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Abstract
Resveratrol is an important secondary metabolite not only owing to its function as a phytoalexin, but also its potential benefits to human health.

In this study, the content of trans-resveratrol was documented in seven accessions of grapevine, in the seed, pulp and skin of berries, and at three

developmental  stages.  The highest amount (2.99 µg g−1 FW) was found in the skin of berries at  the ripe stage from V.  amurensis 'Tonghua-3'.

Resveratrol was not detected in several samples, including skin of berries at the green hard or véraison stage from V. davidii 'Tangwei'. We carried

out transcriptional profiling of developing 'Tonghua-3' and 'Tangwei' berries to identify gene expression patterns that may be linked with the

difference in resveratrol content between these accessions. The expression levels of several differentially expressed genes (DEGs) with presumed

function in resveratrol biosynthesis, including STILBENE SYNTHASEs (STSs), CINNAMATE 4-HYDROXYLASEs (C4Hs) and 4-COUMARATE-COA LIGASEs
(4CLs), were significantly higher in 'Tonghua-3', than in 'Tangwei' during the véraison and ripe stages. Gene ontology and Kyoto Encyclopedia of

Genes  and  Genomes  analyses  suggested  that  these  DEGs  were  enriched  for  multiple  biological  processes  at  the  three  stages  of  fruit

development.  Additionally,  we  identified  a  total  of  36  transcription  factors,  including  MYBs,  WRKYs,  ERFs,  bHLHs  and  bZIPs,  that  were  co-

expressed with 17 STSs via a weighted gene co-expression network analysis, suggesting roles as regulators of resveratrol biosynthesis. Overall,

these  findings  provide  insight  into  genotypic  differences  in  resveratrol  biosynthesis  in  grapevine,  as  well  as  the  molecular  genetics  of  its

regulation.
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INTRODUCTION

Grapevines  are  among  the  most  widely  grown  and  econo-
mically important fruit crops globally. Grapes are used not only
for wine making and juice, but also are consumed fresh and as
dried  fruit[1].  Additionally,  grapes  have  been  increasingly
recognized as  an important  source of  resveratrol  (trans-3,  5,4'-
trihydroxystilbene), a non-flavonoid stilbenoid polyphenol that
in  grapevine may act  as  a  phytoalexin.  In  humans,  it  has  been
widely  reported that  dietary  resveratrol  has  beneficial  impacts
on various aspects of health[2,3].  Because of the potential value
of  resveratrol  both to grapevine physiology and human medi-
cine, resveratrol biosynthesis and its regulation has become an
important avenue of research.

Similar to other stilbenoids,  resveratrol  synthesis utilizes key
enzymes  of  the  phenylpropanoid  pathway  including  phenyla-
lanine  ammonia  lyase  (PAL),  cinnamate  4-hydroxylase  (C4H),
and  4-coumarate-CoA  ligase  (4CL).  In  the  final  steps,  stilbene
synthase  (STS),  a  type  II  polyketide  synthase,  produces trans-
resveratrol  from p-coumaroyl-CoA  and  malonyl-CoA,  while

chalcone synthase (CHS) synthesizes flavonoids from the same
substrates[4,5].  Moreover, trans-resveratrol  is  a  precursor  for
other stilbenoids such as cis-resveratrol, trans-piceid, cis-piceid,
ε-viniferin and δ-viniferin[6]. It has been reported that stilbenoid
biosynthesis  pathways  are  targets  of  artificial  selection  during
grapevine  domestication[7] and  resveratrol  accumulates  in
various  structures  in  response  to  both  biotic  and  abiotic
stresses[8−12].  This  stress-related  resveratrol  synthesis  is
mediated, at least partialy, through the regulation of members
of  the STS gene  family.  Various  transcription  factors  (TFs)  par-
ticipating  in  regulating STS genes  in  grapevine  have  been
reported. For instance, MYB14 and MYB15[13,14] and WRKY24[15]

directly bind to the promoters of specific STS genes to activate
transcription.  VvWRKY8  physically  interacts  with  VvMYB14  to
repress VvSTS15/21 expression[16], whereas VqERF114 from Vitis
quinquangularis accession  'Danfeng-2'  promotes  expression  of
four STS genes  by  interacting  with  VqMYB35  and  binding
directly to cis-elements in their promoters[17].

Aided by the release of the first V. vinifera reference genome
assembly[18], genomic and transcriptional studies have revealed
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some  of  the  main  molecular  mechanisms  involved  in  fruit
ripening[19−24] and  stilbenoid  accumulation[8,25] in  various
grapevine  cultivars.  Recently,  it  has  been  reported  that  a  root
restriction  treatment  greatly  promoted  the  accumulation  of
trans-resveratrol,  phenolic  acid,  flavonol  and  anthocyanin  in
'Summer  Black'  (Vitis  vinifera × Vitis  labrusca)  berry  develop-
ment  during  ripening[12].  However,  most  of  studies  mainly
focus  on  a  certain  grape  variety,  not  to  investigate  potential
distinctions  in  resveratrol  biosynthesis  among  different Vitis
genotypes.

In  this  study,  we  analyzed  the  resveratrol  content  in  seven
grapevine accessions and three berry structures, at three stages
of  fruit  development.  We  found  that  the  fruits  of  two  wild,
Chinese grapevines, Vitis amurensis 'Tonghua-3' and Vitis davidii
'Tangwei'  showed  significant  difference  in  resveratrol  content
during  development.  These  were  targeted  for  transcriptional
profiling to gain insight  into the molecular  aspects  underlying
this  difference.  This  work  provides  a  theoretical  basis  for  sub-
sequent systematic studies of genes participating in resveratrol
biosynthesis and their regulation. Further, the results should be
useful in the development of grapevine cultivars exploiting the
genetic resources of wild grapevines. 

RESULTS
 

Extractable trans-resveratrol content in developing
grape berries

For each of the seven cultivars, we analyzed resveratrol con-
tent in the skin, pulp, and seed at three stages of development:
Green  hard  (G),  véraison  (V),  and  ripe  (R)  (Table  1).  In  general,
we  observed  the  highest  accumulation  in  skins  at  the  R  stage
(0.43−2.99 µg g−1 FW). Lesser amounts were found in the pulp
(0.03−0.36 µg g−1 FW) and seed (0.05−0.40 µg g−1 FW) at R, and
in the skin at the G (0.12−0.34 µg g−1 FW) or V stages (0.17−1.49
µg g−1 FW). In all three fruit structures, trans-resveratrol showed
an  increasing  trend  with  development,  and  this  was  most

obvious in the skin. It is worth noting that trans-resveratrol was
not detectable in the skin of 'Tangwei'  at the G or V stage, but
had accumulated to 2.42 µg g−1 FW by the R stage. The highest
amount  of  extractable trans-resveratrol  (2.99 µg  g−1 FW)  was
found in 'Tonghua-3' skin at the R stage. 

Analysis of RNA-Seq data
To  gain  insight  into  gene  expression  patterns  influencing

resveratrol  biosynthesis  in  'Tangwei'  and  'Tonghua-3',  we
profiled the transcriptomes of developing berries at G, V, and R
stages, using sequencing libraries representing three biological
replicates  from  each  cultivar  and  stage.  A  total  of  142.49  Gb
clean  data  were  obtained  with  an  average  of  7.92  Gb  per
replicate,  with  average  base  Q30  >  92.5%.  Depending  on  the
sample,  between  80.47%−88.86%  of  reads  aligned  to  the V.
vinifera reference  genome  (Supplemental  Table  S1),  and  of
these,  78.18%−86.66%  mapped  to  unique  positions.  After
transcript assembly, a total of 23,649 and 23,557 unigenes were
identified  as  expressed  in  'Tangwei'  and  'Tonghua-3',  respec-
tively.  Additionally,  1,751  novel  transcripts  were  identified
(Supplemental  Table  S2),  and  among  these,  1,443  could  be
assigned  a  potential  function  by  homology.  Interestingly,  the
total number of expressed genes gradually decreased from the
G  to  R  stage  in  'Tangwei',  but  increased  in  'Tonghua-3'.  About
80% of the annotated genes showed fragments per kilobase of
transcript per million fragments mapped (FPKM) values > 0.5 in
all  samples,  and  of  these  genes,  about  40%  showed  FPKM
values  between  10  and  100  (Fig.  1a).  Correlation  coefficients
and  principal  component  analysis  of  the  samples  based  on
FPKM  indicated  that  the  biological  replicates  for  each  cultivar
and  stage  showed  similar  properties,  indicating  that  the  tran-
scriptome data was reliable for further analyses (Fig. 1b & c). 

GO and KEGG pathway enrichment analysis of DEGs
By comparing the transcriptomes of 'Tangwei' and 'Tonghua-

3' at the G, V and R stages, we identified 6,770, 3,353 and 6,699
differentially  expressed  genes  (DEGs),  respectively  (Fig.  2a).  Of
these  genes,  1,134  were  differentially  expressed  between  the

Table 1.    Resveratrol concentrations in the skin, pulp and seed of berries from different grapevine genotypes at green hard, véraison and ripe stages.

Structures Species Accessions or cultivars
Content of trans-resveratrol (µg g−1 FW)

Green hard Véraison Ripe

Skin V. davidii Tangwei nd nd 2.415 ± 0.220
V. amurensis Tonghua-3 0.216 ± 0.041 0.656 ± 0.043 2.988 ± 0.221

Shuangyou 0.233 ± 0.062 0.313 ± 0.017 2.882 ± 0.052
V. amurensis × V. Vinifera Beibinghong 0.336 ± 0.076 1.486 ± 0.177 1.665 ± 0.100
V. vinifera Red Global 0.252 ± 0.051 0.458 ± 0.057 1.050 ± 0.129

Thompson seedless 0.120 ± 0.025 1.770 ± 0.032 0.431 ± 0.006
V. vinifera × V. labrusca Jumeigui 0.122 ± 0.016 0.170 ± 0.021 0.708 ± 0.135

Pulp V. davidii Tangwei 0.062 ± 0.006 0.088 ± 0.009 nd
V. amurensis Tonghua-3 0.151 ± 0.066 0.324 ±0.104 0.032 ± 0.004

Shuangyou 0.053 ± 0.008 0.126 ± 0.044 0.041 ± 0.017
V. amurensis × V. Vinifera Beibinghong 0.057 ± 0.014 0.495 ± 0.068 0.087 ± 0.021
V. vinifera Red Global 0.059 ± 0.018 0.159 ± 0.013 0.027 ± 0.004

Thompson seedless 0.112 ± 0.016 0.059 ± 0.020 nd
V. vinifera × V. labrusca Jumeigui 0.072 ± 0.010 0.063 ± 0.017 0.359 ± 0.023

Seed V. davidii Tangwei 0.096 ± 0.014 0.169 ± 0.028 0.049 ± 0.006
V. amurensis Tonghua-3 0.044 ± 0.004 0.221 ± 0.024 0.113 ± 0.027

Shuangyou nd 0.063 ± 0.021 0.116 ± 0.017
V. amurensis × V. Vinifera Beibinghong nd 0.077 ± 0.003 0.400 ± 0.098
V. vinifera Red Global 0.035 ± 0.023 0.142 ± 0.036 0.199 ± 0.009

Thompson seedless − − −
V. vinifera × V. labrusca Jumeigui 0.077 ± 0.025 0.017 ± 0.004 0.284 ± 0.021

'nd' indicates not detected in samples, and '−' shows no samples are collected due to abortion.
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two  cultivars  at  all  three  stages  (Fig.  2b).  We  also  compared
transcriptional  profiles  between  two  adjacent  developmental
stages  (G  vs  V;  V  vs  R)  for  each  cultivar.  Between  G  and  V,  we
identified  1,761  DEGs  that  were  up-regulated  and  2,691  DEGs
that  were  down-regulated  in  'Tangwei',  and  1,836  and  1,154
DEGs  that  were  up-regulated  or  down-regulated,  respectively,
in 'Tonghua-3'. Between V and R, a total of 1,761 DEGs were up-
regulated  and  1,122  DEGs  were  down-regulated  in  'Tangwei',
whereas  2,774  DEGs  and  1,287  were  up-regulated  or  down-
regulated,  respectively,  in  'Tonghua-3'  (Fig.  2c).  Among  the
16,822 DEGs between the two cultivars at G, V, and R (Fig. 2a), a
total  of  4,570,  2,284  and  4,597  had  gene  ontology  (GO)  anno-
tations  and  could  be  further  classified  to  over  60  functional
subcategories.  The  most  significantly  represented  GO  terms
between the two cultivars at all  three stages were response to
metabolic  process,  catalytic  activity,  binding,  cellular  process,
single-organism process, cell, cell part and biological regulation
(Fig. 2d).

We  also  identified  57  Kyoto  Encyclopedia  of  Genes  and
Genomes (KEGG) pathways that were enriched, of which 32, 28,
and  31  were  enriched  at  the  G,  V,  and  R  stages,  respectively.
Seven  of  the  KEGG  pathways  were  enriched  at  all  three  deve-
lopmental  stages:  photosynthesis-antenna  proteins  (ko00196);
glycine, serine and threonine metabolism (ko00260); glycolysis/
gluconeogenesis  (ko00010);  carbon  metabolism  (ko01200);
fatty  acid  degradation  (ko00071);  cysteine  and  methionine
metabolism  (ko00270);  and  valine,  leucine  and  isoleucine  de-
gradation  (ko00280)  (Supplemental  Tables  S3−S5).  Further-
more,  we  found  that  the  predominant  KEGG  pathways  were
distinct for each developmental stage. For example, phenylpro-
panoid  biosynthesis  (ko00940)  was  enriched  only  at  the  R
stage.  Overall,  the GO and KEGG pathway enrichment analysis
showed  that  the  DEGs  in  'Tangwei'  and  'Tonghua-3'  were
enriched  for  multiple  biological  processes  during  the  three
stages of fruit development. 

DEGs related to phenylalanine metabolism
We  then  analyzed  the  expression  of  genes  with  potential

functions in resveratrol and flavonoid biosynthesis between the
two  cultivars  and  three  developmental  stages  (Fig.  3 and
Supplemental  Table  S6).  We  identified  30  STSs,  13  PALs,  two
C4Hs and nine 4CLs that were differentially expressed during at
least one of the stages of fruit development between 'Tangwei'
and  'Tonghua-3'.  Interestingly,  all  of  the STS genes  showed
increasing expression with development in both 'Tangwei' and
'Tonghua-3'.  In  addition,  the  expression levels  of STS, C4H and
4CL genes  at  V  and  R  were  significantly  higher  in  'Tonghua-3'
than  in  'Tangwei'.  Moreover,  25  RESVERATROL  GLUCOSYL-
TRANSFERASE  (RSGT),  27  LACCASE  (LAC)  and  21  O-METHYL-
TRANSFERASE  (OMT)  DEGs  were  identified,  and  most  of  these
showed  relatively  high  expression  at  the  G  and  V  stages  in
'Tangwei'  or  R  in  'Tonghua-3'.  It  is  worth  noting  that  the
expression  of  the  DEGs  related  to  flavonoid  biosynthesis,
including  CHS,  FLAVONOL  SYNTHASE  (FLS),  FLAVONOID  3′-
HYDROXYLASE  (F3'H),  DIHYDROFLAVONOL  4-REDUCTASE
(DFR), ANTHOCYANIDIN REDUCTASE (ANR) and LEUCOANTHO-
CYANIDIN REDUCTASE (LAR) were generally higher in 'Tangwei'
than in 'Tonghua-3'at G stage. 

Differentially expressed TF genes
Among  all  DEGs  identified  in  this  study,  757  encoded

potential  TFs,  and  these  represented  57  TF  families.  The  most
highly  represented  of  these  were  the  AP2/ERF,  bHLH,  NAC,
WRKY,  bZIP,  HB-HD-ZIP  and  MYB  families  with  a  total  of  76
DEGs (Fig. 4a). We found that the number of downregulated TF
genes was greater than upregulated TF genes at  G and V,  and
48 were differentially expressed between the two cultivars at all
three stages (Fig. 4b). Several members of the ERF, MYB, WRKY
and  bHLH  families  showed  a  strong  increase  in  expression  at
the R stage (Fig. 4c). In addition, most of the TF genes showed >
2-fold higher expression in 'Tonghua-3' than in 'Tangwei' at the

c

TH.G.1
TH.G.2

TH.G.3

TH.V.2 TH.V.3

TH.R.1 TH.R.2

TH.R.3 TW.G.1
TW.G.2

TW.G.3

TW.V.2

TW.V.3

TW.R.1

TW.R.2

TW.R.3 ●●
●

●

● ●

● ●
●

●● ●

●●

●

●
● ●

TW.V.1
TH.V.1

−0.2

0.0

0.2

0.215 0.220 0.225 0.230 0.235 0.240 0.245
PC1

P
C
2

group

a●

a●

a●

a●

a●

a●

TH.G

TH.R

TH.V

TW.G

TW.R

TW.V

0.0

0.2

0.4

0.6

0.8

1.0

TW−G−1
TW−G−3
TW−G−2
TH−G−2
TH−G−1
TH−G−3
TH−V−2
TH−V−1
TH−V−3
TW−R−1
TW−R−2
TW−R−3
TH−R−1
TH−R−2
TH−R−3
TW−V−3
TW−V−1
TW−V−2

TW
−G

−1

TW
−G

−3

TW
−G

−2

TH
−G

−2

TH
−G

−1

TH
−G

−3

TH
−V

−2

TH
−V

−1

TH
−V

−3

TW
−R

−1

TW
−R

−2

TW
−R

−3

TH
−R

−1

TH
−R

−2

TH
−R

−3

TW
−V

−3

TW
−V

−1

TW
−V

−2

b

G
1

G
2

G
3

V
1

V
2

V
3

R
1

R
2

R
3

G
1

G
2

G
3

V
1

V
2

V
3

R
1

R
2

R
3

0

2500

5000

10000

12500

15000

17500

20000

22500

7868±2757553±1566401±1266401±1267001±226

4810±323

>100 FPKM 10-100 FPKM 0.5-10 FPKM <0.5 FPKM

TW TH

4810±323 5128±112 4921±157 5023±111 5041±226 4921±154

9436±265 8690±21 8269±1518 8232±128 8633±17 9679±17

8128±618

956±133

1072±21
928±13 993±10

1042±35
908±64

a

25000

Fr
qu

en
cy

 
Fig. 1    Properties of transcriptome data of 'Tangwei'  (TW) and 'Tonghua-3' (TH) berry at green hard (G),  véraison (V),  and ripe (R) stages. (a)
Total numbers of expressed genes with fragments per kilobase of transcript per million fragments mapped (FPKM) values; (b) Heatmap of the
sample correlation analysis; (c) Principal component analysis (PCA) showing clustering pattern among TW and TH at G, V and R samples based
on global gene expression profiles.
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R  stage.  In  particular,  a  few  members,  such  as  ERF11  (VIT_07s
0141g00690),  MYB105  (VIT_01s0026g02600),  and  WRKY70
(VIT_13s0067g03140),  showed  >  100-fold  higher  expression  in
'Tonghua-3' (Fig. 4d). 

Weighted gene co-expression network construction
and identification of TF genes co-expressed with STSs

We  constructed  a  gene  co-expression  network  using  the
weighted gene co-expression network analysis (WGCNA) pack-
age,  which  uses  a  systems  biology  approach  focused  on
understanding  networks  rather  than  individual  genes.  In  the
network,  17 distinct modules (hereafter referred to by color as
portrayed  in Fig.  5a),  with  module  sizes  ranging  from  91
(antiquewhite4)  to  1,917  (magenta)  were  identified
(Supplemental Table S7). Of these, three modules (ivory, orange
and blue) were significantly correlated with resveratrol content,
cultivar  ('Tonghua-3'),  and  developmental  stage  (R).  The  blue
module  showed  the  strongest  correlation  with  resveratrol
content (cor = 0.6, p-value = 0.008) (Fig. 5b). KEGG enrichment
analysis  was  carried  out  to  further  analyze  the  genes  in  these
three  modules.  Genes  in  the  ivory  module  were  significantly
enriched  for  phenylalanine  metabolism  (ko00360),  stilbenoid,
diarylheptanoid  and  gingerol  biosynthesis  (ko00945),  and
flavonoid  biosynthesis  (ko00941),  whereas  the  most  highly
enriched  terms  of  the  blue  and  orange  modules  were  plant-
pathogen  interaction  (ko04626),  plant  hormone  signal  trans-
duction  (ko04075)  and  circadian  rhythm-plant  (ko04712)
(Supplemental  Fig.  S1).  Additionally,  a  total  of  36  genes
encoding  TFs  including  in  15  ERFs,  10  WRKYs,  six  bHLHs,  two

MYBs, one MADs-box, one HSF and one TRY were identified as
co-expressed  with  one  or  more  STSs  in  these  three  modules
(Fig. 5c and Supplemental Table S8), suggesting that these TFs
may participate in the STS regulatory network. 

Validation of RNA-seq data by RT-qPCR
To  assess  the  reliability  of  the  RNA-seq  data,  12  genes

determined  to  be  differentially  expressed  by  RNA-seq  were
randomly  selected  for  analysis  of  expression  via  real-time
quantitative  PCR  (RT-qPCR).  This  set  comprised  two PALs,  two
4CLs,  two STSs,  two WRKYs,  two LACs,  one OMT,  and MYB14.  In
general, these RT-qPCR results strongly confirmed the RNA-seq-
derived  expression  patterns  during  fruit  development  in  the
two  cultivars.  The  correlation  coefficients  between  RT-qPCR
and  RNA-seq  were  >  0.6,  except  for  LAC  (VIT_02s0154g00080)
(Fig. 6). 

DISCUSSION

Grapevines  are  among  the  most  important  horticultural
crops  worldwide[26],  and  recently  have  been  the  focus  of
studies  on  the  biosynthesis  of  resveratrol.  Resveratrol  content
has  previously  been  found  to  vary  depending  on  cultivar  as
well  as  environmental  stresses[27].  In  a  study  of  120  grape
germplasm cultivars  during two consecutive  years,  the extrac-
table  amounts  of  resveratrol  in  berry  skin  were  significantly
higher  in  seeded  cultivars  than  in  seedless  ones,  and  were
higher  in  both  berry  skin  and  seeds  in  wine  grapes  relative  to
table grapes[28]. Moreover, it was reported that total resveratrol
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Fig. 2    Analysis of differentially expressed genes (DEGs) at the green hard (G), véraison (V), and ripe (R) stages in 'Tangwei' (TW) and 'Tonghua-
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content constantly increased from véraison to complete matu-
rity, and ultraviolet-C (UV-C) irradiation significantly stimulated
the  accumulation  of  resveratrol  of  berry  during  six  different
development  stages  in  'Beihong'  (V.  vinifera  ×  V.  amurensis)[9].
Intriguingly, a recent study reported that bud sport could lead
to earlier accumulation of trans-resveratrol in the grape berries
of  'Summer  Black'  and  its  bud  sport  'Nantaihutezao'  from  the
véraison  to  ripe  stages[29].  In  the  present  study,  resveratrol
concentrations  in  seven  accessions  were  determined  by  high
performance  liquid  chromatography  (HPLC)  in  the  seed,  pulp
and skin at three developmental stages (G, V and R). Resveratrol
content  was  higher  in  berry  skins  than  in  pulp  or  seeds,  and
were higher in the wild Chinese accessions compared with the
domesticated  cultivars.  The  highest  resveratrol  content  (2.99
µg  g−1 FW)  was  found  in  berry  skins  of  'Tonghua-3'  at  the  R
stage (Table 1). This is consistent with a recent study of 50 wild
Chinese  accessions  and  45  cultivars,  which  reported  that
resveratrol  was  significantly  higher  in  berry  skins  than  in
leaves[30].  However,  we  did  not  detect trans-resveratrol  in  the
skins of 'Tangwei' during the G or V stages (Table 1). To explore

the  reason  for  the  difference  in  resveratrol  content  between
'Tangwei' and 'Tonghua-3', as well as the regulation mechanism
of  resveratrol  synthesis  and  accumulation  during  berry  deve-
lopment,  we  used  transcriptional  profiling  to  compare  gene
expression  between  these  two  accessions  at  the  G,  V,  and  R
stages.

After  sequence  read  alignment  and  transcript  assembly,
23,649  and  23,557  unigenes  were  documented  in  'Tangwei'
and 'Tonghua-3',  respectively.  As  anticipated,  due to  the small
number of  structures sampled,  this  was less than that (26,346)
annotated  in  the V.  vinifera reference  genome[18].  Depending
on the sample, 80.47%−88.86% of sequence reads aligned to a
single genomic location (Supplemental Table S1); this is similar
to  the  alignment  rate  of  85%  observed  in  a  previous  study  of
berry  development  in Vitis  vinifera[19].  Additionally,  1751 novel
transcripts were excavated (Supplemental Table S2) after being
compared  with  the V.  vinifera reference  genome  annotation
information[18,31].  A  similar  result  was  also  reported  in  a
previous study when transcriptome analysis  was performed to
explore  the  underlying  mechanism  of  cold  stress  between
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Fig.  3    Expression of  differentially  expressed genes (DEGs)  associated with phenylalanine metabolism.  TW,  'Tangwei';  TH,  'Tonghua-3'.  PAL,
PHENYLALANINE  AMMONIA  LYASE;  C4H,  CINNAMATE  4-HYDROXYLASE;  4CL,  4-COUMARATE-COA  LIGASE;  STS,  STILBENE  SYNTHASE;  RSGT,
RESVERATROL  GLUCOSYLTRANSFERASE;  OMT,  O-METHYLTRANSFERASE;  LAC,  LACCASE;  CHS,  CHALCONE  SYNTHASE;  CHI,  CHALCONE
ISOMERASE; F3H, FLAVANONE 3-HYDROXYLASE; FLS, FLAVONOL SYNTHASE; F3'H, FLAVONOID 3′-HYDROXYLASE; DFR, DIHYDROFLAVONOL 4-
REDUCTASE;  LAR,  LEUCOANTHOCYANIDIN  REDUCTASE;  ANR,  ANTHOCYANIDIN  REDUCTASE;  LDOX,  LEUCOANTHOCYANIDIN  DIOXYGENASE;
UFGT, UDP-GLUCOSE: FLAVONOID 3-O-GLUCOSYLTRANSFERASE.
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Chinese  wild Vitis  amurensis and Vitis  vinifera[32].  We  speculate
that  these  novel  transcripts  are  potentially  attributable  to
unfinished V.  vinifera reference  genome  sequence  (For
example:  quality  and  depth  of  sequencing)  or  species-specific
difference  between Vitis  vinifera and  other Vitis.  In  our  study,
the distribution of genes based on expression level revealed an
inverse trend from G, V to R between 'Tangwei' and 'Tonghua-3'
(Fig.  1).  Furthermore,  analysis  of  DEGs  suggested  that  various
cellular  processes  including  metabolic  process  and  catalytic
activity  were  altered  between  the  two  cultivars  at  all  three
stages (Fig. 2 and Supplemental Table S3−S5). These results are
consistent with a previous report that a large number of DEGs
and 100 functional  subcategories  were identified in 'Tonghua-
3' grape berries after exposure to UV-C radiation[8].

Resveratrol  biosynthesis  in  grapevine  is  dependent  on  the
function  of STSs,  which  compete  with  the  flavonoid  branch  in
the  phenylalanine  metabolic  pathway.  Among  the  DEGs
detected  in  this  investigation,  genes  directly  involved  in  the

resveratrol  synthesis  pathway, STSs, C4Hs and 4CLs,  were
expressed  to  significantly  higher  levels  in  'Tonghua-3'  than  in
'Tangwei'  during  V  and  R.  On  the  other  hand,  DEGs  represen-
ting  the  flavonoid  biosynthesis  pathway  were  upregulated  in
'Tangwei',  but  downregulated  in  'Tonghua-3'  (Fig.  3 and
Supplemental  Table  S6).  These  expression  differences  may
contribute to the difference in resveratrol content between the
two  cultivars  at  these  stages.  We  note  that  'Tangwei'  and
'Tonghua-3' are from two highly diverged species with different
genetic  backgrounds.  There  might  be  some  unknown  genetic
differences between the two genomes,  resulting in more than
60  functional  subcategories  being  enriched  (Fig.  2d)  and  the
expression  levels  of  genes  with  putative  roles  in  resveratrol
biosynthesis  being  significantly  higher  in  'Tonghua-3'  than  in
'Tangwei'  during  V  and  R  (Fig.  3).  A  previous  proteomic  study
also reported that the expression profiles of several enzymes in
the  phenylalanine  metabolism  pathway  showed  significant
differences  between V.  quinquangularis accession  'Danfeng-2'
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Fig. 4    Differentially expressed transcription factor (TF) genes. (a) The number of differentially expressed genes (DEGs) in different TF families;
(b) Number of differentially expressed TF genes, numbers of overlapping differentially expressed TF genes, and (c) categorization of expression
fold change (FC) for members of eight TF families between 'Tangwei'  and 'Tonghua-3'  at green hard (G),  véraison (V),  and ripe (R) stages;  (d)
Heatmap expression profiles of the three most strongly differentially expressed TF genes from each of eight TF families.
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and V.  vinifera cv.  'Cabernet  Sauvignon'  at  the  véraison  and
ripening  stages[33].  In  addition,  genes  such  as RSGT, OMT and
LAC involved in  the  production of  derivatized products  of  res-
veratrol were mostly present at the G and V stages of 'Tangwei',
potentially  resulting  in  limited  resveratrol  accumulation.  How-
ever, we found that most of these also revealed relatively high
expression  at  R  in  'Tonghua-3'  (Fig.  3).  Despite  this  situation,
which does not seem to be conducive for the accumulation of
resveratrol, it still showed the highest content (Table 1).

It  has  been  reported  that  overexpression  of  two  grapevine
peroxidase VlPRX21 and VlPRX35 genes from Vitis labruscana in
Arabidopsis may be involved in regulating stilbene synthesis[34],
and a VqBGH40a belonging to β-glycoside hydrolase family 1 in
Chinese wild Vitis quinquangularis can hydrolyze trans-piceid to
enhance trans-resveratrol  content[35].  However,  most  studies
mainly focus on several TFs that participate in regulation of STS
gene  expression,  including  ERFs,  MYBs  and  WRKYs[13,15,17].  For
example,  VvWRKY18  activated  the  transcription  of VvSTS1 and
VvSTS2 by  directly  binding  the  W-box  elements  within  the
specific  promoters  and  resulting  in  the  enhancement  of
stilbene  phytoalexin  biosynthesis[36].  VqWRKY53  promotes
expression  of VqSTS32 and VqSTS41 through  participation  in  a
transcriptional  regulatory  complex  with  the  R2R3-MYB  TFs
VqMYB14  and  VqMYB15[37].  VqMYB154  can  activate VqSTS9/
32/42 expression by directly binding to the L5-box and AC-box
motifs  in  their  promoters  to  improve  the  accumulation  of
stilbenes[38].  In this study, we found a total of 757 TF-encoding
genes among the DEGs,  including representatives  of  the MYB,

AP2/ERF,  bHLH,  NAC,  WRKY,  bZIP  and  HB-HD-ZIP  families.  The
most  populous  family  was  MYB,  representing  76  DEGs  at  G,  V
and  R  between  'Tangwei'  and  'Tonghua-3'  (Fig.  4).  A  recent
report  indicated  that  MYB14,  MYB15  and  MYB13,  a  third
uncharacterized member of  Subgroup 2 (S2),  could bind to 30
out of 47 STS family genes. Moreover, all three MYBs could also
bind  to  several PAL, C4H and 4CL genes,  in  addition  to  shiki-
mate pathway genes,  the WRKY03 stilbenoid co-regulator  and
resveratrol-modifying gene[39].  VqbZIP1 from Vitis  quinquangu-
laris has  been  shown  to  promote  the  expression  of VqSTS6,
VqSTS16 and VqSTS20 by  interacting  with  VqSnRK2.4  and
VqSnRK2.6[40].  In  the  present  study,  we  found  that  a  gene
encoding  a  bZIP-type  TF  (VIT_12s0034g00110)  was  down-
regulated in 'Tangwei', but up-regulated in 'Tonghua-3', at G, V
and R (Fig. 4). We also identified 36 TFs that were co-expressed
with 17 STSs using WGCNA analysis,  suggesting that these TFs
may  regulate STS gene  expression  (Fig.  5 and Supplemental
Table  S8).  Among  these,  a  STS  (VIT_16s0100g00880)  was
together  co-expressed  with  MYB14  (VIT_07s0005g03340)  and
WRKY24  (VIT_06s0004g07500)  that  had  been  identified  as
regulators  of STS gene  expression[13,15].  A  previous  report  also
indicated that a bHLH TF (VIT_11s0016g02070) had a high level
of  co-expression  with  STSs  and  MYB14/15[15].  In  the  current
study, six bHLH TFs were identified as being co-expressed with
one  or  more  STSs  and  MYB14  (Fig.  5 and Supplemental  Table
S8). However, further work needs to be done to determine the
potential  role of these TFs that could directly target STS genes
or  indirectly  regulate  stilbene  biosynthesis  by  formation
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Fig. 5    Results of weighted gene co-expression network analysis (WGCNA). (a) Hierarchical clustering tree indicating co-expression modules;
(b) Module-trait relationship. Each row represents a module eigengene, and each column represents a trait. The corresponding correlation and
p-value are indicated within each module. Res, resveratrol; TW, 'Tangwei'; TH, 'Tonghua-3'; (c) Transcription factors and stilbene synthase gene
co-expression networks in the orange, blue and ivory modules.
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protein  complexes  with  MYB  or  others.  Taken  together,  these
results  identify  a  small  group  of  TFs  that  may  play  important
roles in resveratrol biosynthesis in grapevine. 

CONCLUSIONS

In summary, we documented the trans-resveratrol content of
seven grapevine accessions by HPLC and performed transcrip-
tional analysis of the grape berry in two accessions with distinct
patterns  of  resveratrol  accumulation  during  berry  develop-
ment. We found that the expression levels of genes with puta-
tive roles in resveratrol biosynthesis were significantly higher in
'Tonghua-3'  than  in  'Tangwei'  during  V  and  R,  consistent  with
the  difference  in  resveratrol  accumulation  between  these
accessions.  Moreover,  several  genes  encoding  TFs  including
MYBs, WRKYs, ERFs, bHLHs and bZIPs were implicated as regu-

lators  of  resveratrol  biosynthesis.  The  results  from  this  study
provide  insights  into  the  mechanism  of  different  resveratrol
accumulation in various grapevine accessions. 

MATERIALS AND METHODS
 

Plant material
V.  davidii 'Tangwei', V.  amurensis × V.  Vinifera 'Beibinghong';

V.  amurensis 'Tonghua-3'  and  'Shuangyou'; V.  vinifera × V.
labrusca 'Jumeigui'; V.  vinifera 'Red  Globe'  and  'Thompson
Seedless'  were  maintained  in  the  grapevine  germplasm  re-
source  at  Northwest  A&F  University,  Yangling,  Shaanxi,  China
(34°20'  N,  108°24'  E).  Fruit  was  collected  at  the  G,  V,  and  R
stages,  as  judged  by  skin  and  seed  color  and  soluble  solid
content. Each biological replicate comprised three fruit clusters
randomly chosen from three plants at each stage. About 40−50
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Fig. 6    Comparison of the expression patterns of 12 randomly selected differentially expressed genes by RT-qPCR (real-time quantitative PCR)
and  RNA-seq.  R-values  are  correlation  coefficients  between  RT-qPCR  and  RNA-seq.  FPKM,  fragments  per  kilobase  of  transcript  per  million
fragments mapped; TW, 'Tangwei'; TH, 'Tonghua-3'; G, green hard; V, véraison; R, ripe.
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representative berries were separated into skin, pulp, and seed,
and immediately frozen in liquid nitrogen and stored at −80 °C. 

Extraction and analysis of resveratrol content
Resveratrol  extraction  was  carried  out  as  previously

reported[8].  Quantitative  analysis  of  resveratrol  content  was
done  using  a  Waters  600E-2487  HPLC  system  (Waters  Corpo-
ration, Milford, MA, USA) equipped with an Agilent ZORBAX SB-
C18 column (5 µm, 4.6 × 250 mm). Resveratrol was identified by
co-elution  with  a  resveratrol  standard,  and  quantified  using  a
standard  curve.  Each  sample  was  performed  with  three  bio-
logical replicates. 

RNA extraction, transcriptome library construction and
sequencing

Three  biological  replicates  of  each  stage  (G,  V  and  R)  from
whole  berries  of  'Tangwei'  and  'Tonghua-3'  were  used  for  all
RNA-Seq  experiments.  Total  RNA  was  extracted  from  18
samples  using  the  E.Z.N.A.  Plant  RNA  Kit  (Omega  Bio-tek,
Norcross, GA, USA). For each sample, sequencing libraries were
constructed  from  1 µg  RNA  using  the  NEBNext  UltraTM  RNA
Library Prep Kit for Illumina (New England Biolabs, Ipswich, MA,
USA).  The  library  preparations  were  sequenced  on  an  Illumina
HiSeq2500 platform (Illumina, San Diego, CA, USA) at Biomarker
Technologies Co., Ltd. (Beijing, China). 

RNA-seq data analysis
Raw  sequence  reads  were  filtered  to  remove  low-quality

reads,  and  then  mapped  to  the V.  vinifera 12X  reference
genome[18,31] using  TopHat  v.2.1.0[41].  The  mapped  reads  were
assembled into transcript models using Stringtie v2.0.4[42]. Tran-
script abundance and gene expression levels were estimated as
FPKM[43]. The formula is as follows:

FPKM =
cDNA Fragments

Mapped Fragments (Millions)× Transcript Length (kb)
Biological replicates were evaluated using Pearson's Correla-

tion  Coefficient[44] and  principal  component  analysis.  DEGs
were identified using the DEGSeq R package v1.12.0[45].  A false
discovery  rate  (FDR)  threshold  was  used  to  adjust  the  raw P
values for  multiple testing[46].  Genes with a  fold change of  ≥ 2
and  FDR  <  0.05  were  assigned  as  DEGs.  GO  and  KEGG
enrichment  analyses  of  DEGs  were  performed  using  GOseq  R
packages  v1.24.0[47] and  KOBAS  v2.0.12[48],  respectively.  Co-
expression networks were constructed based on FPKM values ≥
1 and coefficient of variation ≥ 0.5 using the WGCNA R package
v1.47[49].  The  adjacency  matrix  was  generated  with  a  soft
thresholding  power  of  16.  Then,  a  topological  overlap  matrix
(TOM)  was  constructed  using  the  adjacency  matrix,  and  the
dissimilarity  TOM  was  used  to  construct  the  hierarchy
dendrogram.  Modules  containing  at  least  30  genes  were
detected  and  merged  using  the  Dynamic  Tree  Cut  algorithm
with a cutoff value of 0.25[50]. The co-expression networks were
visualized using Cytoscape v3.7.2[51]. 

Validation of RNA-Seq data by RT-qPCR
RT-qPCR  was  carried  out  using  the  SYBR  Green  Kit  (Takara

Biotechnology, Beijing, China) and the Step OnePlus Real-Time
PCR  System  (Applied  Biosystems,  Foster,  CA,  USA).  Gene-
specific  primers  were  designed  using  Primer  Premier  5.0
software  (PREMIER  Biosoft  International,  Palo  Alto,  CA,  USA).
Cycling parameters were 95 °C for 30 s, 42 cycles of 95 °C for 5 s,
and  60  °C  for  30  s.  The  grapevine ACTIN1 (GenBank  Accession
no.  AY680701)  gene  was  used  as  an  internal  control.  Each

reaction  was  performed  in  triplicate  for  each  of  the  three
biological  replicates.  Relative  expression  levels  of  the  selected
genes  were  calculated  using  the  2−ΔΔCᴛ method[52].  Primer
sequences are listed in Supplemental Table S9.
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