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Abstract
Mangrove ecosystems function as vital biogeochemical interfaces between terrestrial and marine environments, playing a crucial role in transforming heavy

metals (HMs). However, this ecosystem is heavily impacted by climate change and anthropogenic activity, including an increase in HM toxicity. The current

review synthesizes understanding of HM transformation across three interconnected levels:  tidal  dynamics,  rhizosphere processes,  and plant adaptation

strategies. Initially, tidal inundation affects the distribution, speciation, and mobility of HMs by altering sediment biogeochemical properties, including pH,

redox potential,  salinity,  and microbial  activity.  Further,  tidal  effects  influence metal  immobilization and remobilization,  thereby impacting HM behavior

within the rhizosphere, which serves as a secondary barrier to metal transport. Activities in the rhizosphere, including the presence of microbes, generate

redox micro-gradients, and release organic ligands that facilitate metal complexation, precipitation, and detoxification. The synergistic interactions between

roots  and  microbes  support  rhizoremediation  in  mangrove  systems,  lowering  HM  toxicity,  and  enhancing  sediment  stability.  Additionally,  mangroves

employ various structural,  physiological,  and biochemical strategies,  including selective metal uptake, excretion, internal detoxification systems, and the

activation of antioxidant enzymes, to reduce HMs-induced stress. However, adaptation mechanisms differ among species and are influenced by interactions

between tidal regimes, rhizosphere conditions, and plant traits. Integrating the three hierarchical levels—tide, root, and plant—highlights that mangrove

ecosystems  function  as  self-regulating  biogeochemical  systems  capable  of  stabilizing  and  transforming  HMs  under  dynamic  environmental  conditions.

Such integrative mechanisms advance nature-based remediation strategies and reinforce mangroves' role as effective natural barriers against HM pollution,

thereby contributing to sustainable coastal management and ecosystem resilience in a changing global environment.
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 Introduction
Mangrove ecosystems are coastal wetlands dominated by woody

plants  that  thrive  in  brackish  and  intertidal  marine  environments.
These  unique  ecosystems  occur  along  tropical,  subtropical,  and
warm-temperate  coastlines,  acting  as  vital  natural  buffers  against
coastal  flooding,  storm  surges,  and  erosion.  Globally,  mangroves
are  distributed  across  approximately  118  countries  and  territories,
primarily  between 25°  N and 25°  S,  with  an estimated total  area  of
around  17  million  hectares[1].  They  support  rich  biodiversity,  host-
ing about  60%–75% of  the world's  tropical  coastal  flora  and fauna,
and nearly 90% of marine organisms depend on mangrove habitats
at  some  stage  of  their  life  cycle[2].  Moreover,  mangroves  provide
crucial ecological and economic benefits, including wood resources,
food supplies, carbon (C) sequestration, and nutrient cycling, there-
by sustaining both marine life and coastal communities[3]. Asia holds
the highest proportion of  global  mangrove coverage and biodiver-
sity  (41.9%),  followed  by  Africa  (20.1%),  the  Caribbean  and  Central
America  (13%),  South  America  (11.1%),  New  Zealand  and  Australia
(7.3%), Pacific Islands (4.5%), North America (1.8%), and Middle East
(0.3%)[4].

In  China,  mangroves  cover  approximately  22,000  hectares  and
are mainly distributed along the coastal mudflats of Hainan, Guang-
dong,  Guangxi,  Fujian,  Zhejiang,  Hong Kong,  Macao,  and Taiwan[5].
In  China,  28 true mangrove species  and 11 semi-mangrove species
have been historically reported, supporting over 300 benthic animal

species,  142  insect  species,  96  phytoplankton  species,  55  macroal-
gae  species,  26  zooplankton  species,  seven  reptile  species,  and  10
mammal  species[6].  Subsequently,  He  et  al.[7] documented  854
organism  species  associated  with  Chinese  mangrove  wetlands,
including  136  fungi,  13  actinobacteria,  seven  bacteria,  and  441
microalgal  species.  More  recently,  Hu  et  al.[8] reported  that  26  true
mangrove  species  are  currently  recognized  in  China,  and  noted
the  presence  of  newly  introduced  species,  such  as Laguncularia
racemosa and Sonneratia  apetala,  which  now  occur  within  some
mangrove  ecosystems.  Occupying  the  dynamic  interface  between
land and sea, mangroves experience periodic tidal inundation, salin-
ity fluctuations, and sediment deposition[9],  all of which shape their
structure, function, and ecological productivity.

Despite  their  ecological  importance,  mangroves  are  among  the
most  threatened  ecosystems  globally.  Between  1980  and  2005,
approximately  3.6  million  hectares  of  mangrove  forests  were  lost
due  to  urbanization,  pollution,  aquaculture,  overexploitation,  and
agricultural expansion[10]. Over 90% of mangroves occur in develop-
ing  countries,  where  annual  depletion  rates  (1%–3%)  are  particu-
larly high[11]. Similarly, mangrove coverage in China declined sharply
from  48,000  ha  in  1973  to  18,000  ha  by  2000[12].  Nonetheless,
climate  change  and  human  stressors  pose  a  significant  threat  to
mangrove  ecosystems  and  their  functions,  including  some  policies
related  to  the  introduction  of  new  species  that  create  imbalances
and pose challenges to adaptation and mangrove resilience (Fig. 1).
Projections  suggest  that  an  additional  25%  of  global  mangrove
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forests  could  disappear  by  2025[13].  Such  degradation  not  only
reduces biodiversity but also increases the vulnerability of  approxi-
mately 15 million people to coastal flooding.

Among  various  pollutants,  heavy  metals  (HMs)  represent  one
of  the  most  serious  threats  to  mangrove  ecosystems  due  to  their
persistence,  toxicity,  and bioaccumulative potential.  Rapid industri-
alization and urbanization have accelerated the release of HMs into
coastal  environments,  primarily  through  agricultural  runoff  and
industrial  wastewater[14].  However,  the  transformation  and  fate  of
HMs  in  mangrove  systems  are  regulated  by  complex  interactions
in  the  mangrove  ecosystem,  including  tidal  dynamics,  rhizosphere
processes,  and  plant  adaptation  mechanisms.  The  intertidal  zone
(subject to fluctuating hydrological and biogeochemical conditions)
acts as a natural laboratory for metal transformation[15]. Gradients in
inundation frequency, duration, and depth create variations in sedi-
ment properties and redox potential,  which in turn influence metal
mobility  and  speciation[16,17].  In  addition  to  the  tidal  impact  on
metals,  the  mangrove  rhizosphere  plays  a  crucial  role  in  processes
such  as  accumulation,  transformation,  and  detoxification  through
root exudation, redox regulation, and microbial mediation[18].  How-
ever, the processes of HMs immobilization and detoxification, medi-
ated by tide levels and rhizosphere interactions, also depend on HMs
toxicity, location, salinity, mangrove species, and their composition.

The adaptive mechanisms that have evolved in mangrove species
to withstand HMs stress,  salinity,  and inundation play a  crucial  role
in  HMs  detoxification,  making  them  essential  for  both  current  and
future  ecosystem  resilience.  Nevertheless,  differences  among  spe-
cies in their capacities for metal uptake, accumulation, and detoxifi-
cation  are  still  poorly  characterized.  However,  numerous  studies
have  investigated  metal  concentrations  and  transformations[19−21].
The  understanding  of  the  integrated  roles  of  intertidal  dynamics,
rhizosphere  processes,  and  plant  adaptations  in  mediating  HMs
transformations remains overlooked. Therefore, this review provides
an  updated  overview  of  HMs  transformations  in  mangrove  ecosys-
tems, emphasizing the roles of intertidal dynamics, rhizosphere pro-
cesses,  and plant adaptive strategies.  By integrating recent studies,
it  elucidates  the  biogeochemical  mechanisms  operating  within
mangrove sediments and rhizospheres, as well as external and inter-
nal  plant  tolerance  mechanisms.  Furthermore,  it  aims  to  refine
predictive frameworks for ecological risk assessment and to support

the conservation and sustainable management of mangrove ecosys-
tems  under  increasing  pressures  from  anthropogenic  and  climatic
changes.

 HM contamination in mangrove
ecosystems

From a plant  physiological  perspective,  HMs are  broadly  catego-
rized  into  essential  and  non-essential  elements.  Essential  metals
such as copper (Cu2+) and zinc (Zn2+) are required in trace amounts
to  sustain  various  physiological  and  biochemical  processes.  How-
ever,  when  their  concentrations  exceed  critical  thresholds,  they
exert  toxic  effects  similar  to  those  of  non-essential  metals,  such  as
lead  (Pb),  arsenic  (As),  and  cadmium  (Cd)[22].  Excessive  accumula-
tion disrupts membrane transport systems, disrupts nutrient uptake,
and inhibits plant growth and metabolism[23]. Plants like mangroves
and  their  ecosystems  are  recognized  as  natural  sinks  for  various
HMs, including chromium (Cr), mercury (Hg), Cd, Pb, Zn, Cu, As, and
nickel  (Ni),  which  pose  significant  ecological  toxicity[24,25].  Some
metal ions, such as Pb2+, Cd2+, Hg2+, Fe2+, Zn2+, and Cu2+, can nega-
tively  impact  the  growth  and  productivity  of  particular  mangrove
species[26−28]. Consequently, mangrove sediments often act as major
repositories for these HMs.

Over recent decades, anthropogenic pressures, such as deforesta-
tion,  salt  extraction,  urbanization,  industrial  discharge,  aquacul-
ture  expansion,  domestic  sewage  release,  and  agricultural  runoff,
have  substantially  increased  HM  loading  in  coastal  regions[29,30].
Earlier  assessments  indicated  that  approximately  29,720  km2 of
China's  offshore  zones,  including  mangrove  habitats,  were  heavily
contaminated[31]. More recent studies, particularly in southern China
and Hainan Island, have reported that Cu, As, and Hg are the domi-
nant  pollutants  contributing  to  elevated  ecological  and  human
health  risks,  with  Cu  showing  the  highest  contamination  levels,
Cd  categorized  as  considerable,  Hg  as  moderate,  and  other  metals
as  low[32,33].  Despite  these  elevated  pressures,  mangrove  forests
mitigate  the  impact  by  acting  as  the  first  biogeochemical  barrier
between  terrestrial  and  marine  environments.  However,  the  toxic
metal ions continue to impair plant growth, affect physiological and
molecular processes, and also disrupt the soil microbial community,
which is essential for organic matter decomposition[34−36].

 

Fig. 1  Increasing climate change and anthropogenic pressures negatively affect mangrove ecosystem functioning by reducing community stability and
increasing  heavy  metals  (HMs)  toxicity.  These  impacts  are  further  compounded  by  outdated  management  policies  that  intensify  competition  for
resources between exotic and native species, destabilizing biodiversity and vegetation structure. Consequently, mangroves face major challenges to their
resilience and adaptive capacity under changing environmental conditions. Addressing these challenges and enhancing mangrove resilience will improve
their functions and help conserve them for the future amidst increasing climate change.
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The  ecological  capacity  of  mangroves  to  sequester,  transform,
and  immobilize  HMs  has  been  weakened  by  poor  management
policies,  including the introduction of exotic species a few decades
ago,  along  with  a  net  decline  of  approximately  9.3%  in  man-
grove  area  due  to  tourism  development  and  other  anthropogenic
disturbances[37,38].  A  notable  case  observed  in  Hainan  is  the  intro-
duction  of  the  exotic  species S.  apetala from  Bangladesh  in  1985,
which  has  altered  the  composition  of  the  native  species  vegeta-
tion  and  mangrove  ecosystem.  Due  to  pronounced  differences  in
their  ecophysiological  characteristics,  the introduced S.  apetala has
become dominant over the native Bruguiera sexangula, which grows
more  slowly  but  exhibits  greater  salinity  tolerance[39,40].  Conse-
quently,  changes  in  vegetation  structure  and  species  dominance
can  significantly  influence  the  dynamics  of  HMs,  highlighting  the
importance  of  further  investigation  into  the  interactions  between
native  and  exotic  mangrove  species  in  Hainan  to  support  more
effective  management  and  restoration  strategies.  Beyond  vegeta-
tion factors, mangrove ecosystems and their function are also regu-
lated  by  hydrological  and  biogeochemical  processes,  including
freshwater inflow, tidal  flushing,  microbial  activity,  and rhizosphere
interactions[41].  Disruptions  to  these  processes  may  promote  the
remobilization  and  migration  of  metals  through  sediments  and
water,  heightening  the  risk  of  bioaccumulation  within  aquatic
food  webs.  Such  transfers  pose  a  serious  threat  to  the  health  of
marine  organisms,  including  fish  and  crustaceans,  and  ultimately
to  humans[42−44].  Thus,  maintaining  a  functionally  and  sustainably
balanced mangrove ecosystem is crucial not only for mitigating HMs
contamination,  but  also for  preserving key ecological  services  such
as shoreline stabilization, C sequestration, and fisheries productivity.
The  continued  degradation  of  mangrove  ecosystems  poses  a  seri-
ous threat to the ecological integrity, environmental resilience, and
economic value of coastal and marine ecosystems worldwide.

 Sources, concentration, and distribution of HMs
Most  HMs  in  mangrove  ecosystems  are  attributed  to  anthro-

pogenic  activities,  including  wastewater  discharge,  industrial

operations,  agricultural  runoff,  urbanization,  and  marine  traffic.
Previous  reviews by Kulkarni  et  al.[27] and Silva  et  al.[45] highlighted
the  release  of  HM  from  agricultural  activities,  domestic  sewage,
mining,  and  industry  into  the  mangrove  ecosystem.  However,  spe-
cific  metals  can often be traced to distinct  sources:  Hg,  Mn,  and Fe
primarily  originate  from  industrial  discharges  such  as  papermak-
ing  and  printing;  Pb,  Ni,  Cr,  Zn,  and  Cu  are  mainly  derived  from
industrial  emissions,  maritime  transport,  and  traffic-related  pollu-
tion;  whereas  Cd  is  primarily  linked  to  agricultural  activities  involv-
ing  fertilizers  and  livestock  manure[28,31,46,47].  A  smaller  fraction  of
metals,  such as Zn,  Ni,  and Co,  may also arise from natural  sources,
including geological  weathering. For instance,  volcanic activity and
geochemical  cycling contribute less  frequently,  but  they can act  as
significant  sources  of  HM influx  in  certain  regions[48].  HMs'  concen-
tration in mangroves and their major sources across various regions
worldwide are varied, as shown in Table 1.

Variation in HM concentrations in mangroves reflects differences
in  local  pollution  sources,  hydrology,  and  geochemical  processes.
For instance, the study conducted by Ahmed et al.[57] reported that
the  concentrations  of  HMs  in  mud  crabs,  horseshoe  crabs,  and
gastropods  from  the  Sundarbans  mangrove  forest  on  the  south-
west coast of Bangladesh followed the order Fe > Zn > Pb > Cu > Cd.
Similarly, in mangrove crabs (Sesarma mederi) from the upper Gulf of
Thailand,  accumulated  metals  in  the  order  Cd  >  Cu  >  Pb  >  Zn[58].
In  northern  Vietnam,  HM  concentrations  in  mangroves  follow  the
order Zn > Pb > Cr > Cu > As > Cd[59]. In the Rufiji Delta mangroves
in Tanzania, metals are distributed as Cr > Zn > Ni > Cu > Pb > Cd[60].
In  the  Dongzhai  Harbor  mangrove  wetland  in  Hainan,  the  pattern
observed is Cr > Zn > Ni > Pb > Cu > As > Cd, with Cr and Zn as the
dominant  elements[61].  Along  the  Bay  of  Bengal  (Southeast  Asian
countries),  sediments  showed that  the concentration order  was  Cu
> Zn > Mn > Cr  > Pb > Co > As > Ni[62].  The distribution of  HMs in
mangrove sediments is greatly affected by tide levels because they
influence  the  speciation,  mobility,  and  transformation  of  these
metals[63,64].

 

Table  1.  Concentrations  of  HMs  in  mangrove  sediments  worldwide  and  their  primary  sources.  Concentrations  correspond  to  total  HMs  in  mangrove  surface
sediments.

Heavy metal Concentration (mg·kg−1) Location/country Major sources Ref.

As 14.0 Xiamen Bay, China Industrial wastes, shipping activities [49]
3.6−18.3 Bay of Bengal, India Tidal waters, fresh water rivers, and storm water runoff [50]
0.52–35 Sydney, Australia Urbanization and population growth [51]

Pb 20.07 Zhanjiang Bay, China Agricultural production activities [52]
7.38 Meghna River Estuary, Bangladesh Anthropogenic sources, particularly near shipbreaking [53]
105 Shenzhen, China Rapid urbanization and industrialization [54]

0.7–13.37 São Paulo State, Brazil Fishing and waste disposal [55]
42.27 Sanya-Hainan, China Wastewater's discharge [56]

Cu 18.24 Zhanjiang Bay, China Rapid urbanization and industrialization [52]
35.74 Meghna River Estuary, Bangladesh industrialization [53]
400 Shenzhen, China Anthropogenic sources, particularly near shipbreaking [54]

12.44 Sanya-Hainan, China Wastewater's discharge [56]
0.74–9.42 São Paulo, Brazil Fishing and waste disposal [55]

256.0–356.6 Farasan Island, Saudi Arabia Sewage runoff, farming practices, and industrial discharge [20]
Cd 0.09 Sanya-Hainan, China Home and industrial waste waters discharge [72]

1.04 Farasan Island, Saudi Arabia Sewage runoff and industrial discharge [27]
0.25−0.42 São Paulo State, Brazil Fishing and waste disposal [71]

Zn 52.76 Sanya-Hainan, China Discharge of waste and home usage discharge [72]
352 Shenzhen, China Rapid urbanization and industrialization [36]

62.32 Meghna River Estuary, Bangladesh Anthropogenic sources, particularly near shipbreaking [70]
29.5–36.8 Farasan Island, Saudi Arabia Sewage runoff, farming practices, and industrial discharge [27]

4.49−49.51 São Paulo, Brazil Anthropogenic activities, such as fishing and waste disposal [71]
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Tidal  elevation  gradients  exert  a  substantial  impact  on  sediment
characteristics.  For  instance,  tidal  cycles  play  a  pivotal  role  in  regu-
lating  the  redox  state,  salinity,  and  hydrodynamics  of  intertidal
sediments—all  of  which  influence  the  mobilization  or  stabiliza-
tion  of  HMs  and  consequently  alter  their  distribution[65,66].  During
low  tides,  sediments  are  exposed  to  air,  creating  oxidative  condi-
tions  that  can  release  metals  previously  trapped  as  sulfide
complexes[67,68].  Conversely,  high  tides  bring  in  saline  water,  alter-
ing  the  ion  exchange  equilibria  and  affecting  metal  solubility  and
mobility[69,70]. These cyclic tidal processes create a dynamic environ-
ment  in  which  HMs  are  continuously  redistributed  among  solid-
phase  sediments,  pore  water,  and  the  overlying  water  column.
Besides  tidal  levels,  the  distribution  of  HMs  in  sediments  is  influ-
enced  by  several  other  factors  such  as  sediment  physicochemical
properties,  microbial  activities,  rhizosphere  processes,  root  exuda-
tion, and plant species (Fig. 2). These findings underscore the role of
mangrove sediments as primary sinks for HMs, where concentration
profiles  fluctuate  with  local  environmental  conditions,  pollution
sources, and sedimentary processes.

 Common HMs and their toxicity
Recent  studies  have  identified  As,  Pb,  and  Cu  as  the  dominant

HMs  originating  from  anthropogenic  inputs  along  mangrove
coasts—primarily  from  sources  such  as  antifouling  Cu  in  shipping,
legacy Pb from batteries and mining-derived As[71−73].  These metals
are consistently detected in both sediments and mangrove tissues,
providing robust evidence of their ecological significance. The accu-
mulation and capacity of HM-tolerance, along with their detoxifica-
tion  mechanisms  in  dominant  mangrove  species  are  detailed  in
Table  2.  Moreover,  As,  Pb,  and  Cu  collectively  represent  the  major
stressors for mangroves and their molecular defense systems. There-
fore,  the  following  sections  of  this  review  focus  on  these  three
metals, and examine their toxicity in mangrove ecosystems.

 As toxicity
As  is  a  non-essential  and  highly  phytotoxic  metalloid,  it  ranks

among  the  most  serious  inorganic  contaminants  in  natural  waters
globally.  It  originates from both natural processes, such as geologi-
cal  weathering  and  volcanic  activity,  and  anthropogenic  sources,
including  fossil  fuel  combustion,  mining,  and  the  use  of  arsenic-
based  agrochemicals[86,87].  In  China,  its  primary  inputs  are  derived
from  industrial  (47.19%),  agricultural  (33.13%),  and  traffic-related
(13.03%)  activities[88].  Elevated  As  concentrations  have  been
reported  globally,  including  14.0  mg·kg−1 in  Xiamen  Bay,  China[49],
3.6–18.3  mg·kg−1 in  the  Sundarbans  mangrove  forest,  India[50],  up
to  70  mg·kg−1 in  Espírito  Santo,  Brazil[89],  and  0.52–35  mg·kg−1 in
Sydney  Estuary,  Australia[51].  However,  the  bioavailability  of  As  is
strongly  influenced  by  several  environmental  factors.  For  instance,
fluctuations  in  pH  can  promote  As  desorption  into  the  overlying
water by disrupting chemical bonds, thereby reducing its retention
in  sediments[90].  Likewise,  the  transformation  of  insoluble  arsenic
compounds  into  soluble  ionic  forms  can  increase  As  mobility[91].
Moreover,  microbial  reduction  of  As(V)  to  the  more  mobile  As(III)
species can further alter their distribution and availability in aquatic
systems[92].

As  exerts  toxicity  in  mangrove  plants  primarily  due  to  its  chemi-
cal  similarity  to  phosphate.  Arsenate  (As  (V)  interferes  with  cellular
metabolism  by  reacting  with  thiol  (-SH)  groups  in  proteins  and
substituting  for  phosphate  in  metabolic  pathways.  It  enters  plants
through phosphate transporters,  inhibiting growth[93] or is reduced
to  arsenite  (As  [III]),  which  induces  the  production  of  reactive
oxygen  species  (ROS),  leading  to  lipid  peroxidation  and  cellular
damage[94].  As  toxicity  typically  manifests  as  inhibited root  growth,
altered  membrane  permeability,  and  disrupted  water  and  nutrient
uptake. Although mangrove species possess notable tolerance to As
stress,  the  degree  of  toxicity,  and  the  underlying  mechanisms  of
resistance  vary  among  species  and  tissues. Aegiceras  corniculatum
exhibits  substantial  As  tolerance  and  severely  affects  its  roots[51,83].
Similarly, Avicennia  marina shows  reduced  As  accumulation

 

Fig. 2  An overview of heavy metals (HMs) distribution and the key factors influencing HM dynamics and interactions within the mangrove ecosystem.
Tidal level affects sediment characteristics, salinity, redox state, and overall  hydrodynamics, which in turn regulate HM mobility and speciation, thereby
controlling  their  distribution  across  tidal  zones.  Elevated  salinity  promotes  ion  exchange  processes  that  alter  HM  solubility  and  accumulation  in
sediments. Additionally, organic acids released by mangrove roots enhance HM solubility, further influencing their spatial distribution. Microbial activity
in the rhizosphere plays a crucial role in HM transformation, interacting with root-mediated radial oxygen loss (ROL) and root redox potential (RRP), which
collectively influence sediment pH and HM bioavailability. The uptake, translocation (root-to-shoot ratio), and detoxification capacity of mangrove species
further  determine  overall  HM  distribution.  These  processes  depend  on  species-specific  traits,  including  enzymatic  transformation  efficiency  and
intracellular sequestration mechanisms.
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accompanied  by  enhanced  secretion  of  low-molecular-weight
organic acids (OA) in roots compared to shoots[18]. Overall, evidence
indicated that  As  targets  the  roots  and middle  aerial  parts  of  man-
grove plants more effectively than shoots[51,95].

Mangrove species  exhibit  diverse  strategies  to  tolerate  As  stress.
Acanthus  ilicifolius mitigates  As  toxicity  by  enhancing  photosyn-
thetic  efficiency,  activating  antioxidant  defense  systems,  and  accu-
mulating  osmo-protectants  (e.g.,  proline  and  carotenoids)  under
high  As  exposure[96]. A.  corniculatum alleviates  As  stress  primarily
through Phyto-stabilization and As exclusion, with most of the metal
retained in the roots[83]. Meanwhile, A. marina reduces As toxicity by
increasing  the  secretion  of  low-molecular-weight  OA  (citric,  oxalic,
and malic acids)  and promoting the formation of Fe plaques in the
rhizosphere, which influence As speciation and mobility[18].  Existing
field  studies  provide  limited  insights  into  As  accumulation  and
translocation  due  to  fluctuating  environmental  concentrations  and
the  absence  of  well-defined  As  gradients.  Thus,  controlled  experi-
ments  incorporating  a  range  of  As  concentrations  and  long-term
monitoring are urgently needed.

 Pb toxicity
Pb is one of the most pervasive pollutants originating from vehi-

cle  emissions,  industrial  discharges,  mining,  smelting,  and  petro-
leum  refining[97].  These  sources  contribute  to  Pb  deposition  in
coastal  and  marine  sediments,  including  tropical  and  subtropical
areas[98]. Pb interferes with the transport of organic compounds and
disrupts  the  uptake  of  essential  nutrients  such  as  phosphorus  (P),
calcium  (Ca),  magnesium  (Mg),  and  manganese  (Mn),  likely  due
to  ionic  competition,  resulting  in  stunted  plant  growth[99].  It  also
inhibits  enzyme  activity  by  binding  to  thiol  (-SH)  and  carboxyl
(-COOH)  groups  or  replacing  cofactors  in  metalloenzymes,  thereby
impairing  electron  transport  and  photosynthetic  processes[100,101].
Pb accumulation is mainly localized in roots, with limited transloca-
tion to aboveground tissues, resulting in reduced root function and
suppressed seedling growth.

Mangrove  species  exhibit  varied  responses  to  Pb  toxicity.  For
example,  Huang  et  al.[78] reported  that  phytochelatin  (PC-SH)
synthesis  in Kandelia  obovata and Bruguiera  gymnorhiza plays  a
key role in mitigating Pb stress.  Yan et al.[102] observed that several
cotyledonary  mangrove  species  actively  mobilize  carbohydrates
from  leaves  to  roots  under  Pb  exposure,  increasing  starch  and
malondialdehyde (MDA) levels  while  enhancing peroxidase activity
to  improve  tolerance.  Pb  exposure  can  also  elevate  endogenous

salicylic  acid  and jasmonic  acid  levels  in  seedling leaves,  which are
vital  regulators  of  Pb  stress  resistance[103].  Among  mangrove  taxa,
A.  marina demonstrates  relatively  high Pb tolerance.  Pb concentra-
tions  up  to  800  mg·L−1 exerted  minimal  adverse  effects  on  its
seedling growth and emergence[75].  Similarly, A.  marina roots accu-
mulate higher Pb levels than Rhizophora apiculata and S. alba,  indi-
cating  more  effective  Pb  immobilization  and  detoxification,  mak-
ing it  a  promising species  for  Pb pollution mitigation[82].  Moreover,
L. racemosa demonstrates notable Pb tolerance, and it is suggested
that  it  has  potential  for  remediation  and  restoration  in  contami-
nated  mangrove  areas[104].  Various  factors  affecting  Pb  uptake  and
distribution,  such  as  salinity.  In R.  apiculata and Avicennia  alba,  Pb
absorption  patterns  varied  under  salt  stress—salinity  significantly
affected  Pb  content  in  stems  of  both  species,  while A.  alba also
showed  higher  Pb  accumulation  in  leaves[84].  Similarly,  mangrove
species (e.g., B. gymnorrhiza, K. obovata, R. stylosa, Aegiceras cornicu-
latum, Acanthus  ilicifolius, A.  marina)  exhibited  varied  Pb  tolerance
under different salinity conditions[71]. These findings suggest that Pb
distribution  within  plant  organs  is  species-specific,  and  modulated
by salinity. However, since Pb impairs essential metabolic processes
and  restricts  plant  growth,  and  considering  its  limited  mobility  to
aerial  parts,  future  research  should  focus  on  developing  advanced
phytoremediation strategies under realistic mangrove conditions.

 Cu toxicity
Cu  is  a  vital  micronutrient,  with  30%  of  its  presence  in  chloro-

plasts, and it is crucial for various plant growth processes, though it
is  required  in  specific  amounts.  Cu  deficiency  causes  serious  nutri-
tional problems in plants; however, when present in excess, Cu can
become  a  significant  environmental  pollutant  and  a  phytotoxic
element.  Industrial  activities,  mining,  and  the  widespread  use  of
Cu-based  fungicides  in  agriculture,  have  led  to  the  accumula-
tion of  Cu in  soils  and sediments[105].  Cu availability  is  strongly  pH-
dependent—its  solubility  increases  under  acidic  conditions,  which
enhances  its  potential  toxicity  in  the  mangrove  ecosystem[106].  Cu
toxicity  causes  serious  issues  in  plants,  especially  in  mangroves.  It
induces  oxidative  stress,  leading  to  structural  damage,  such  as  leaf
deformation  and  impaired  water  transport[107].  Due  to  its  redox
activity,  excess  Cu  generates  reactive  ROS  that  damage  cellular
components and disrupt metabolic functions, leading to decreased
chlorophyll  content  and  reduced  photosynthetic  rates,  which  ulti-
mately  suppress  plant  growth  and  productivity[108−110].  However,
the  level  for  Cu  toxicity  varies  widely  among  plant  species  types

 

Table 2.  Comparative heavy metal accumulation, capacity, tolerance, and their detoxification mechanisms of the dominant mangrove species.

Mangrove
species

Main metals
accumulation Accumulation capacity Tolerance mechanisms Ref.

A. marina Pb, Cu, and As Higher roots accumulate high levels of Pb
and Cu; strong tolerance to As.

Root Fe-plaque formation, secretion of low-molecular-weight
organic acids, antioxidant enzyme activation, restricted metal
translocation to shoots

[18,74−77]

K. obovata Pb and Cu Higher Cu enrichment ~70%; strong Pb
tolerance

Phytochelatin (PC-SH) synthesis, root sequestration, and cell wall
binding

[74,76,78]

K. candel Cu Higher enrichment exceeds approximately
96% of its accumulated Cu

By increasing antioxidant activities, including SOD, POD, and CAT
activities

[79]

B. gymnorhiza Cu and Pb Moderate accumulation without sustained
tolerance at high exposure

Phytochelatin synthesis, antioxidant response, and limited ROL
under Cu stress

[80,81]

R. stylosa Pb and Cu Moderate tolerates Cu up to 400 mg·kg−1 Restricted Cu translocation, decreased root permeability, root
elongation, and ROL

[47,81]

R. apiculata Pb Moderate lower Pb accumulation Root sequestration and exclusion [82]
A. corniculatum As High As tolerance but low overall HM

accumulation
Root immobilization and exclusion, limited translocation [51,83]

A. alba Pb Moderate to high leaf accumulation Higher Pb accumulation and translocation of HMs to leaves [84]
A. ilicifolius Pb Moderate to higher accumulation [71]
S. hainanensis Cu Lower Cu accumulation Lower tolerance mechanism against Cu [85]
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and  genotypes,  reflecting  inherent  differences  in  Cu  tolerance
mechanisms[111,112].

Mangrove plants  have evolved complex mechanisms to  detoxify
excess  Cu  through  exclusion,  chelation,  sequestration,  and  antioxi-
dant  defense.  At  the  root  level,  Cu  is  immobilized  through  bind-
ing  with  lignin  and  suberin  in  cell  walls  and  by  iron  plaque  forma-
tion  in  the  rhizosphere[71,113].  Within  cells,  Cu  induces  the  bio-
synthesis  of  metallothioneins  and  phytochelatins,  which  chelate
Cu  ions  and  facilitate  their  sequestration  into  vacuoles  via  ABC
transporters[114,115].  Cu  homeostasis  is  further  maintained  by  Cu
chaperones that safely distribute Cu to target proteins. Additionally,
Cu-induced oxidative stress is  mitigated through enhanced activity
of antioxidant enzymes such as SOD, CAT, and POD. The formation
of  radial  oxygen  loss  (ROL)  barriers  in  roots  may  also  represent  an
adaptive strategy to limit Cu uptake and protect sensitive tissues[81].
However,  variations  in  vegetation  composition  and  climatic  condi-
tions influence mangrove responses, leading to species-specific dif-
ferences  in  Cu  tolerance  and  accumulation.  These  responses  are
further  shaped  by  multiple  interacting  factors,  including  microbial
activity, sediment properties, salinity levels, and tidal fluctuations, all
of which contribute to the complexity of Cu dynamics in mangrove
ecosystems.

Mangrove showed species-specific responses to Cu accumulation
and  tolerance.  For  example, A.  marina and K.  obovata exhibit
substantial  Cu  accumulation,  with  enrichment  rates  of  74.2%  and
70.5%,  respectively[74,76].  However,  in  another  study, A.  marina
seedlings  showed  growth  inhibition  only  at  >  120 µg·g−1 Cu[77],
while B. gymnorhiza and R. stylosa survived at 400 mg·kg−1 Cu in soil
but with reduced root elongation[81], suggesting that the accumula-
tion capacity and toxicity depend on plant growth stage. Mangrove
species, i.e, K. candel, were found to have up to 96% of their accumu-
lated  Cu  confined  to  roots,  accompanied  by  increased  SOD,  POD,
and CAT activities,  enabling seedlings to tolerate concentrations of
up to 20 mg·L−1[79]. Furthermore, R. stylosa also shows substantial Cu
uptake, whereas S. hainanensis accumulates lower Cu levels, indicat-
ing  species-specific  tolerance[85].  Conversely,  Cu  exposure  signifi-
cantly  reduced growth and root  permeability  in B.  gymnorhiza and
R.  stylosa,  decreasing  ROL  and  suggesting  lower  Cu  tolerance[80].
Despite progress in understanding Cu toxicity and tolerance in man-
groves, key knowledge gaps remain regarding species-specific toxi-
city  thresholds  and  the  molecular  regulation  of  Cu  transporters,
sequestration mechanisms,  and signaling pathways,  which need to
be addressed in future studies.

 Intertidal dynamics
The  intertidal  zone  within  mangrove  ecosystems  is  particularly

susceptible  to  contamination  due  to  its  exposure  to  fluctuating
hydrological  and  biogeochemical  conditions[15].  The  unique  hydro-
dynamic  processes  associated  with  tidal  fluctuations  significantly
influence  sediment–water  interactions,  redox  dynamics,  and  the
migration of metals within sediment columns[116].  Generally,  higher
concentrations  of  HMs are  observed during high tide  compared to
low  tide,  indicating  that  tidal  action  regulates  the  movement  of
suspended sediments  and the redistribution of  metals  across  man-
grove zones[117,118].  The impact of tidal on sedimentary processes is
complex.  During  tidal  fluctuations,  shear  forces  at  the  sediment–
water  interface  disrupt  the  oxidative  surface  layer,  promoting
the  resuspension  of  particles.  Under  oxidizing  conditions,  solu-
ble  iron  and  manganese  species  transform  into  insoluble  oxides,
which  possess  high  surface  areas  and  strong  adsorption  capacities

for  HMs[119].  When  hydrodynamic  stress  exceeds  the  cohesive  for-
ces  among  sediment  particles,  resuspension  occurs,  exposing
the  sediment  to  oxygenated  conditions  that  alter  pH  and  redox
potential[120].  This  leads  to  the  release  of  adsorbed  metals  into  the
overlying  water  column  and  changes  in  the  speciation  of  metals.
Moreover,  periodic  inundation  and  exposure  modify  the  equilib-
rium  between  interstitial  water  and  surface  sediments,  influencing
the diffusion and dispersion of metals.

During  low  tide,  when  sediments  are  exposed  to  air,  the  oxida-
tion  of  organic  matter  and  sulfides  increases  Eh,  releasing  associ-
ated metals.  Simultaneously,  iron and manganese ions form oxides
that bind with HM, reducing their mobility[121]. Conversely, high-tide
submersion  decreases  Eh,  favoring  the  migration  of  metals  from
interstitial  water to the overlying water.  Salinity fluctuations associ-
ated  with  tidal  processes  further  affect  the  solubility  and  specia-
tion  of  metals,  enhancing  their  mobility  in  estuarine  systems[122].
Mangrove  sediments,  compared  with  adjacent  mudflats,  demon-
strate  markedly  lower  bioavailability  of  metals  such as  Cu(II),  Zn(II),
Cr(VI/III),  Pb(II),  and Ni(II)—by approximately  19%–79%.  This  reduc-
tion is most pronounced in mangrove zones, where high organic C
content  and  root-associated  processes  promote  immobilization
of  metals[123].  The  dense  mangrove  canopy,  accumulation  of  auto-
chthonous organic matter, and active microbial communities collec-
tively  enhance  sediment  stability  and  contribute  to  the  long-term
sequestration  of  HMs,  thereby  reducing  the  ecological  risks  asso-
ciated  with  contamination.  Consequently,  mangrove  ecosystems
function  as  effective  natural  barriers  that  mitigate  HM  exposure  in
intertidal  environments.  During sediment resuspension,  suspended
particulates serve as key carriers facilitating the transport and redis-
tribution of HMs within the intertidal zone.

 Availability and distribution of HMs across tidal
levels

The availability and distribution of HMs across tidal gradients are
primarily  influenced  by  sediment  redox  conditions,  salinity,  and
organic  content.  Studies  by  Marchand  et  al.[124],  Botté  et  al.[117],
Reckhardt  et  al.[125],  and  Silrat  et  al.[126] consistently  report  higher
metal  concentrations  during  high  tide  compared  to  low  tide.  This
pattern  is  attributed  to  the  migration  of  metals  through  interstitial
water  under  reduced  conditions,  followed  by  their  precipitation  as
hydrous metal oxides upon exposure to oxygen. These oxides, being
less  soluble,  become  incorporated  into  sediment  matrices,  thereby
explaining the elevated metal concentrations observed during high
tide. At low tide, reduced and anoxic conditions promote the trans-
formation of insoluble metal oxides into more soluble sulfide forms
through  sulfate  reduction[125,127].  These  redox-driven  transforma-
tions facilitate the remobilization of metals into interstitial or overly-
ing  water.  Furthermore,  studies  on  sulfide  minerals  indicate  that
metal  adsorption  is  predominantly  controlled  by  surface  hydroxyl
interactions,  which strongly  influence metal  behavior  under  anoxic
conditions[128].  For  instance,  dissolved  concentrations  of  Pb,  Cd,
Zn,  Mn,  and  Cu  have  been  observed  to  peak  under  low-salinity
conditions[129],  reflecting  the  role  of  flocculation  and  colloidal  iron
oxyhydroxide dissolution in regulating metal distribution.

As  shown  in  (Fig.  2),  tidal  processes  affect  sediment  characteris-
tics,  salinity,  redox  state,  and  hydrodynamics,  which  in  turn  influ-
ence  the  availability  of  HMs  in  intertidal  levels.  However,  studies
have  indicated  various  impacts  from  different  angles  within  the
mangrove ecosystem, including plant species accumulation, depth,
organic  acid  release  by  plants,  microbial  processes,  and  orga-
nic  matter  decomposition.  Studies  have  observed  that  significant
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bioaccumulation  of  metals  such  as  Cu,  Pb,  Zn,  Cd,  Cr,  and  Hg  in
bivalves  (Crassostrea  ariakensis),  fishes  (Mugil  cephalus),  and  crabs
from  coastal  regions  of  China,  India,  and  Indonesia[130−133].
Marchand  et  al.[19] further  demonstrated  that  variations  in  metal
concentrations  with  depth  are  primarily  controlled  by  diagenetic
processes—particularly  the  cycling  of  iron  and  manganese  asso-
ciated  with  organic  matter  decomposition—rather  than  by  direct
anthropogenic  inputs.  Organic  acid  released  by  mangrove  roots
plays  a  crucial  role  in  HM  adsorption,  immobilization,  and  distribu-
tion.  Study  by  Hu  et  al.[134] revealed  that  sediments  with  higher
organic acid content exhibit a more substantial binding capacity for
metals.  In  mangrove  ecosystems,  abundant  litterfall,  acidic  condi-
tions,  and  active  microbial  processes  further  enhance  metal  com-
plexation and retention. Similarly, sediment acidity tends to increase
with  decreasing  tidal  level[66],  which  accelerates  organic  matter
decomposition  and  modifies  metal  mobility,  thereby  influencing
the spatial  distribution of  metals  within intertidal  sediments.  These
findings suggest that fluctuations in tide levels effectively influence
the  chemical  behavior  and  ecological  effects  of  HMs  in  coastal
sediments.  The  combined  effect  of  redox-driven  changes,  organic
matter  processes,  and  microbial  mediation  influences  both  metal
mobility  and  their  accumulation  in  intertidal  biota,  with  important
ecological and environmental consequences.

 Intertidal influence on HMs mobility and
transformation

The  intertidal  zone,  situated  between  the  high- and  low-tide
marks,  is  periodically  submerged  under  tidal  forces  generated  by
gravitational  interactions  among  the  Earth,  Moon,  and  Sun.  These
hydrodynamic  processes  strongly  influence the fixation and mobil-
ity of HMs within sediments. Acting as major sinks for terrestrial and
coastal  pollutants,  intertidal  sediments  are  shaped  by  tidal  ampli-
tude,  elevation,  wave  action,  and  wind  energy.  Collectively,  these
factors contribute to the high complexity and dynamism of material
and energy fluxes within tidal environments[135].  The migration and
transformation  of  HMs  in  intertidal  environments  are  influenced
by  various  factors,  including  hydrodynamic  conditions,  sediment
properties,  levels  of  dissolved  oxygen,  pH,  salinity,  and  redox
potential[66].  Periodic  tidal  flooding serves  as  a  key abiotic  driver  in
these  ecosystems[136],  while  environmental  heterogeneity  along
elevation  gradients  further  modulates  these  processes[137,138].  As
tidal  elevation increases,  both the frequency of inundation and the
severity  of  soil  anoxia  typically  decrease.  The  dynamic  alternation
between  submersion  (marine-like)  and  exposure  (terrestrial-like)
phases  in  intertidal  sediments  induces  pronounced  fluctuations  at
the  mud–air–water  interface,  accompanied  by  changes  in  physico-
chemical  parameters  such  as  dissolved  oxygen  and  interfacial
pressure[139].  Such  tidal  oscillations  continuously  reshape  redox
gradients and sediment chemistry, ultimately controlling the specia-
tion, mobility, and bioavailability of HMs in intertidal systems.

Salinity, regulated by freshwater influx and tidal oscillations, plays
a  crucial  role  in  controlling  the  solubility  and  mobility  of  HMs[122].
Elevated pH conditions promote the precipitation of free metal ions,
whereas  low  pH  enhances  their  mobility  and  bioavailability[140].
Studies conducted in the Hangzhou Bay region have demonstrated
a positive correlation between HM concentrations and fine-grained
sediment  fractions,  such  as  silt  and  clay[141].  Moreover,  the  depth
and  position  of  the  anoxic  interface  fluctuate  with  tidal  levels,  fur-
ther  complicating  metal  mobility  within  the  sediment  column[66].
Upon  entering  marine  systems,  metal  ions  are  typically  adsorbed
onto  suspended  particles  that  are  subsequently  transported

landward  by  tidal  action  and  deposited  on  tidal  flats.  In  mangrove
environments,  dense  root  networks  efficiently  trap  these  particles,
leading to  the accumulation of  both bound and free forms of  HMs
within sediments[142].

Tidal cycles influence HM transformations through distinct mech-
anisms. During high tide, surface sediments become exposed to air,
increasing redox potential  and promoting the  oxidation of  organic
matter and sulfides, which releases previously bound metals. Simul-
taneously,  Fe  and  Mn  ions  oxidize  to  form  hydroxides  that  can
further  adsorb  and  immobilize  metals[143].  During  low  tides,  the
reduction in overlying water  pressure facilitates the upward migra-
tion of porewater, enhancing solute exchange across the sediment–
water  interface.  Conversely,  during  spring  or  high  tides,  intensified
hydrodynamic  activity  disturbs  the  sediment  surface,  promoting
the  resuspension  and  redistribution  of  metals  in  ionic,  organically
bound, and particulate forms[116].  When shear stress exceeds a criti-
cal threshold, sediment resuspension exposes particles to oxidative
conditions,  thereby  altering  physicochemical  parameters  such  as
pH  and  EH,  which  in  turn  enhance  metal  remobilization  and
bioavailability[144,145].  Collectively,  the  interplay  of  redox  fluctua-
tions,  hydrodynamic  forces,  and  sediment–water  exchanges  under
tidal  influence  drives  the  continuous  remobilization  and  transfor-
mation  of  HMs,  shaping  their  spatial  distribution  and  persistence
in coastal systems.

 Rhizosphere-mediated processes
The  soil  zone  affected  by  mangrove  roots  plays  a  crucial  role  in

controlling HMs, their detoxification, and their absorption by plants.
The  beneficial  interaction  between  roots  and  sediments  promotes
accumulation and stability by collaborating with organic matter and
clay.  These  elements  help  immobilize  metals  and  act  as  natural
biofilters through physical trapping, chemical changes, and biologi-
cal  absorption[146].  Additionally,  root-released  organic  compounds,
such as amino acids, sugars, and OA, serve as C sources for microor-
ganisms  and  promote  the  production  of  degradative  enzymes[147].
These enzymes can modify sediment pH, redox potential, and nutri-
ent  availability,  thereby  benefiting  the  microbial  community  and
improving  the  mitigation  of  HMs  toxicity[148].  In  mangrove  rhizo-
spheres, bacteria (e.g., Pseudomonas, Bacillus, and Rhizobium) utilize
enzymes  such  as  oxygenases,  dehydrogenases,  and  hydrolases
to  degrade  complex  pollutants,  including  polycyclic  aromatic
hydrocarbons  and  chlorinated  compounds[149].  Additionally,  the
fungal  hyphae  extend  throughout  the  sediment,  enhancing  the
mangrove's  root  accessibility  to  pollutants  and  facilitating  organic
matter  decomposition[150].  Similarly,  ammonia-oxidizing  archaea
(e.g., Nitrosopumilus spp.)  are  found  in  the  rhizosphere  and  sup-
port  N  cycling  and  pollutant  transformation  under  oxygen-limited
conditions[151].  These  synergistic  interactions  between  mangrove
roots  and  their  associated  biotic  and  abiotic  partners  form  the
basis  of  rhizoremediation,  which  integrates  microbial  metabo-
lism  with  root-mediated  geochemical  alterations  to  detoxify
contaminants[152].  Through  these  coupled  processes,  rhizosphere-
mediated  interactions  involve  interactions  from  sediments  to
microbes, from HMs to nutrients, and from toxicity to plant detoxifi-
cation,  as  reported  by  Seshadri  et  al.[153] and  Cipullo  et  al.[154].  In
comparing mangrove rhizospheric and non-rhizospheric sediments.
Furthermore,  the  rhizosphere-mediated  mechanisms  involved  in
HM  detoxification  in  mangrove  ecosystems  are  listed  in Table  3.
However,  exploring  rhizospheric  microbiomes  and  their  roles
in  pollutant  degradation  remains  limited,  and  advancements  in
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omics-based  approaches—including  metagenomics,  transcripto-
mics,  and  metabolomics  studies—are  necessary  to  identify  key
genes,  enzymes,  and  metabolic  pathways  involved  in  HM  transfor-
mation and organic contaminant degradation. These developments
will  open  promising  avenues  for  creating  targeted  bioremediation
strategies.

 Root-sediment interaction and sediment
trapping

Root-sediment  interactions  influence  HM  mobility,  shaping
sediment  chemistry  and  supporting  microbial  processes  that  sus-
tain  mangrove  ecosystem  functioning  and  restoration.  Man-
grove roots influence soil pH and nutrient availability, thereby influ-
encing  microbial  community  composition  and  enhancing  the  effi-
ciency  of  pollutant  degradation[164].  However,  each  of  these  pro-
cesses strongly affects sediment characteristics and biogeochemical
dynamics[165,166].  The  intricate  aerial  root  systems  of  mangroves,
such as pneumatophores and prop roots, efficiently trap suspended
sediments  transported  by  tidal  flows,  which  facilitate  sediment
deposition[9].  Although  some  studies  suggest  that  mangroves  en-
hance rather than initiate sedimentation, their structural complexity
undoubtedly  increases  sediment  retention  and  stability[167−169].
Sediments  beneath  mangroves  serve  not  only  as  C  sinks  but  also
as  natural  archives  of  paleoenvironmental  and  sea-level  fluctua-
tions.  These  sediments  are  typically  rich  in  organic  matter  and
fine  clays,  which  confer  high  cation  exchange  capacities  that
promote  the  strong  binding  of  HMs[170,171].  As  tidal  waters  flow
through  mangrove  root  networks,  fine  particles  containing
metals  are  trapped  and  immobilized  within  the  sediment  matrix,
thereby  reducing  metal  mobility  and  minimizing  their  transfer  to
adjacent  aquatic  systems.  Moreover,  oxygen  leakage  from  man-
grove roots creates localized oxidized microsites within anoxic sedi-
ments,  altering redox potential  and pH. These microscale gradients
affect  metal  speciation  and  can  induce  the  precipitation  of  metal
oxides and hydroxides,  which further adsorb HMs and reduce their
bioavailability[172,173].

Notably,  mangrove  roots  trap  a  greater  amount  of  sediment
during low tide than at high tide, as they reduce tidal flow velocity
and  promote  the  deposition  of  suspended  soil  particles  under
calmer  conditions.  However,  the  efficiency  of  sediment  trapping
by  mangroves  is  species-specific.  Kathiresan[174] reported  that  the
Avicennia–Rhizophora interphase  was  more  effective  at  trapp-
ing  sediment  than  either  the Avicennia or Rhizophora zones
alone, retaining approximately 30%, 25%, and 20% more sediment,

respectively, at low tide compared to high tide. Similarly, Rhizophora
spp.,  which  extend  prop  roots  from  the  trunk  and  anchor  within
approximately  30  cm  of  sediment  depth,  capture  more  sediment
than Ceriops spp.[156].  The  magnitude  of  sedimentation  is  generally
significant  in  trees  forming  complex  root  matrices,  such  as
Rhizophora spp.,  and  smallest  in  single  trees  like Ceriops spp.[175].
Other factors contributing to sediment accumulation and soil eleva-
tion include root length, longevity, and biomass turnover. The accu-
mulation of  long-lived roots  through decomposition and compres-
sion of cellular material often increases soil volume, further promot-
ing  elevation  gains[176].  Overall,  mangrove  roots  function  as  effec-
tive  sediment  traps,  and  root–sediment  interactions  in  mangrove
ecosystems act as natural biofilters that integrate physical trapping,
chemical  transformation,  and  biological  uptake  to  mitigate  HMs
pollution.

 HMs transformation in the rhizosphere
The rhizosphere is a narrow soil zone affected by root activity that

plays  a  vital  role  in  controlling  HM  mobility,  transformation,  and
absorption in mangrove ecosystems. Within this microenvironment,
metals  can be mobilized,  absorbed,  accumulated,  excluded,  immo-
bilized, or detoxified before reaching plant tissues[177]. Compared to
bulk  sediment,  the  rhizosphere  exhibits  distinct  physicochemical
and  biological  properties,  including  altered  pH,  redox  potential,
and microbial  composition.  These characteristics  strongly influence
metal  speciation,  bioavailability,  mobility,  and  distribution[178,179].
OA  secreted  by  mangrove  roots  can  chelate  or  complex  with
HMs, enhancing their solubility, mobility, and subsequent uptake or
detoxification  within  plants[180].  In  contrast,  phenolic  compounds
released from roots may bind metals to form less bioavailable com-
plexes, thereby mitigating metal toxicity[181].

Root exudates, microbial respiration (producing CO2),  and redox-
active processes can lower rhizosphere pH, which in turn influences
enzyme  activity  (e.g.,  phosphatase  activity,  urease  activity,  and
dehydrogenase  activity)  and  microbial  community  composition.
Acidic  conditions  generally  enhance  the  solubility  and  uptake  of
certain metals, while alkaline conditions can decrease their bioavail-
ability.  Similarly,  reducing  (low  redox  potential)  environments  can
increase  the  solubility  and  mobility  of  Cd,  Pb,  and  Zn,  reshaping
their  distribution  within  the  rhizosphere[153].  Furthermore,  enzy-
matic  activities  such  as  arylsulfatase,  dehydrogenase,  and  urease
serve as  sensitive  indicators  of  HM stress  and are  involved in  facili-
tating  metal  transformations[181,182].  Another  vital  process  is  the
ROL  from  mangrove  roots  into  the  surrounding  sediments,  which

 

Table 3.  Rhizosphere-mediated mechanisms contributing to heavy metal (HM) detoxification in mangrove ecosystems.

Mechanism type Key processes/interactions Representative agents
(roots/microbes/compounds) Effects on HMs Ref.

Physical trapping Sediment retention by complex root
structures (prop roots, pneumatophores)

Rhizophora, Avicennia, Ceriops, and
Sonneratia roots

Immobilization and reduced HM
mobility

[155,156]

Chemical transformation Redox alterations, pH modification,
precipitation of metal oxides/hydroxides

Root oxygen leakage (ROL), organic
acids, phenolics

Adsorption and precipitation of
metals, and altered speciation

[153,157,
158]

Biological absorption and
biosorption

Root and microbial uptake of metals Mangrove roots with Bacillus,
Pseudomonas, Rhizobium, Aspergillus,
and Penicillium

Bioaccumulation and
detoxification

[159,160]

Microbial enzymatic
transformation

Redox reactions catalyzed by
dehydrogenases, hydrolases, and
oxygenases

Rhizospheric bacteria and fungi Conversion to less toxic forms [149,161]

Root exudate–microbe
synergy

Release of amino acids, sugars, and
organic acids promotes microbial
metabolism

Root exudates; enzyme-producing
microbes

Enhanced degradation of
organic pollutants; improved
HM tolerance

[148,149]

Mutualistic plant–microbe
associations

Microbial assistance in nutrient cycling,
stress tolerance, and HM detoxification

S. apetala rhizospheric consortia Improved plant resilience and
remediation efficiency

[162,163]
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modifies  rhizosphere  redox  conditions,  pH,  and  the  abundance
of  aerobic  microorganisms[157,183],  thereby  influencing  HM  specia-
tion, precipitation, and mobility. Despite progress, it remains unclear
how mangrove roots and rhizospheres respond to HMs contamina-
tion  under  changing  environmental  conditions,  or  whether  these
responses  are  consistent  across  species  and  habitats.  Species-
specific  traits  likely  control  metal  tolerance  and  transformation,
highlighting  the  need  for  further  research  to  understand  rhizo-
sphere-mediated  metal  dynamics  and  sustain  mangrove  functions
in contaminated coasts.

 Microbial mediation
Microbial  remediation  represents  a  sustainable  biological

approach  for  cleaning  up  contaminated  environments.  It  primarily
relies on microbial enzymatic catalysis and redox transformations, in
which enzymes alter the oxidation state of metal ions, thereby facili-
tating  their  detoxification[161].  These  microbially  mediated  redox
reactions  play  a  pivotal  role  in  regulating  sediment  geochemistry,
nutrient  cycling,  and  overall  ecosystem  functioning.  In  mangrove
ecosystems,  such  processes  influence  not  only  the  fate  of  HMs
and sediments, but also the bioavailability of nutrients essential for
plant growth and ecosystem stability. Microorganisms—particularly
rhizosphere bacteria—alleviate HM toxicity through various mecha-
nisms,  including  intracellular  sequestration,  extracellular  precipita-
tion,  adsorption,  and  enzymatic  transformation[181].  Nevertheless,
excessive  HM  accumulation  can  suppress  microbial  activity  and
inhibit  key  enzymatic  processes[184].  Microbial  biotransformation
plays a crucial role in determining the bioavailability and mobility of
metals in soil systems. The mobilization and immobilization of metal
ions  involve  multiple  enzyme-mediated  mechanisms  that  are  criti-
cal for detoxification[185]. During metabolic activities such as fermen-
tation  and  respiration,  microorganisms  utilize  pollutants  as  co-
metabolic  substrates,  facilitating  their  breakdown  and  detoxifica-
tion.  The  successful  application  of  microbial  bioremediation
depends  on  selecting  resistant  microbial  strains  and  elucidating
their underlying mechanisms of metal resistance[186].  Contaminated
sites often act as natural selection grounds for metal-tolerant micro-
bial  species.  For biosorption-based remediation to be effective,  the
physicochemical characteristics, regeneration capacity, and stability
of microbial biosorbents must be carefully evaluated[187].

The study by Mallick et al.[159] reported that microbes in the rhizo-
sphere  (e.g., Bacillus, Pseudomonas, Penicillium,  and Aspergillus)
exhibited  substantial  capacity  to  withstand  HMs  and  transform
them into less harmful forms, as later confirmed by Singh et al.[160].
Additionally,  enzymatic  detoxification  allows  microorganisms  to
convert  HMs  into  less  toxic  forms,  enhancing  their  potential  for
bioremediation applications.  Microbial  activity in the rhizosphere is
essential  for  ecosystem  recovery  and  the  cleanup  of  contaminated
soils  and  waters[163].  The  interaction  between  plants  and  microor-
ganisms  underpin  key  phytoremediation  mechanisms,  includ-
ing  phytoextraction,  phyto-transformation,  phytovolatilization,  and
rhizoremediation.  In  mangrove  ecosystems,  species  such  as S.
apetala form  strong  mutualistic  associations  with  rhizospheric
microbial  communities[162].  These  interactions  enhance  plant  toler-
ance  to  environmental  stressors,  promote  establishment,  and  con-
tribute  to  HM  detoxification  through  microbial  mediation.  Because
plant  roots  serve  as  a  habitat  for  beneficial  microbes,  species  that
host  diverse  and  efficient  microbial  communities  derive  greater
adaptive and physiological  advantages.  When plant–microbe inter-
actions occur without detrimental effects on the host,  mutualism is
established.  This  mutualistic  mediation  enhances  nutrient  cycling,

mitigates HM toxicity, and strengthens overall ecosystem resilience.
However, the ecological functions of many microbial taxa and their
interactions  with  plants  and  the  rhizosphere  remains  insufficiently
understood,  particularly  in  environments  where  native  and  exotic
species coexist and compete for adaptation and survival.

 Plant detoxification and adaptation
strategies

Mangrove ecosystems are frequently exposed to multiple abiotic
stresses such as salinity,  anoxia,  and HMs contamination.  Both field
and  laboratory  studies  have  demonstrated  that  mangrove  systems
are  highly  efficient  at  trapping  metals  and  reducing  their  solubil-
ity  and  bioavailability[188,189].  However,  excessive  HM  loading  can
exceed  the  sediment's  binding  capacity.  Environmental  distur-
bances such as prolonged dry periods or fluctuations in salinity may
alter  sediment  chemistry,  leading  to  the  remobilization  of  previ-
ously  bound  metals[190].  Consequently,  mangrove  sediments  can
shift  from  functioning  as  metal  sinks  to  acting  as  metal  sources,
often  in  association  with  anthropogenic  disturbances[173,191].  Man-
groves  employ  a  range  of  physiological  and  biochemical  mecha-
nisms to detoxify HMs. These include metal chelation and sequestra-
tion  within  vacuoles,  activation  of  antioxidant  enzymes,  accumula-
tion  of  osmolytes,  and  symbiotic  interactions  with  rhizospheric
microbes that enhance HM immobilization and detoxification[192,193].
However,  the  efficiency  of  these  mechanisms  depends  on  plant
species,  habitat  characteristics,  and  the  genetic  and  physiological
traits of individual mangroves.

Some  mangrove  species  exhibit  remarkable  tolerance  to  HM
exposure.  For  instance, A.  marina seedlings  showed  no  significant
reduction  in  biomass  during  Pb  exposure  (up  to  250  mg·L−1)[102].
Similarly,  a  minimal  growth  inhibition  in A.  marina under  exposure
to combined Pb,  Cu,  and Zn (Pb = 0–800 mg·L−1;  Cu = 566 mg·L−1;
Zn  =  580  mg·L−1)[75]. R.  apiculata exhibited  no  notable  changes  in
root  or  leaf  morphology  after  six  months  of  Cr  exposure  (up  to
500  mg·L−1)[194].  Furthermore,  while B.  gymnorrhiza and R.  stylosa
showed  reduced  root  growth  under  high  Cu  exposure  (up  to
400  mg·kg−1),  but  both  species  still  survived  even  at  the  highest
Cu  concentrations[81].  Conversely,  several  studies  have  reported
adverse  physiological  effects  of  HMs  on  mangroves,  including
decreased  chlorophyll  content  in A.  marina[195,196], B.  gymnorrhiza,
and K. candel[197]. Naidoo et al.[77] observed a reduction of up to 60%
in  CO2 exchange  rates  under  elevated  exposure  to  Cu,  Zn,  and  Pb,
primarily due to decreased leaf conductance and chlorophyll degra-
dation.  HM  stress  can  also  alter  the  leaf  C-nitrogen  (N)  ratio,  as
reported in A. marina exposed to Pb under controlled conditions[102],
and to multiple metals (Cr, Cd, Pb, Zn) in field environments[198].

In  addition,  mangroves  exhibit  a  suite  of  adaptive  morphologi-
cal  and  physiological  traits  that  enable  them  to  thrive  in  environ-
ments contaminated with metals, characterized by high salinity and
anoxia.  Recent  observations  of  natural  root  grafting  in A.  marina
populations  suggest  that  interconnected  root  systems  promote
resource  sharing  and  enhance  resilience  under  stress[199].  Further
structural  adaptations,  such  as  salt  glands  and  thick,  waxy  leaves,
help maintain ionic balance and reduce both salt and metal toxicity.
Leaf  succulence,  observed  in Laguncularia  racemosa, R.  mucronata,
and B.  gymnorrhiza,  facilitates  osmotic  regulation  during  high
HMs  and  salinity  stress[200,201].  These  characteristics  may  enhance
mangrove  functional  traits  under  stressful  conditions,  and  could
positively influence environmental restoration efforts. These diverse
and  interconnected  adaptive  systems  highlight  the  complexity  of
mangrove resilience.
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 Variation in accumulation patterns
The accumulation patterns of HMs in mangrove plants are deter-

mined  mainly  by  their  concentrations  in  surrounding  sediments,
which serve as the primary metal source. However, both the capac-
ity  and  preference  for  HM  accumulation  vary  significantly  among
mangrove species  and plant  organs,  reflecting differences  in  metal
selectivity,  physiological  uptake  mechanisms,  and  tolerance  strate-
gies.  Species-specific  variations are reported,  with S.  apetala,  which
shows  the  highest  accumulation  of  Cu  and  As,  while K.  obovata
exhibited  the  greatest  Pb  and  Cd  concentrations  in  Qi'ao  Island,
Zhuhai, China[202]. In the mangrove wetlands of Hainan, the adsorp-
tion  capacity  of  different  mangrove  species  for  Cu,  Zn,  and  Pb
followed  the  order Ceriops  tagal > B.  sexangula > K.  obovata > A.
corniculatum > A. marina[203]. Another study conducted in the Futian
mangrove  reserve,  Shenzhen,  found  that  accumulation  capacities
for  Cu,  Pb,  Zn,  Ni,  and  Cr  decreased  in  the  order S.  caseolaris > S.
apetala > K.  candel[204].  Differences  are  also  evident  among  plant
organs.  In  most  mangrove  species,  fine  roots  tend  to  accumulate
markedly higher concentrations of Cu, Pb, Zn, and Cr than branches,
stems, or leaves[204]. Some species display unique metal partitioning
patterns.  For  example,  in S.  apetala communities  from  the  Daliao
River  watershed,  Zn  was  found  to  be  most  concentrated  in  leaves,
while  Cu  was  primarily  stored  in  perennial  branches[205].  These
findings highlight that a combination of environmental, physiologi-
cal,  and  species-specific  factors  regulates  metal  accumulation  in
mangroves.

 External and internal detoxification mechanisms
To  mitigate  HMs  contamination  in  intertidal  sediments,  several

remediation strategies have been developed. Methods like physical
remediation  are  primarily  for  HMs  immobilization;  however,  this
approach  is  suitable  for  treating  moderate  quantities  of  heavily
polluted  sediments  and  is  typically  applied  over  short  distances  in
areas exposed to tidal influence[206,207].  Additionally, these methods
can  have  a  significant  impact  on  mangrove  ecosystems  and  inter-
tidal natural processes. Mangrove species are particularly well suited
for phytoremediation due to their rapid growth, high aboveground
biomass,  extensive  root  systems,  and  tolerance  to  high  metal  con-
centrations.  They  can  efficiently  translocate  accumulated  metals
from  roots  to  shoots,  making  them  ideal  for  phytoextraction.  For
example, B. sexangula has demonstrated a high capacity to accumu-
late HMs while maintaining normal anatomical structures and physi-
ological  functions[207,208].  Cellular  analyses  have  further  revealed
species-specific  patterns  of  metal  distribution  within  tissues[197,209].
The  interaction  between  mangroves  and  HMs  begins  at  the  root–
sediment interface,  where the root cell  wall  acts  as the first  barrier,
binding  metal  ions  and  preventing  their  entry  into  the  protoplast.
Additionally, mangrove roots develop lignified and suberized outer
layers, as well as Casparian strips, which further restrict metal diffu-
sion  into  internal  tissues.  During  ROL,  iron  plaques  often  form  on
root surfaces, serving as adsorptive or physical barriers that control
the movement of HMs. The efficiency of these plaques varies among
species  and environmental  conditions[210].  Together,  these external
structures  delay  metal  uptake,  providing  time  for  the  activation  of
internal  detoxification  systems,  such  as  chelation  and  antioxidant
defenses.  When  external  barriers  are  insufficient,  mangroves  acti-
vate  intracellular  detoxification  mechanisms  to  maintain  metal
homeostasis.  The plasma membrane plays  a  key  role  by  regulating
metal ion entry through selective transporters and efflux pumps[42].
Once  metals  enter  the  cytoplasm,  mangroves  synthesize  a  range
of  chelating  and  antioxidant  compounds,  including  cysteine,

glutathione  (GSH),  non-protein  thiols  (NPTs),  phytochelatins  (PCs),
and  metallothioneins,  which  bind  HMs  and  neutralize  their
toxicity[197,211].

HMs'  exposure  also  induces  the  production  of  ROS,  leading  to
oxidative  stress  and  lipid  peroxidation.  To  counter  this,  mangroves
enhance  both  enzymatic  antioxidant  activities—such  as  super-
oxide dismutase (SOD),  peroxidase (POD),  and catalase (CAT)—and
non-enzymatic  antioxidants  (e.g.,  phenolics,  flavonoids,  and  ascor-
bate)  (Fig.  3).  To  alleviate  osmotic  and  oxidative  stress,  mangrove
cells  accumulate  osmo-protectants,  including  soluble  proteins,
proline,  and  sugars,  which  regulate  water  balance  and  enhance
stress  tolerance.  Excess  metals  are  ultimately  sequestered  into
vacuoles  or  organelles,  forming  stable  complexes  with  proteins,
polysaccharides,  or  OA.  Electron  microscopy  studies  have  directly
observed  cadmium  crystal  deposits  within  vacuoles  (includ-
ing  in  other  species),  confirming  their  role  in  long-term  metal
sequestration[101,212,213]. Despite this multi-layered resilience, several
aspects  of  mangrove  biochemical  detoxification  remain  poorly
understood—particularly  how  native  and  exotic  species  adapt  to
increasing metal  toxicity under climate change,  vegetation decline,
and  interspecific  competition  in  varying  tidal  zones.  Also,  future
studies should focus on elucidating the epigenetic regulation mech-
anisms  underlying  HM  tolerance  in  mangroves.  This  includes  inte-
grating  single-cell  and  multi-omics  analyses  to  reveal  cellular-level
detoxification  pathways  and  exploring  the  functional  role  of  rhizo-
sphere  microbiomes  in  enhancing  both  phytoremediation  effi-
ciency and overall ecosystem resilience.

 Integrated adaptive mechanisms
Through  integrated  structural,  physiological,  and  molecular

mechanisms,  mangroves  adapt  to  survive  in  saline,  heavy-metal-
contaminated, waterlogged, and anoxic environments. With special-
ized  vegetative  structures,  mangrove  root  systems  in  anoxic  sedi-
ments promote gas exchange and maintain ion balance[214]. Diverse
root  types  such as  prop roots  (e.g., R.  mangle),  buttress  roots  (Heri-
tiera  littoralis and Xylocarpus  granatum),  stilt  roots,  knee  roots,  and
cable  roots  (Avicennia spp., S.  caseolaris)  enhance  both  mechanical
stability  and aeration[215].  Roots  also  perform ultrafiltration at  corti-
cal  membranes,  selectively  excluding  HMs  and  sodium  (Na+)  and
chloride (Cl−) ions to maintain ionic homeostasis[216].  As reported in
A. marina, root grafting enables inter-root resource sharing, improv-
ing  survival  under  HM  and  salt  stress[199].  In  addition  to  vegetative
parts,  mangrove  stems  also  play  crucial  roles  in  both  mechanical
support and stress management. In several species, salts are actively
excreted  on  stem  and  bark  surfaces,  thereby  reducing  the  ionic
burden within tissues[217,218].  Also,  higher lignin and tannin content
of  mangrove  stems  provides  resistance  to  decay,  microbial  attack,
and  mechanical  damage  from  waves  and  storms.  Moreover,  man-
grove  leaves  exhibit  extensive  specialization  for  desalination,  HM
detoxification,  water  conservation,  and  efficient  photosynthesis
under stressful environmental conditions. Many species possess salt
glands  (e.g., Avicennia, Aegiceras, Acanthus,  and Aegialitis)  that
actively  secrete  excess  salts[219].  Leaves  also  show  succulence  and
thick  cuticles  to  dilute  internal  salts  and  lower  transpiration.  These
adaptations,  including  thickened  leaves,  have  been  observed  in
R.  mucronata and B.  gymnorrhiza[201].  Together,  these  structural
adaptations  across  roots,  stems,  and  leaves  form  an  integrated
defense  system  that  ensures  mangrove  survival  and  functionality
under adverse stress conditions.

Physiologically,  mangroves  sustain  homeostasis  through  the
coordinated regulation of redox balance, ion transport, and osmotic
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adjustment.  Ion  homeostasis  is  achieved  via  compartmentalization
and selective transport of HMs and salt ions, often involving vacuo-
lar sequestration. Vacuolar Na+/H+ exchangers (NHX), plasma mem-
brane  antiporters  (SOS1),  and  H-ATPases  collectively  modulate
cytosolic ion concentrations and pH[220]. Ferritin and calcium-signal-
ing  genes  further  stabilize  ionic  equilibrium  by  sequestering  metal
ions  and  regulating  membrane  transport[221,222].  ROS  scavenging
enzymes—such  as  SOD,  catalase,  and  glutathione  S-transferase
(GST)—are  upregulated  under  stress,  mitigating  oxidative  damage
and  enhancing  tolerance[223].  Osmotic  homeostasis  is  further  sup-
ported  by  the  accumulation  of  compatible  solutes  such  as  proline,
betaine,  and  soluble  sugars[224].  Future  research  should  focus  on
elucidating  the  intricate  signaling  networks  and  cross-talk  among
physiological pathways to clarify how mangroves coordinate multi-
ple stress responses in changing coastal environments.

Mangroves  employ  precisely  coordinated  gene  networks  and
epigenetic  mechanisms  at  the  molecular  level,  supporting  their
stress  resilience  and  adaptive  plasticity.  High-throughput  sequenc-
ing in species such as S. alba has revealed numerous stress-respon-
sive genes involved in osmolyte biosynthesis, antioxidative defense,
ion transport, and hormonal signaling[225]. Hormone signaling path-
ways,  particularly  abscisic  acid-dependent  cascades,  orchestrate
stress  responses  through  stress  response  genes  regulated  by  cen-
tral  stress-response  transcriptional  factors  in  species  such  as K.
obovata[226,227].  Epigenetic regulation via RNA-directed DNA methy-
lation  (RdDM)  contributes  to  genomic  stability  by  silencing  trans-
posable elements (TEs). Mangrove genomes may lower TE loads and
condense  genome  sizes,  indicating  adaptive  genome  streamlin-
ing  under  environmental  stress[228].  These  integrated  multi-level
defenses, including structural,  physiological,  and molecular adapta-
tions,  constitute  the  basis  of  mangrove  resilience  to  HMs,  salinity,

and  anoxic  conditions  (Fig.  4).  Understanding  these  strategies  not
only deepens our insight into the evolution of stress-tolerant plants
but also provides a valuable framework for developing resilient crop
species under changing climatic conditions.

 Integration of tidal–rhizosphere–plant
in HMs transformation

The  interplay  among  tidal  dynamics,  rhizosphere  processes,  and
plant  detoxification  mechanisms  forms  a  highly  integrated  system
that  controls  the  ultimate  fate  of  HMs in  mangrove ecosystems.  At
the  intertidal  scale,  sediments  are  subjected  to  continuous  tidal
oscillations that regulate metal distribution. Periodic inundation and
exposure  cycles  alter  redox  conditions,  which  in  turn  influence
metal speciation, solubility, and bioavailability. High organic matter
content  and  intense  microbial  activity  within  mangrove  sediments
further  enhance  the  sorption  and  stabilization  of  HMs,  thereby
reducing  their  mobility.  Through  these  physical  and  biogeochemi-
cal mechanisms, tidal dynamics act as structural and chemical barri-
ers that control metal availability, distribution, and eventual seques-
tration. Transitioning from the hydrodynamic domain to the biogeo-
chemical  environment,  the rhizosphere serves as a critical  interface
mediating HM mobility and transformation. This zone not only traps
and stabilizes  suspended particulates  but  also  establishes  localized
chemical  gradients  that  profoundly  modify  redox  potential,  pH,
and microbial  community composition.  Root exudates,  such as OA,
sugars, and phenolic compounds, alter sediment chemistry, chelate
metal  ions,  and  influence  HM  bioavailability,  thereby  enhanc-
ing  subsequent  detoxification  via  plant  physiological  pathways.
Elevated enzymatic activities within the rhizosphere simultaneously

 

Fig.  3  Cellular  detoxification  mechanisms  of  heavy  metals  (HMs)  in  mangroves.  Mangroves  absorb  HMs  through  their  cell  walls  and  initially  reduce
toxicity  by  forming  iron  plaques  during  radial  oxygen  loss  (ROL).  This  process  helps  maintain  internal  and  external  equilibrium  between  HM  uptake
and  detoxification,  facilitated  by  carbohydrates  and  polygalacturonic  acids  in  the  cell  wall.  The  plasma  membrane  further  regulates  HM  transport  to
preserve cellular homeostasis. To mitigate toxicity, mangroves enhance the synthesis of cysteine, glutathione, non-protein thiols (NPTs), phytochelatins,
metallothioneins,  and antioxidants,  which scavenge reactive oxygen species  (ROS)  and neutralize  HM ions.  Additionally,  osmo-protectants  and soluble
proteins are upregulated to alleviate osmotic stress. Under high HM exposure, cells compartmentalize metals into vacuoles and other organelles to limit
cytoplasmic toxicity. Through these integrated physiological and biochemical processes, mangroves detoxify and tolerate HMs. However, the efficiency
and specific mechanisms vary among species, reflecting differences in adaptive strategies to HM stress under contrasting tidal conditions.
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Fig.  4  Integration of  morphological,  physiological,  and molecular  adaptations  of  mangrove plants  to  heavy metals  (HMs).  Distinct  root  structures  and
types function in filtration, viviparous propagule development during germination, and gas exchange through lenticels, while salt excretion from stems,
thick  leaf  structures,  leaf-based  excretion,  waxy  layers,  and  thick  cuticles  contribute  to  HM  transformation  and  exclusion.  In  parallel,  coordinated
mechanisms  of  redox  balance,  ion  transport,  and  osmotic  adjustment  mitigate  HM  toxicity.  At  the  molecular  level,  genome  streamlining,  integrated
signaling pathways, and the regulation of stress-related genes collectively enhance stress tolerance. Together, these mechanisms enable mangrove plants
to  survive,  adapt  to,  and  transform  heavy  metals  within  their  environment.  SOD,  superoxide  dismutase;  POD,  peroxidase;  CAT,  catalase;  ROS,  reactive
oxygen species; RdDM, RNA-directed DNA methylation; ABA, abscisic acid; GST, glutathione S-transferase; TFs, transcription factors.
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drive  metal  detoxification  and  nutrient  cycling,  creating  reciprocal
feedback that sustains system functionality. The synergistic interac-
tions  among  roots,  sediments,  and  microorganisms  form  an  inte-
grated rhizoremediation network in which biological and geochemi-
cal processes converge to transform and immobilize metal contami-
nants. As a dynamic biogeochemical reactor, the rhizosphere serves
as  a  vital  barrier  linking  abiotic  sedimentary  processes  with  plant
uptake mechanisms.

Mangrove plants themselves showed better adaptive and detoxi-
fication  strategies  that  ensure  survival  under  conditions  of  high
metal  exposure  and  environmental  stress.  Morphological  adapta-
tions  such  as  complex  root  architectures,  pneumatophores,  lenti-
cels,  salt  glands,  and  leaf  succulence,  combined  with  biochemical
and  molecular  defenses,  regulate  metal  availability,  uptake,  and
sequestration.  Externally,  extensive  root  systems  and  thick  leaves
limit  translocation,  while  internally,  sophisticated  biochemical
defenses  detoxify  absorbed  metals  through  chelating  agents  such
as  phytochelatins,  metallothioneins,  and  glutathione.  These  com-
pounds  bind  and  neutralize  toxic  metal  ions,  while  antioxidant
enzymes (e.g., SOD, CAT, and POD), scavenge ROS generated under
HM  stress.  Osmoprotectants  such  as  proline  and  soluble  sugars
further  support  detoxification  pathways  and  maintain  cellular
integrity and osmotic balance by facilitating metal  compartmental-
ization and stabilization of  cellular  structures.  However,  the degree
of HM tolerance and detoxification capacity varies among mangrove
species and is influenced by their origin, ecological niche, and tidal

zonation.  For  instance, B.  sexangula has  a  higher  HM  accumulation
capacity than S. apetala because of its native status and better adap-
tation  to  local  tidal  conditions.  Similarly,  A.  marina  has  greater
HM  accumulation  capacity  and  tolerance  than K.  obovata and B.
gymnorhiza due  to  their  stronger  physiological  and  molecular
defense mechanisms.  Integrating across  these hierarchical  scales—
tidal,  rhizosphere,  and  plant—the  transformation  of  heavy  metals
operates  as  a  tiered  mechanism  in  which  tidal  processes  regulate
external  availability,  roots  function  as  selective  biogeochemical
filters,  and  intracellular  detoxification  ultimately  completes  metal
exclusion (Fig. 5).

 Conclusions and future outlook
Mangrove  ecosystems  serve  as  critical  biogeochemical  buffers

that  mitigate  HMs  pollution  in  coastal  zones.  Yet  their  stability
is  increasingly  threatened  by  anthropogenic  pressures,  climate
change,  expanding  tourism,  industrial  discharges,  and  biological
invasions.  Despite  these  stresses,  mangrove  employs  a  suite  of
adaptive  and  detoxification  mechanisms  that  collectively  regulate
metal mobility and toxicity. Tidal hydrodynamics drive redox cycles
that  control  HM  speciation  and  bioavailability,  while  the  rhizo-
sphere,  rich  in  microbial  and  biochemical  activity,  mediates  metal
transformation through root oxygen release, organic exudation, and
microbe–root interactions. At the organismal level, selective uptake,
root barriers, iron plaque formation, and intracellular chelation help

 

Fig.  5  Integrated  tide–rhizosphere–plant  dynamics  in  heavy  metals  (HMs)  transformation.  Tidal  oscillations  and  periodic  inundation  regulate  HM
distribution  by  influencing  metal  speciation,  solubility,  and  bioavailability.  Tide  levels  serve  as  structural  barriers,  while  the  organic  acids  released  by
mangrove roots  and rhizospheric  microbial  activity  further  influence HM toxicity  and transformation.  Biochemical  processes involving sugars,  phenolic
compounds, and antioxidants (SOD, superoxide dismutase; POD, peroxidase; CAT, catalase) contribute to HM immobilization and transformation through
rhizoremediation pathways. The synergistic interactions among sediments, roots, and microbes facilitate HM immobilization, uptake, and detoxification
via  cellular,  biochemical,  and  molecular  mechanisms,  including  ion  translocation  and  intracellular  sequestration.  Collectively,  these  interconnected
processes control HM transformations from sediments through tide–root–plant interactions within the mangrove ecosystem.
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maintain  metal  homeostasis  and  protect  tissues  from  oxidative
damage.  Together,  these  tidal,  rhizosphere,  and  physiological  pro-
cesses  enable  mangroves  to  function  as  self-sustaining  filters  that
immobilize  and  transform  HMs.  However,  substantial  knowledge
gaps  remain,  including  the  epigenetics  and  multi-omics  regulation
of  HM responses,  the  roles  of  microbial  consortia,  and the  ecologi-
cal  consequences  of  competition  between  native  and  exotic  spe-
cies,  particularly  relevant  to  the  region  of  Hainan,  China.  As  global
change accelerates, whether mangrove can maintain their resilience
and  biogeochemical  capacity  is  a  pressing  question  for  coastal
management.  Strengthening  mangrove-based  remediation  will
require  prioritizing  native,  metal-tolerant  species,  along  with  long-
term monitoring using remote sensing, GIS, and in situ geochemical
assessments  to  detect  early  signs  of  metal  stress  and  safeguard
ecosystem health.
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