenotypic  correla-
tion  analyses  of  quantitative  traits  showed  that  there  was  a  strong
negative  correlation  between  CBH  and  CLR,  a  moderate  positive
correlation between DBH and CLR,  as  well  as  NB,  and a  weak posi-
tive correlation between CLR and DBH and NB. 

Resequencing and genetic loci detection
Regarding  the  detection  of  SNPs,  there  was  a  detailed  elabora-

tion in our previous study[19]. All our selected SNPs, can be classified
into  six  types  of  nucleotide  substitutions  (Supplementary  Fig.  S2).
The C to T  (T  to  C)  type has  the highest  percentage of  50.68% and
the  G  to  C  (C  to  G)  type  has  the  lowest  percentage  of  4.42%.  The
transition ratio (Ti) and transversion ratio (Tv) can assess the quality
of  SNPs  in  the  genome[32].  In  general,  the  ratio  of  Ti/Tv  does  not
exceed 4, and a higher ratio generally represents a better quality of

sequencing[33].  In  this  study,  the  Ti/Tv  ratio  of  SNPs  was  2.97,
suggesting that the SNPs had good quality. After quality control, we
obtained a total of 60,666 InDel loci,  evenly distributed on 19 chro-
mosomes  (Fig.  2a).  The  results  of  principal  component  analysis
showed  (Fig.  2b)  that  the  first  three  principal  components
accounted for a total of 9.32%, and we used the first three principal
components to plot a three-dimensional scatter plot, revealing that
individuals  could  be  classified  into  distinct  subgroups,  suggesting
the presence of population structure. 

Selection of GWAS models
In  this  study,  we compared the results  of  six  association models:

GLM,  MLM,  CMLM,  MLMM,  FarmCPU,  and  BLINK,  and  selected  the
most  suitable  model  for  association  analysis.  This  approach  made
the  association  results  more  accurate  and  reliable.  For  SNP-based
association analysis, we counted the number of significant loci iden-
tified by each model  and plotted a  heat  map after  normalizing the
data  (Fig.  3).  Additionally,  we  calculated  the  expansion  coefficients
(λ)  for  each  model  and  visualized  them  with  box  plots  for  a  more
intuitive  comparison  (Fig.  4).  For  example,  in  the  case  of  the  DBH
trait, the GLM model identified the most significant loci, with a total
of  133,  while  the  CMLM  model  identified  the  least,  with  only  one.
However, the expansion coefficient (λ) for the GLM model was 1.248,
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suggesting  the  possibility  of  false-positive  results,  which  could
compromise accuracy. In contrast, the CMLM model may have been
overcorrected,  leading  to  a  false-negative  situation,  which  resulted
in  fewer  significant  loci  being  identified.  Overall,  the  MLM,  CMLM,
and MLMM models screened fewer significant loci,  although their λ
values were close to 1.00. The GLM model detected more significant
loci  but  had greater  fluctuation in  its λ values.  After  evaluating the
significant  loci  identified  by  each  model  and  their  accuracy,  we
decided to use the FarmCPU and BLINK models for subsequent asso-
ciation analysis. 

Genome-wide association analysis and candidate
gene screening

In this study, we analyzed the association of eight traits and visua-
lized Manhattan and QQ plots (Fig.  5 & Supplementary Fig.  S3).  We
identified a total of 155 significant loci, including 97 SNP loci and 58
InDel  loci.  Among  the  screened  significant  SNP  loci,  18  SNPs  were
significantly  correlated  with  CLR,  14  SNPs  were  significantly  asso-
ciated with CBH, three SNPs were significantly correlated with ST, 11
SNPs  were  significantly  correlated  with  FK,  nine  SNPs  were  signifi-
cantly correlated with BA, 10 SNPs were significantly correlated with
the NB, 21 SNPs were significantly correlated with DBH, and 11 SNPs
were  significantly  correlated  with  H.  A  total  of  87  candidate  genes
were screened among the 97 significant SNPs (Supplementary Table

S2),  with  more  genes  associated  with  growth  traits  (22  for  CLR,  18
for CBH, 10 for H, and nine for DBH) than with stem form traits (two
for  ST,  five  for  FK,  10  for  BA,  and 11  for  NB).  Using the  significance
SNP  loci,  we  screened  for  multiple  common  genes  in  the  traits  of
CLR and CBH, such as Lchi_15g29601, Lchi_15g29602, Lchi_15g29603,
Lchi_2g03172,  Lchi_15g29902,  Lchi_15g29903,  Lchi_15g29904,  etc.,
which may suggest that a single gene can influence multiple traits.
We screened a total of 74 candidate genes in the 58 significant InDel
loci  (Supplementary  Table  S3),  of  which  the  most  candidate  genes
were associated with the traits of  DBH and BA, both of which were
19; and the least candidate genes were associated with the traits of
CBH  and  NB,  which  were  only  two.  We  identified  three  common
genes  shared  by  both  SNP  and  InDel  significance  loci: Lchi_
15g29902,  Lchi_15g29903, and Lchi_5g12151.  The  two  candidate
genes Lchi_15g29902 and Lchi_15g29903 were associated with both
CLR and CBH, and the Lchi_5g12151 candidate gene was associated
with BA.

Candidate genes were selected from our previously updated gene
set[34]. Following the screening process, we identified the candidate
gene Lchi_16g30522 on  chromosome  16,  associated  with  the
branching  angle  trait.  Haplotype  analysis  indicated  that  this  SNP
locus  is  tightly  linked  (Fig.  6).  The  gene  was  identified  through  a
genetic  analysis  on  the  TAIR  website  (www.arabidopsis.org)  by
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comparing protein sequences. We found that this gene shows high
similarity  to  OPT3  in A.  thaliana,  which  encodes  a  phloem-specific
iron transport protein that loads iron into the phloem, facilitates iron
recirculation  from  xylem  to  phloem,  and  regulates  iron  signaling
from  shoots  to  roots  and  iron  redistribution  from  mature  to  devel-
oping tissues. A recent report indicates that OPT3 also transports Cu
in A.  thaliana[35].  Fe  and  Cu  play  a  significant  role  in  plant  growth
and development and are essential  trace elements in plants.  These
two  elements  can  affect  the  photosynthesis  and  respiration  of
plants[36,37].  Recent  studies  have  futher  demonstrated  that  Cu  defi-
ciency alters the branching structure of plants[38].

The  candidate  gene Lchi_2g03172, was  identified  on  chromo-
some  2  for  its  association  with  crown  length  ratio  traits.  After
comparison,  it  was  found  to  be  highly  homologous  to  chloroplast
fructose-1,6-bisphosphate aldolase (FBA3) in A. thaliana, which plays
a  role  in  the  regeneration  phase  of  the  Calvin  cycle[39].  Grafting
experiments  in A.  thaliana demonstrated  that  FBA3  loses  its  func-
tion during leaf  phloem translocation,  leading to the accumulation
of  photosynthetic  products  in  leaves  and  growth  retardation[40].
Additionly, we identified the candidate gene Lchi_10g19986 on chro-
mosome  10,  which  is  highly  homologous  to AtNug2 in A.  thaliana.
AtNug2 is  involved  in  the  maturation  process  of  ribosomal  subunit
before  the  60S  stage  in  plants  and  is  more  strongly  expressed  in
meristematic  tissues.  Mutations  in AtNug2 can  cause  growth
retardation in A. thaliana[41]. 

Expression of candidate genes in shoot apices and
xylem

Differences in gene expression can effectively explain phenotypic
variation,  and  the  association  between  genes  and  traits  can  be
better  understood  by  analyzing  the  expression  of  candidate  genes
across  different  tissues.  From  the  candidate  genes  screened  using
SNP  and  InDel  loci,  we  identified  nine  candidate  genes  in  the  DEG
collection of  two heterozygous combinations with significant diffe-
rences  in  growth  traits  (Table  2).  These  genes  were  primarily
expressed in the stem tip and xylem. The up-regulated genes inclu-
ded Lchi_12g23550, Lchi_18g34878, Lchi_12g23559, Lchi_15g28864,
and Lchi_14g27994,  while  the  down-regulated  genes  were
Lchi_10g20626, Lchi_6g12913, Lchi_5g12415, and Lchi_3g07857.  The
genes Lchi_18g34878 and Lchi_10g20626 were associated with DBH,
while  the Lchi_12g23550 gene  was  associated  with  H.  In  addition,
Lchi_14g27994 and Lchi_3g07857 were  associated  with  FK  and  ST,
respectively.  These  findings  suggest  that  differential  expression  of
candidate  genes  may  be  associated  with  growth  and  stem  form
traits. 

Discussion

GWAS, based on the fundamental principle of linkage disequilib-
rium (LD), is a comprehensive method for investigating the genetic
architecture  of  natural  populations[42].  SNPs  are  single-base
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Table 2.    Nine candidate genes associated with growth and stem traits in the differentially expressed gene (DEG) sets.

Tissues Gene Log2FC Log2CPM LR p-value FDR Up/down

Shoot Lchi_12g23550 2.45 3.12 20.99 4.63E-06 3.78E-04 Up
Lchi_18g34878 3.61 2.75 13.81 2.02E-04 6.66E-03 Up
Lchi_10g20626 −1.53 5.14 14.37 1.51E-04 5.34E-03 Down
Lchi_12g23559 1.98 4.25 8.97 2.75E-03 4.24E-02 Up
Lchi_5g12415 −2.05 3.59 18.10 2.10E-05 1.18E-03 Down

Lchi_15g28864 3.34 2.07 10.34 1.3E-03 2.51E-02 Up
Lchi_14g27994 2.57 2.35 11.15 8.40E-04 1.89E-02 Up
Lchi_3g07857 −1.32 7.58 9.09 2.57E-03 4.07E-02 Down

Xylem Lchi_6g12913 −1.06 6.54 15.94 6.52E-05 3.14E-03 Down
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mutation,  and  when  a  synonymous  mutation  occurs,  it  does  not
lead  to  amino  acid  changes  due  to  codon  redundancy,  thereby
maintaining  protein  stability.  In  contrast  to  SNP,  InDel  involves
multi-base  insertions  or  deletions,  and  when  it  occurs  in  the  CDS
region, it  is more likely to cause transcription and translation errors
or  premature  termination,  leading  to  phenotypic  changes.  Studies
have shown that InDels have a greater impact on protein structure
and  function  than  SNP[43].  InDels  can  alter  protein  conformation,
affecting  key  traits  of  mitochondrial  genes[44].  Therefore,  in  this
study,  GWAS  utilizing  both  SNP  and  InDel  loci  enabled  more  com-
prehensive screening of significant loci and accelerated the genetic
improvement  process.  Among  the  nine  differentially  expressed
genes  identified, Lchi_6g12913 was  associated  with  the  significant
SNP locus Chr_3590886, where a non-synonymous mutation (A to T)
was  detected,  potentially  altering  the  amino  acid  sequence.
This  gene  showed  differential  expression  in  the  two-hybrid
combinations.

The  statistical  models  utilized  in  GWAS  have  evolved  to  achieve
greater  completeness  and  efficiency.  These  models  are  primarily
based  on  the  general  linear  model  (GLM)  and  mixed  linear  model
(MLM).  GLM  incorporates  Principal  Component  Analysis  (PCA)  or
Population Structure (Q) as covariates to enhance calculation accu-
racy. Conversely, the MLM integrates a Kinship (K) matrix as a cova-
riate to mitigate false positives in association analyses[45]. The CMLM
model corrects for loci filtered out due to overcorrection in the MLM
model  and  calculates  the  average  kinship  after  clustering  and
grouping  kinship  data,  significantly  improving  computational
efficiency[46].  MLMM is  a  stepwise  regression method based on the
most  significant  loci  for  phenotype-genotype  association  analyses.
The most significant loci are entered as covariates in the next step of
the calculation, and the loci that are significantly associated with the
phenotype are obtained step by step[47]. As sequencing data volume
increases,  computational  speed  becomes  a  major  problem.  The
FarmCPU  model  improves  computational  speed  and  accuracy,
performing  association  analysis  more  efficiently  by  using  possible
associated loci as covariates for fixed effects, then calculating associ-
ations  of  loci  through  random  effects.  The  final  results  are  output
when the two effects alternate until no new associated loci appear.
In  our  study,  we  observed  differential  model  performance  across
traits  when  using  SNPs  for  association  analysis.  Notably,  the  BLINK
model  performed  best  in  associating  the  tree  height  trait  (Supple-
mentary  Figs  S4−S11),  while  the  FarmCPU  model  outperformed
others  across  different  traits.  Additionally,  when  employing  InDel
loci  for  correlation  analysis,  the  Blink  model  exhibited  enhanced
correlation efficacy. However, for the diameter at breast height trait,
the  FarmCPU  model  outperformed  the  BLINK  model,  identifying
more  significant  loci  and  showing  more  pronounced  deviations  in
the  QQ  plot  (Supplementary  Figs  S12−S19).  These  observations
highlight  that  model  selection  is  critical  for  ensuring  the  accuracy
and reliability  of  association analyses,  with each model  demonstra-
ting  specific  strengths  and  limitations  across  traits  and  genetic
variants.

Plants require a variety of trace elements for optimal growth and
development, with iron and copper being essential. These elements
trigger the transcription of genes involved in iron uptake and trans-
port,  mitigating  iron  deficiency[48].  Plants  also  tightly  regulate  iron
metabolism to prevent toxicity from iron overload[35]. In A. thaliana,
OPT3  is  identified  as  a  phloem-specific  iron  transport  protein[49].  It
plays a key role in signaling iron demand from shoots to roots and
facilitates  iron  transport.  Recent  findings  suggest  that  OPT3  is
involved  in  maintaining  copper  homeostasis,  allowing  plants  to
regulate the transport of both elements to support branch develop-
ment  and  avoid  toxicity[35].  Moreover,  copper  exerts  a  significant

influence on A. thaliana branch architecture and the fertility of male
A.  thaliana[38].  In  the  present  study,  the  candidate  gene Lchi_
16g30522 was  examined,  which  exhibits  high  homology  to  OPT3.
Lchi_16g30522 is  likely  to  influence  the  growth,  development,  and
branch structure formation in hybrid Liriodendron by regulating iron
and copper levels. Through its homology with OPT3, Lchi_16g30522
is  a  potential  regulator  of  iron  and  copper  homeostasis,  thereby
exerting significant effects on Liriodendron physiology.

Glycolysis  is  essential  for  converting  glucose  into  pyruvate,  with
fructose-1,6-bisphosphate  aldolase  (EC  4.1.2.13,  FBA)  being  a  key
enzyme  in  plants[50].  FBA  is  involved  in  various  physiological  and
biochemical  processes,  such  as  plant  growth,  development,  and
response  to  drought  stress[51,52].  Studies  have  shown  that  reduced
FBA  activity  slows  tomato  growth[53].  In  moso  bamboo,  cFBA  has
been  identified  as  a  significant  determinant,  showing  higher
activity  in  elongating  tissues  than  in  those  that  have  completed
elongation[54].  Alterations  in  FBA  activity  in  potatoes  significantly
affect  photosynthesis  and  carbon  allocation,  underscoring  the  cru-
cial  role of FBA in potato growth[55].  In this study, we identified the
candidate  gene Lchi_2g03172 as  highly  homologous  to  chloroplast
fructose-1,6-bisphosphate  aldolase  (FBA3)  in A.  thaliana,  making  it
an intriguing prospect.  Previous studies in A. thaliana revealed that
the FBA3 mutant exhibits a significant biomass reduction compared
to  the  wild  type  (WT)[40].  We  hypothesize  that Lchi_2g03172 may
regulate  hybrid Liriodendron growth by  influencing photosynthesis
and potentially impacting its canopy structure.

We  screened  three  common  genes  (Lchi_15g29902, Lchi_
15g29903,  and Lchi_5g12151), utilizing both SNP and InDel markers.
We  performed  protein  sequence  alignment  of  these  three  candi-
date genes and showed that Lchi_15g29903 and Lchi_5g12151 were
poorly  aligned,  whereas Lchi_15g29902 was  highly  homologous  to
PTF2  and  encodes  a  novel  plant-specific  TFIIB-related  protein  that
can interact with TBP2 and bind DNA. Mutation of PTF2 would result
in  failure  of  pollen  germination  and  disruption  of  embryogenesis.
Interestingly, studies in Arabidopsis have shown that PTF2 is not only
expressed in developing pollen but is also abundantly expressed in
other  tissues  with  active  cell  division  and  differentiation,  including
the  embryo  and  shoot  apical  meristem.  Compared  with  the  wild
type,  pollen-rescued ptf2-1 plants  have  more  lateral  buds,  sugges-
ting  that  PTF2  also  plays  an  important  role  in  plant  growth[56].  We
hypothesized  that Lchi_15g29902 might  have  an  effect  on  growth
and pollen germination in Liriodendron.

Due to the long growth cycle of forest trees and the limited bene-
fits  of  genetic  improvement,  breeders  aim  to  maximize  improve-
ment  within  a  shorter  time  frame.  In  this  study,  a  GWAS  was
conducted  for  growth  and  stem-form  traits  were  performed  using
SNP  and  InDel  loci.  In  future  studies,  phenotypic  traits  can  be
observed  across  multiple  locations  and  over  successive  years,  utili-
zing  multi-year,  multi-site  data  to  minimize  environmental  interfe-
rence.  For the identified candidate genes,  some suitable genes can
first  be  selected for  experimental  validation in A.  thaliana.  If  condi-
tions  allow,  homologous  transformation  can  be  attempted  in Lirio-
dendron for species-specific validation. 

Conclusions

A  GWAS  of  growth  and  stem  form  traits  in  hybrid Liriodendron
was conducted using SNP and InDel data and identified 97 SNP and
58  InDel  loci  associated  with  growth  and  stem  form  traits,  respec-
tively. Further, we discerned a total of 161 candidate genes, among
which, the Lchi_2g03172 and Lchi_10g19986 genes might be related
to growth,  while Lchi_16g30522 gene may have an impact on both
growth  and  branching.  The  present  results  provide  robust  genetic
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loci  for  marker-assisted  breeding  and  are  conducive  to  mining
genes related to growth and stem form traits,  thereby accelerating
the genetic improvement process of complex traits such as growth
and stem form in Liriodendron plants. 
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