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Abstract
Ginkgo biloba is an important economic tree species. Due to the abundance of secondary metabolites in the tree, Ginkgo biloba extract (GbE) is

used as a medicine, food supplement, and nutraceutical. Flavonoids are the most active components in GbE. There is increasing evidence that

external and internal factors affect flavonoid synthesis. The publication of the G. biloba genome significantly improved functional analyses of key

genes, transcription factors, and non-coding RNAs involved in flavonoid synthesis. Here, we review progress on understanding the mechanisms

of external and internal factors that affect the synthesis and accumulation of flavonoids in G. biloba. We highlight recent achievements that have

greatly  advanced  our  understanding  of  the  functions  of  key  genes  for  flavonoid  synthesis.  In  addition,  we  discuss  novel  insights  into  the

metabolic regulation network of flavonoids in G. biloba.
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 Introduction

Ginkgo  biloba is  one  of  the  oldest  extant  seed  plants  in  the
world, and it has high ecological and economic significance. G.
biloba is  widely used as a  fruit  tree,  ornamental  and medicinal
tree  species  with  a  long  life  span  (e.g.,  in  China,  Japan,  Korea,
and  France)[1].  Because  the  leaves  and  seeds  are  rich  in
flavonoids  and  terpenoids, Ginkgo  biloba extract  (GbE)  is  used
in  medicine  to  treat  cardiovascular  and  cerebrovascular
diseases  and  cancer,  and  it  is  also  used  as  a  food  supplement
and nutraceutical.  The flavonoid content  is  a  key factor  affect-
ing the quality of GbE[2,3]. In G. biloba, flavonoid accumulation is
affected  by  environmental  factors  such  as  light,  temperature,
and water, as well as biotic or abiotic stresses such as drought,
cold,  and  ultraviolet  light[4,5].  Furthermore,  many  studies  have
demonstrated that age can affect the flavonoid content in the
leaves  of G.  biloba[6].  Due  to  the  publication  of  the G.  biloba
genome and continuous improvement in both molecular biol-
ogy  and  sequencing  technologies,  research  on  the  molecular
mechanism  of  flavonoid  synthesis  has  greatly  advanced.  Our
paper  focuses  on  the  regulation  mechanisms  affecting
flavonoid  biosynthesis  in G.  biloba,  in  particular,  the  impact  of
structural  genes,  transcription  factors,  and  non-coding  RNAs.
To  further  explore  the  characteristics  and  regulation  mecha-
nisms  of  flavonoids,  we  also  analyzed  their  functions,  types,
synthetic  pathways,  and  external  influencing  factors.  This
review aims to summarize research on the regulatory network
of flavonoids and promote research on the synthesis and accu-
mulation of flavonoids in G. biloba.

 Types and functions of the flavonoids in G. biloba

Flavonoids include flavonols,  flavanols,  flavones,  flavanones,
and  isoflavones,  which  are  distinguished  based  on  the  struc-
tural  characteristics  of  the C-ring[7].  In G.  biloba,  the flavonoids

mainly  consist  of  the  glycosides  biflavone  and  monoflavone.
Monoflavones  are  the  most  important  components,  and  are
made up primarily of kaempferol, quercetin, and isorhamnetin[8].
The  biflavones  in G.  biloba include  ginkgetin,  isoginkgetin,
sciadopitysin,  and  bilobetin.  In  addition,  six  types  of  catechins
have  been  isolated  from G.  biloba:  catechin,  gallic  catechin,
epicatechin,  epigallocatechin,  4,8'  gallic  catechin  gallic  cate-
chin, and 4,8' catechin gallic catechin[9].

As  the  important  secondary  metabolites,  flavonoids  can
resist biotic and abiotic stresses[10].  Previous studies had found
that flavonoids had protective functions by absorbing ultravio-
let  (UV)-B  radiation  and  clearing  reactive  oxygen  species[11,12].
As  evidence,  the flavonol  content of  leaves was highest  at  the
highest  total  solar  radiation  intensity,  suggesting  that  high
levels  of  UV  radiation  enhance  the  flavonol  accumulation[13].
Researchers  also  found  that  the  flavonoids  in G.  biloba can
remove  free  radicals  to  resist  salt  stress  and  low
temperatures[5,14]. In terms of drought, the flavonoid content of
G.  biloba increased with  decreasing relative  soil  water  content
under  an  early  dry  stress  of  <  35%  relative  soil  water  content,
indicating  the  function  of  flavonoids  in  drought  resistance[15].
The  flavonoids  in G.  biloba can  also  act  as  a  defense  against
insects. Compared with mechanical damage, herbivore wound-
ing increased the glycosylated flavonoid content by nearly two
times.  The  expressions  of  key  genes  regulating  flavonoid
synthesis, such as phenylalanine ammonia-lyase (PAL), flavanone
3-hydroxylase (F3H)  and anthocyanidin  reductase (ANR),  were
significantly  up-regulated  after  herbivore  wounding[16].  More
importantly,  several  genes  related  to  defense  mechanisms
were  identified  in  the G.  biloba genome,  29  of  which  are  also
involved in the core pathway of  flavonoid synthesis[17].  Due to
the fact that most of the trees died from pests and diseases or
from environmental stresses such as drought, but the accumu-
lated protective  metabolites  including flavonoids  in  trees  may
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enhance  their  resistance  to  the  stresses,  it  is  therefore  specu-
lated  that  the  accumulation  of  flavonoids  may  be  one  of  the
reasons for G. biloba longevity[18].

Flavonoids  of G.  biloba have  high  medical  value  and  are  of
great importance to human health[19,20].  An increasing number
of studies indicate that the anti-cardiovascular activity of GbE is
mainly  determined  by  flavonoids[21,22].  The  biflavonoids  in G.
biloba may  be  anticarcinogenic  by  inhibiting  tissue  kinino-
genin  and  autophagy[3,23].  Furthermore,  ginkgetins  can
suppress cancer by blocking the cell  cycle,  inducing cell  apop-
tosis  and  other  signaling  pathways,  and  protecting  against
influenza  viruses  by  inhibiting  sialidase  activity[24,25].  The
monoflavone  of G.  biloba has  significant  antibacterial  proper-
ties  against  multiple  Gram-positive  and  Gram-negative  bacte-
ria[26].  In  particular,  kaempferol  in G.  biloba can  reduce  sero-
tonin  breakdown  and  reduce  apoptosis  through  monoamine
oxidase[2,27]. Moreover, isorhamnetin and quercetin of G. biloba
have  important  roles  in  anti-inflammatory  and  antioxidant
processes[28]. Specifically, isorhamnetin can reduce cell apopto-
sis and DNA fragmentation, which is beneficial to the cardiovas-
cular  and  cerebrovascular  systems[29,30].  In  view  of  these,
flavonoids  in G.  biloba play  a  significant  and  unique  role  in
resisting environmental stress, and have advantages in promot-
ing human health (Fig. 1).

 Accumulation characteristics of the flavonoids in
G. biloba

There  are  significant  differences  in  the  accumulation  of
flavonoids  in  different G.  biloba organs  and  developmental

stages[31,32].  The flavonoid content in leaves is higher than that
in  branches  and  exotestal[33].  Matrix-assisted  laser  desorption/
ionization  (MALDI)  mass  spectrometry  (MS)  was  used  to  study
the distribution of flavonoids in specific organs of G. biloba, and
the  content  of  flavonoid  glycosides  was  found  to  be  higher
around  the  vascular  chain  of  leaves[34].  The  spatial  chemical
localization  of  flavonoids  in G.  biloba showed  that  flavonoids,
especially  the  cyclodimers  of  flavonoids,  are  mainly  located  in
the leaf epidermis[35,36].

The total flavonoid content in G. biloba leaves differs by tree
age. Through a comparative analysis of one- to seven-year-old
G.  biloba trees,  it  was  found  that  the  flavonoid  content  of G.
biloba decreases with increasing tree age[6]. Another study that
used  transcriptomics  and  metabolomics  to  analyze  the  leaves
of  one-,  four-,  and  seven-year-old G.  biloba trees  also  showed
that 82% of flavonoid metabolites decreased with age, indicat-
ing that age is negatively related to flavonoid content[6]. Due to
the high content of flavonoid in the leaves of young trees, the
leaves of one- to five-year-old G. biloba trees are usually used as
raw  materials  for  medicine  and  food  supplement.  However,
rejuvenating can promote the accumulation of flavonoids in G.
biloba. Investigating a 544-year-old G. biloba tree with vigorous
resprouters  revealed  that  the  thickness,  fresh  weight,  and
number  of  leaves,  as  well  as  the  contents  of  kaempferol  and
isorhamnetin  increased  significantly  in  resprouter  leaves.
Further  transcriptome  analysis  showed  that  the  expression
levels of genes related to flavonoid synthesis, including PAL and
flavonol  synthase (FLS),  increased  significantly  in  resprouter
leaves[37]. These results suggest that even in old G. biloba trees,

 
Fig. 1    The structures, functions and products of the flavonoids in G. biloba. Flavonoids in G. biloba are mainly divided into these categories,
including  flavones,  flavonols,  flavanols,  flavanones  and  isoflavones.  The  flavonoids  have  the  functions  of  inhibiting  bacteria,  withstanding
drought, resisting low temperatures and protecting against ultraviolet radiation, as well as human health benefits for protecting brain cells and
improving  blood  vessel  circulation.  In  production, G.  biloba flavonoid  can  be  made  into  pesticides,  powder,  drinks,  cosmetics,  health  care
products, medicines and injections.
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rejuvenation  can  also  effectively  activate  the  accumulation  of
flavonoids.  Similarly,  an  additional  study  also  found  that  after
truncation  treatments,  the  leaves  of  renewed G.  biloba leaves
were  larger  and  thicker  than  control,  the  accumulation  of
flavonoids  increased  significantly  and  that  the  expressions  of
genes  related  to  flavonoid  synthesis,  including chalcone
synthase (CHS), FLS, flavanone  3'-hydroxylase (F3'H),  and dihy-
droflavonol  4-reductase (DFR),  were  upregulated[38].  Further
studies showed that the endogenous hormone levels changed
after rejuvenation. By analyzing cis-acting elements of promot-
ers  of  genes  related  to  flavonoid  synthesis,  it  was  also  found
that these genes may be regulated by hormonal responses. For
example,  auxin  (IAA)  can  promote  the  expression  of GbFLS7,
GbDFR11 and GbANS5,  gibberellin  (GA3)  treatment  also
promotes  the  expression  of GbPAL8 and Gb4CL5[39].  These
results reveal that the flavonoid contents of G. biloba leaves can
be increased effectively by rejuvenation through responding to
hormones,  which  is  an  effective  and  feasible  method  to
increase flavonoid contents.

 Environmental factors affecting flavonoid
accumulation in G. biloba

Different  environmental  factors  and  stresses  cause  different
physiological  and  metabolic  responses  in G.  biloba[40].  Light,
including  light  intensity,  light  quality,  and  photoperiod,  are
essential  factors  for  plant growth and development,  as  well  as
the most important environmental factor that affects flavonoid
accumulation.  Light  with different  energies  has  different  influ-
ences on the accumulation of flavonoids in G. biloba. Quercetin,
kaempferol,  and  total  flavonoid  contents  in G.  biloba leaves
under  blue  light  were  higher  than  those  under  mixed  light,
white  light,  and  red  light[41].  Interestingly,  when  treated  with
salicylic  acid  (SA),  the  synthesis  and  accumulation  of  total
flavonoids  in  the  leaves  decreased  in  the  dark  while  the
flavonoid content increased under light conditions. In addition,
red and far-red light are essential in SA-induced flavonoid accu-
mulation,  demonstrating  the  importance  of  light  in  flavonoid
accumulation  in G.  biloba[42].  UV  radiation  is  one  of  the  main
enhancers  of  flavonoid contents[12].  The sensitivity  of G.  biloba
leaves  to  UV-B  radiation  varies  at  different  developmental
stages; young leaves can quickly establish a protective mecha-
nism against  harmful  radiation,  thus increasing their  flavonoid
contents[43].  Elevation  also  affects  the  flavonoid  content.
Several key genes involved in flavonoid biosynthesis, including
DFR, leucoanthocyanidin  reductase (LAR)  and ANR,  were  signifi-
cantly upregulated at higher elevation (with high UV radiation)
in G.  biloba[44].  According  to  the  results,  light  is  an  important
factor  in  determining  the  accumulation  of  flavonoids,  espe-
cially  blue  light  and  moderate  ultraviolet  radiation  can  effec-
tively  increase  the  accumulation  of  flavonoids,  especially,
combined  with  spraying  SA  or  JA  can  further  increase  the
flavonoid content in G. biloba leaves.

The  influence  of  temperature  on  flavonoid  metabolism  is
complex. To investigate how different combinations of day and
night  temperatures  influence  the  flavonoid  contents  in G.
biloba,  multiple  combinations  of  day  and  night  temperatures
(5/10 °C, 25/20 °C, and 35/30 °C [day/night]) were used to treat
G.  biloba seedlings. PAL activity,  the  key  enzyme  in  the
flavonoid  synthesis  pathway,  was  enhanced  at  15/10  °C  and
inhibited  at  35/30  °C,  indicating  that  the  lower  temperatures

were  more  beneficial  for  the  accumulation  of  flavonoids  in G.
biloba[4].

Water also plays a crucial role in the synthesis and accumula-
tion  of  flavonoids.  The  chlorophyll  concentration  in G.  biloba
leaves  decreased  and  the  total  flavonoid  concentration
increased under treatment with full root-zone and partial root-
zone  drought.  Moreover,  the  total  flavonoid  content  under
partial  root-zone  drought  treatment  was  significantly  higher
than  that  under  full  root-zone  drought  treatment[45,46].  Based
on  these  results,  reduced  irrigation  and  the  maintenance  of
local  root  drought  can  not  only  reduce  rotten  roots  but  also
promote  the  accumulation  of  flavonoids,  which  is  an  effective
method to improve the flavonoid accumulation in G. biloba.

Several previous studies found that G. biloba can reduce the
damage  caused  by  salt  stress  by  enhancing  its  antioxidant
capacities.  At  increasing  NaCl  concentrations  (treatment  with
100  mmol/L  or  200  mmol/L  of  NaCl),  the  SOD,  POD,  CAT,  and
flavonoid contents increased in leaves[5].  These results indicate
that G.  biloba can  reduce  salt  damage  by  accumulating
flavonoids  and  other  active  substances  following  salt  stress
treatments.  Because  the  expression  levels  of GbF3H3, GbDFR3,
GbLAR1 and GbLAR6 were  significantly  increased  after  abscisic
acid  (ABA)  treatments,  and  the  expression  levels  of Gb4CL3,
Gb4CL14, GbDFR4 and GbANR5 were also significantly increased
after methyl jasmonate (MeJA) treatments[39]. It is also possible
that the increase of  flavonoid synthesis  under stresses is  regu-
lated  by  ABA  or  JA,  but  the  specific  regulatory  mechanism  is
still not clear.

 The structural genes involved in flavonoid
biosynthesis in G. biloba

With  the  application  of  the  third-generation  sequencing
technology, G. biloba genome has been further sequenced and
assembled.  A  total  of  27,832  protein-coding  genes  were
obtained[47].  Using  specific-locus  amplified  fragment  sequenc-
ing  (SLAF-seq),  a  high-density  genetic  map  of G.  biloba was
constructed[48].  Based on the publication of G.  biloba genome,
13  structural  gene  families  have  been  identified  to  participate
in  the  synthesis  of  flavonoids,  and  a  large  number  of  clones
have  been  obtained,  including GbPAL (11  genes), GbC4H (six
genes), Gb4CL (15 genes), GbCHS (14 genes), GbFLS (10 genes),
GbDFR (12  genes), GbANS (13  genes), GbANR (seven  genes),
GbCHI (three  genes), GbF3H (six  genes), GbF3’H (four  genes),
GbF3’5’H (four genes)  and GbLAR (six  genes).  The expansion of
structural  multiple  genes  may  be  the  a  significant  reason  for
the promoting the flavonoid synthesis in G. biloba[39].

PAL encodes  the  first  key  enzyme  in  the  phenylpropane
metabolic  pathway;  it  catalyzes  the  conversion  of  phenylala-
nine  to  cinnamic  acid,  the  precursor  of  secondary
metabolites[49,50].  In G. biloba, GbPAL is  expressed in all  tissues,
with the highest expression in leaves and stems but the lowest
expression  in  roots[51].  UV-B  and  salt  stress  can  induce  the
expression of GbPAL[52]. GbCHS encodes another key enzyme in
the  synthesis  of  flavonoids  in G.  biloba.  The  transcription  level
of GbCHS was  shown  to  be  related  to  genetic,  hormone,  and
light conditions,  which positively correlates with the flavonoid
content  of G.  biloba leaves[53].  Subcellular  localization  experi-
ments  showed  that GbCHS is  localized  in  the  cytoplasm,
nucleus, and cell membrane[39]. Overexpressed GbCHS callus of
G.  biloba,  significantly  increased  the  total  flavonoid  content,
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confirming  that GbCHS plays  an  important  role  in  the  biosyn-
thesis of flavonoids in G. biloba[38].

GbF3H contains DIOX_N and 2OG-Fell_Oxy domains,  encod-
ing a core enzyme at the branching sites of flavanones. GbF3H
expression  is  highest  in  leaves  and  absents  in  roots[42].  Differ-
ently, GbFLS is expressed in both roots, stems, leaves and seeds,
and  in  vitro  enzyme  activity  assay  showed  that  recombinant
GbFLS  protein  not  only  catalyzed  the  formation  of  dihy-
drokaempferol  to  kaempferol,  but  also  promoted  the  conver-
sion  of  kaempferol  from  naringenin[54].  However,  the  genetic
transformation  system  of G.  biloba has  not  been  established,
the  function  of  key  genes  regulating  flavonoid  synthesis  can
only be verified by heterologous transformation or transforma-
tion of G. biloba callus at present. In the future, it is necessary to
explore  the  homologous  overexpression  and  virus-induced
gene  silencing  (VIGS)  transformation  system  of G.  biloba for
identification  and  functional  study  of  these  identified  candi-
date genes.

 Transcription factors regulating flavonoid
biosynthesis in G. biloba

The  regulation  of  flavonoid  metabolism  is  mainly  based  on
the  regulation  of  transcription.  Transcription  factors  bind  to
structural gene promoters and directly regulate the expression
of flavonoid synthase genes. MYB, bHLH, and WD40 are impor-
tant  and  well-studied  transcription  factors  in  the  flavonoid
synthesis pathway[55]. The MYB family is one of the largest tran-
scription factor families in plants and plays an important role in
the  plant  development  and  secondary  metabolites  biosynthe-
sis[56].  Several  binding  sites  of  MYB  were  identified  to  be  exist
on  the  promoter  region  of GbANS,  indicating  that  MYB  may
bind directly its promoter to regulate the flavonoid biosynthe-
sis  in G.  biloba[57].  Through  the  transformation  of G.  biloba
callus, it was found that the total flavonoid content in G. biloba
callus  overexpressed  with GbMYBFL was  significantly  higher
than that  in  the  control,  suggesting that GbMYBFL could  posi-
tively  regulate  the  flavonoid  biosynthesis[58],  while GbMYBF2
and GbMYBR1 may inhibit flavonoid biosynthesis[59,60], suggest-
ing  that  MYB  has  different  regulatory  effects  on  flavonoid
biosynthesis  in G.  biloba.  Although  these GbMYBs may  influ-
ence  flavonoid  biosynthesis  and  accumulation,  the  potential
functions need more experimental evidence.

MYB  functions  in  the  regulation  of  flavonoid  biosynthesis
usually  binding  to  bHLH  and  WD40  proteins  to  form  MBW
complexes[61].  bHLH  transcription  factors  are  a  class  of  tran-
scription  factors  containing  the  basic  helix-loop-helix  domain.
They  exist  widely  in  plants  and  play  a  crucial  role  in  plant
growth,  development,  and  signal  transduction[62].  bHLH  tran-
scription factors regulate the flavonoid synthesis by interacting
with MYB transcription factors to activate target genes involved
in  flavonoid  synthesis[63].  The  WD40  transcription  factor,  also
known  as  WDR  protein,  is  an  ancient  and  structurally  stable
protein[64].  Based  on  a  correlation  analysis  between  the  Frag-
ments Per Kilobase of transcript per Million fragments mapped
(FPKM) value of WD40 gene and the flavonoid content in differ-
ent  tissues  of G.  biloba,  six GbWD40 genes  that  might  be
involved  in  flavonoid  metabolism  were  identified[65].  A  novel
WD40  gene  named GbLWD1-like has  been  cloned  in Ginkgo
biloba.  The gene is mainly expressed in the leaves of G. biloba,
followed by the roots. However, there was no significant differ-

ence  in  the  content  of  flavonoids  in  the  leaves  of  overex-
pressed  transgenic  lines[66].  It  is  speculated  that  it  may  not
require the participation of WD40 in the regulation of flavonoid
biosynthesis in G. biloba, but more evidence is needed to verify
the possible functions of WD40 related to flavonoid accumula-
tion.

Flavonoid synthesis in G. biloba is also regulated by the trans-
cription  factors  NAC  (N-acetylcysteine)[67],  bZIP  (basic  region-
leucine  zipper)[68],  and  TCP  (Teosinte  branched1/Cycloidea/
Proliferating  cell  factor)[69].  The  NAC  family  of  transcription
factors is  one of  the largest  families  of  plant-specific  transcrip-
tion  factors,  and  plays  an  important  role  in  plant  growth  and
development  as  well  as  biotic  and  abiotic  stresses.  By  analyz-
ing the NAC family in G. biloba, it was found that GbNAC007 and
GbNAC008 were significantly correlated with flavonoid content,
suggesting  that GbNAC007 and GbNAC008 were  involved  in
flavonoid  biosynthesis[70].  The  bZIP  gene  family  is  one  of  the
largest  gene  families  in  plants.  It  is  involved  in  secondary
metabolism,  stress  responses,  and  seed  maturation.  A  total  of
40 bZIP genes were identified in the G. biloba.  Correlation and
phylogenetic  tree  analyses  indicate  that GbbZIP08 and
GbbZIP15 might be involved in the biosynthesis of flavonoids[71].
The  TCP  transcription  factors  play  an  important  role  in  plant
growth and development,  hormone signaling,  biological  clock
signaling,  stress  responses,  and secondary  metabolism regula-
tion[72]. Thirteen TCP genes were identified in the genome of G.
biloba and  phylogenetic  analysis  showed  that  five  of  those
belonged to the PCF subclade and the rest to the CIN subclade.
Based on a correlation analysis between GbTCP expression and
flavonoid  content, GbTCP03, GbTCP04,  and GbTCP07 might  be
involved in flavonoid biosynthesis[73].  An increasing number of
different types of transcription factors have been discovered to
be  involved  in  the  regulation  of  flavonoid  metabolism  in G.
biloba,  but  whether  these  transcription  factors  act  directly  on
structural  genes  or  interact  with  other  transcription  factors  to
affect  the  regulation  of  flavonoid  synthesis  is  unclear.  Yeast
one-hybrid  (Y1H),  electrophoretic  mobility  shift  assay  (EMSA),
and  the  dual  luciferase  assays  can  be  used  to  further  explore
the  regulation  mechanisms  of  transcription  factors  on  genes
related to G. biloba flavonoids. In summary, the current research
on  the  regulation  of  flavonoid  synthesis  in G.  biloba is  still
limited to the identification of  key genes through some omics
analysis,  but  the  function  of  key  genes  and  their  regulatory
mechanisms are still unclear. However, the study on the regula-
tion mechanism of flavonoids will be of great significant to the
biological breeding of high flavonoids in G. biloba.

 No coding RNAs regulation of flavonoids in G.
biloba

Non-coding RNAs (ncRNAs) are a class of RNA molecules that
do not encode proteins and have catalytic activity. NcRNAs can
be mainly divided into microRNAs (miRNAs) and long-stranded
ncRNAs  (lncRNAs).  MiRNAs  are  important  regulatory  factors
that  control  plant  gene  expression.  It  regulates  key  enzyme
genes  and  transcription  factors  involved  in  the  synthesis  of G.
biloba flavonoids[74,75] (Fig.  2).  Through  high-throughput
sequencing,  174  new  miRNAs  were  identified  in  the  leaves  of
female  and  male G.  biloba leaves.  The  target  of  miR1108,  gbl-
miR174,  gbl-miR102,  and  miR1854  was  predicted  to  be
GbFLS1[76].  MiR159a  and  miR159c  in G.  biloba are  involved  in
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chloroplast development, hormone metabolism, and flavonoid
metabolism[77].  Some  studies  used  degradation  data  to  verify
the  targeting relationship  between miRNAs and genes  related
to  flavonoid  synthesis.  It  was  found  that  miR159b  targeted
Gb4CL6, miRN354 targeted GbANR4, miR167f targeted GbANR7,
miRN252 and six members of miRN49 family targeted GbLAR[39].
Non-coding RNAs longer than 200 nucleotides are called long-
stranded  non-coding  RNAs  (lncRNAs)[78].  They  are  involved  in
the regulation of G. biloba flavonoid synthesis by regulating the
key enzyme genes GbPAL, GbCHS, GbCHI, GbF3H, and GbFLS[79].
A total of 14 lncRNAs targeting 16 genes were predicted to be
involved  in  secondary  metabolic  pathways.  In  particularly,
MSTRG.17450.1  targeted Gb10032,  MSTRG.40776.1  targeted
Gb25343,  MSTRG.5250.2  and  MSTRG.18854.1  targeted GbPAL,
MSTRG.65322.1,  MSTRG.36921.1  and  MSTRG.38052.1  targeted
GbFLS[80].  LncRNAs  can  also  form  a  regulatory  network  with
miRNAs  and  the  pyruvate  carboxylase  gene  to  regulate  the
synthesis  of G.  biloba flavonoids[75].  Sequencing  technology  is
continuously  improving,  which  also  improves  the  analysis  of
non-coding  RNAs  that  target  key  genes  involved  in  flavonoid
synthesis and metabolism in G. biloba. These improvements will
advance our understanding of the regulatory network involved
in flavonoid metabolism.

 Concluding remarks and future perspectives

In this review, we have summarized the current understand-
ing  of  flavonoid  function  and  biosynthesis  in  the  important
medical  plant G.  biloba.  Flavonoids  are  important  secondary
metabolites  with  high  medicinal  value. G.  biloba is  rich  in
flavonoids,  and  flavonoids  are  distributed  in  almost  all  the
organs,  including  the  leaf,  seed,  bud,  stem,  and  embryo.  Most
of  the G.  biloba flavonoids  exist  in  the  form  of  glycosides  and
mainly  consist  of  monoflavones  (e.g.,  kaempferol,  quercetin,
and isorhamnetin) and biflavones (e.g., ginkgetin, isoginkgetin,
sciadopitysin,  and  bilobetin).  The  last  few  decades  have
witnessed the  progress  of  various  roles  of G.  biloba flavonoids
in resisting stress. For example, they can absorb UV-B to protect
against  ultraviolet  radiation.  Under  moderate  drought  stress,
oxidizing substances (ROS)  accumulated to promote the accu-
mulation  of  flavonoids,  thus  enhancing  the  ability  to  resist
drought.  On  the  other  hand, G.  biloba flavonoids  can  fight
influenza  viruses  by  inhibiting  the  activity  of  sialidase.  They
induce  S-phase  arrest  in  the  intracellular  environment  to
defend against  fungi.  In particular,  they can inhibit  changes in
general  metabolic  parameters  such  as  body  weight,  fat  mass,
insulin  level,  and  glucose  tolerance  activity  to  prevent  cardio-
vascular dysfunction, which is of great benefit to human health.

 
Fig. 2    The regulation network of flavonoids in G. biloba. The synthesis of flavonoids in G. biloba is regulated by several transcription factors
including MYB, bZIP, bHLH, WD40, NAC and TCP. In addition, hormones, miRNAs and lncRNAs can also regulate the synthesis of flavonoids in G.
biloba by  regulating key enzyme genes.  The numbers  in  brackets  indicate  the number  of  genes in G.  biloba.  ANR:  Anthocyanidin reductase;
ANS: Anthocyanin synthetase; C4H: Cinnamate-4-hydroxylase; CHS: Chalcone synthase; CHI: Chalcone isomerase; 4CL: 4-coumarate: coenzyme
A  ligase;  DFR:  Dihydroflavonol  4-reductase;  FNS:  Flavone  synthase;  F3H:  Flavanone  3-hydroxylase;  F3’H:  Flavanone  3'-hydroxylase;  F3’5’H:
Flavanone 3'5'-hydroxylase; FLS: Flavonol synthase; IFS: Isoflavone synthase; LAR: Leucoanthocyanidin reductase; PAL: Phenylalanine ammonia-
lyase; UFGT: UDP glucose: flavonoid 3-O-glucosyltransferase.
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It  is noteworthy that several factors affect flavonoid produc-
tion  in G.  biloba leaves.  Flavonoid  content  in  the  leaves  of
young trees is  much higher than that of adult trees;  thus,  only
the  leaves  of  young  trees  are  qualified  as  raw  materials  for
drugs  in  production,  indicating  that  the  age  of  trees  plays  an
important  role  in  the  accumulation  of  flavonoids  in G.  biloba
leaves. Therefore, it is of great significance to study the regula-
tion  mechanisms  of  environmental  factors  and  age  (or  rejuve-
nation) on flavonoid synthesis in G. biloba in the future.

The  successful  assembly  of  the G.  biloba genome  provides
data resources for further study on the function and regulation
mechanisms  of  key  genes  in  flavonoid  synthesis.  Combined
with multi-omics  analysis,  a  series  of  functional  genes  regulat-
ing flavonoid synthesis were identified and found to be exten-
sively  expanded  in G.  biloba.  In  addition,  several  transcription
factors  were  predicted  to  be  involved  in  flavonoid  synthesis,
such  as  MYB,  bHLH,  HY5,  and  WD40,  and  degradome  analysis
showed  that  multiple  miRNAs  may  target  these  genes.
Although  these  genes  have  been  predicted  to  be  involved  in
transcription  and  post-translational  regulation  of  flavonoid
synthesis,  their  function  and  regulatory  mechanisms  are  still
unclear  due  to  the  lack  of G.  biloba transformation  system.
Therefore,  it  is  urgent  and  necessary  to  establish  the  genetic
transformation  system  in G.  biloba,  such  as  root  hair  transfor-
mation, VIGS transformation and gene editing systems (CRISPR-
Cas9)  to  verify  their  function,  as  well  as  apply  the  molecular
biology  technologies,  such  as  Y1H,  EMSA  and  dual  luciferase
assay to explore the regulatory mechanism in flavonoid synthe-
sis.  The  development  of  these  technologies  in G.  biloba will
provide a platform for the identification of key genes and regu-
latory  modules  or  networks  that  regulate  the  synthesis  of
flavonoid.  Unveiling  fundamental  genetic  knowledge  toward
high flavonoid biosynthesis will be essential for improving effi-
cient cultivation and precise breeding of G. biloba in the future.
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