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Abstract
Apple  stem  grooving  virus  (ASGV)  is  one  of  the  most  widespread  and  asymptomatic  main  viruses,  that  restricts  the  production  of  apples

worldwide. Establishment of rapid, simple, and effective early detection methods of apple virus is important. In this study, we established and

optimized a one-step reverse transcription - recombinase polymerase amplification (RT-RPA) method, using the target-specific primers of ASGV

coat  protein gene sequence,  and M-MLV reverse transcriptase.  This  method could be completed within 30 min at  40 °C,  followed by a  visual

detection of the results within 5 min by using lateral  flow dipstick (LFD).  The specificity results showed that only samples infected with ASGV

showed a test  line,  while no test  line appeared in the ASGV-negative samples.  In addition,  when crude extract  of  leaves was used,  the whole

detection could be completed within 1 h, which was shortened by 4 to 6 times compared with the RT-PCR method. The detection made on more

field samples showed that the RT-RPA-LFD method is of high stability and reliability for ASGV diagnosis, with a great potential in the rapid on-site

detection of plant viruses.
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 Introduction

Apple (Malus × domestica Borkh.) is one of the most econom-
ically  important  fruits  in  the  world.  China  is  the  biggest  apple
producer  globally  with  a  producing  area  of  about  2.04  million
hectares  which  produced  42.43  million  tons  of  apple  fruits  in
2021 (https://www.fao.org/statistics/en).  As a vegetatively pro-
pagated crop, infection by intracellular pathogens such as virus
and viroid weaken tree vigor, cause graft incompatibility, result
in a 15%−50% reduction in apple yield[1,2].

Apple stem grooving virus (ASGV) belongs to the Capollovirus
genus of the family Betaflexiviridae.  It widely occurs worldwide
and is often found co-infected with other viruses, such as apple
stem  pitting  virus  (ASPV),  apple  chlorotic  leaf  spot  virus
(ACLSV),  and  apple  mosaic  virus  (ApMV)[2−5].  ASGV  is  mainly
transmitted by apple grafting and remains latent in most apple
cultivars[3−5].  However,  the  infection  of  ASGV  may  cause  graft-
incompatibility,  and  reduce  bud  break[3].  ASGV  can  also  infect
other  important  crops,  including  citrus,  pear,  apricot,  cherry,
lily, ficus palmata, soybean[3,6].

An accurate and rapid virus detection method is crucial for the
management of viral diseases as well as for the implementation
of  virus  eradication  programs[7−9]. To  date,  reverse  transcription
polymerase  chain  reactions  (RT-PCR)  and  enzyme-linked  immu-
nosorbent assays (ELISA)  are the most  widely  used methods for
detection of RNA viruses[10−12]. However, the preparation of anti-
bodies is a necessity in ELISA test and lower sensitivity has often

been reported in  ELISA tests  as  compared with RT-PCR.  The RT-
PCR  protocol  is  labor-intensive  as  it  consists  of  the  RNA  extrac-
tion  and  purification,  cDNA  synthesis,  PCR  and  detection  of  the
PCR amplicons, which also require expensive equipment such as
a PCR cycler[8].  These drawbacks greatly inhibit the broad use of
virus  detection,  and  particularly  the  on-site  virus  detection,  for
management  of  viral  diseases.  These  drawbacks  greatly  inhibit
the broad use of virus detection, particularly on-site virus detec-
tion, for managing viral diseases.

Recombinase  polymerase  amplification  (RPA)  technology
depends on recombinases, strand-displacing DNA polymerases,
and single-strand DNA-binding proteins  for  isothermal  nucleic
acid  amplification  and  is  known  with  the  potential  to  replace
PCR  for  the  amplification  of  specific  DNA  segment[8,13,14].  RPA
reactions  can  be  rapidly  performed  at  37−42  °C  with  a  high
level  of  sensitivity[15,16].  Moreover,  RPA  oligonucleotide  probe
can be recognized and cut by endonuclease IV (nfo) or exonu-
clease III  (exo),  so that  the RPA amplification can be visualized
by real-time fluorescence detection through nfo or exo probes
or the use of LFD, therefore is free of nucleic acid electrophore-
sis[13,17,18]. Several studies have reported the use of RT-RPA-LFD
for  the  detection  of  little  cherry  virus-2[19],  penaeus  stylirostris
denso virus[20],  bean common mosaic virus[18] and Potato Virus
Y[21].  It  is  worth noting,  that  due to  the high sensitivity  of  RPA
reaction, crude RNA extract can be used for detection[22]. In this
study,  we  developed  a  simple  and  sensitive  method  using
RT-RPA-LFD  technique  for  the  rapid  detection  of  ASGV.  The
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crude  extract  of  RNA  was  also  tested  in  this  study  to  facilitate
the on-site detection of ASGV in the field.

 Results

 Determination of RT-RPA-LFD conditions
To evaluate the effectivity of RT-RPA-LFD assay for the detec-

tion  of  ASGV  in  apple  plants,  ASGV-infected  samples  were
collected  from  Apple  Experiment  Station  in  Shaanxi  province,
China.  The total  RNA as  the template for  RT-RPA-LFD reaction,
the  positive  controls  'Gala'  was  obtained  from  Wang  et  al. [23],
while ASGV-free 'Gala' was used as the negative control (Fig. 1c).
RT-RPA-LFD  results  showed  that  a  test  line  from  positive
samples,  while  no  such  bands  can  be  observed  from  negative

control  (Fig.  1a).  Similarly,  the  results  of  agarose  gel  elec-
trophoresis of RT-RPA products show a band of 264 bp from the
positive control, while no such band can be found in the nega-
tive  control  (Fig.  1b).  These  results  indicate  that  the  test  line
observed from the LFD was associated with the amplification of
the ASGV genome by the RT-RPA reaction.

To optimize RT-RPA reaction conditions  for  ASGV detection.
The  RT-RPA  reaction  mixture  was  incubated  at  40  °C  for  0,  10,
20,  30  and  40  min.  The  LFD  results  showed  that  the  strongest
test line was found when the reaction time was 30 min and 40
min  (Fig.  2a).  The  agarose  gel  electrophoresis  further  showed
that  the  brightest  band  was  obtained  after  30  min  of  incuba-
tion (Fig. 2a). The optimization of the RT-RPA reaction tempera-
ture  found  the  RPA  reaction  performed  at  39  °C  and  40  °C
exhibited  strongest  bands  on  LFD,  while  weaker  signals  were
obtained from the lower (38 °C) and the higher (41 °C) tempera-
tures.  Accordingly,  the  agarose  gel  electrophoresis  produced
clear  and  strong  bands  when  RPA  reaction  was  maintained  at
39 °C and 40 °C for 30 min (Fig. 2b).

 Specificity and sensitivity of RT-RPA-LFD
The in  vitro apple  plants  'Yanfu  8'  and  'Gala'  single-infected

with  ACLSV,  ASPV  or  ASGV  were  used  as  test  materials,  the in
vitro 'Yanfu-8'  co-infected  with  three  viruses  (ASGV,  ASPV  and
ACLSV) was used as a positive control,  and the virus-free 'Gala'
was served as a negative control  for both RT-PCR and RT-RPA-
LFD  detection.  In  RT-PCR  detection,  only  one  band  of  794  bp,
370 bp, and 524 bp was shown from the sample single-infected
by  ACLSV,  ASPV  and  ASGV,  respectively  (Fig.  3a−c).  In  the
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Fig. 1    One-step RT-RPA and RT-PCR detection of ASGV. (a) One-
step  RT-RPA-LFD  detection  of  ASGV.  (b)  One-step  RT-RPA-gel
detection  of  ASGV.  (c)  RT-PCR-gel  detection  of  ASGV.  In  two  gel
images, lane M is a 100 bp DNA marker; lean '+' is positive; lean '−'
is negative.
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Fig. 2    Optimization of one-step RT-RPA reaction conditions for ASGV detection. (a) Optimization of ASGV detection for different reaction time
(0, 10, 20, 30 and 40 min) at 40 °C. (b) Optimization of ASGV detection at various temperatures 37 °C, 38 °C, 39 °C, 40 °C and 41 °C for 30 min.
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Fig. 3    Specificity of one- step RT-RPA-LFD assays. (a) RT-PCR detection of ACLSV. (b) RT-PCR detection of ASPV. (c) RT-PCR detection of ASGV.
(d) One- step RT-RPA-LFD detection of ASGV. In all images, lane 'M' is 2000 bp DNA marker, lanes 1−3 are samples Yanfu 8-3, Yanfu 8-2 and GL-1
which was single-infected by ACLSV, ASPV and ASGV, respectively. '−' negative control, '+' positive control.
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RT-RPA-LFD  detection  for  ASGV,  only  the  sample  infected  by
ASGV  showed  positive  results,  while  no  such  bands  were
detected from samples single infected by either ACLSV or ASPV
(Fig. 3d).

In  sensitivity  tests,  the  positive  sample  of  total  RNA  (500
ng/µL)  was  serially  diluted  to  10−8 in  a  10-fold  gradient  as  a
sensitivity  comparison  templates.  The  results  show  that  RT-
RPA-LFD can detect to 10−6 (Fig. 4a), while RT-PCR can detect to
10−4 (Fig.  4b).  Therefore,  RT-RPA-LFD  is  100  times  more  sensi-
tive than RT-PCR (Fig. 4).

 Rapid detection of ASGV by one-step RT-RPA-LFD
using crude RNA

Based on high sensitivity of RT-RPA-LFD, this study tested the
use  of  crude  RNA  for  rapid  detection  of  ASGV  (Fig.  5)  using
ASGV-infected leaf samples. Clear test line was observed on the
LFD  while  no  test  line  could  be  found  from  the  negative
sample.  Comparison  between  conventional  RT-PCR  protocol
and  RT-RPA-LFD  using  crude  RNA  extracts  showed  the  same
ASGV  detection  results  (Table  1).  With  the  use  of  RNA  crude
extracts, the entire assay can be completed within 1 h (Fig. 5).

 Discussion

In  this  study,  a  one-step  RT-RPA-LFD  method  was  estab-
lished  and  was  proved  suitable  for  detection  of  ASGV  from in
vitro cultured shoots and leaf sampled from the field.

Compared with traditional  molecular  biology and immunol-
ogy detection techniques such as RT-PCR and ELISA assays, RT-
RPA  has  unique  advantages  and  can  complete  isothermal
amplification[21,24,25]. As one of the most commonly used detec-
tion  methods,  RT-PCR  requires  a  variable  temperature  instru-
ment,  while  the amplification time is  90−180 min,  and the gel
visualization product  can be observed after  20−50 min[9,26].  At
the  same  time,  the  entire  detection  of  the  viruses  by  ELISA
takes 2 d. It has been reported that RT-LAMP can detect viruses
at  58−66  °C  for  60  min,  but  this  method  requires  four  pairs  of
primers[27−30]. However, the RT-RPA can complete amplification
in 20−40 min at 25−40 °C, can be carried out with simple exper-
imental  equipment[31−33].  In addition,  this study used RNA as a
template,  and  by  adding  M-MLV  reverse  transcriptase  to  the
RPA system, the results showed that the one-step RT-RPA using
a template RNA extract was successful (Fig.  1).  Compared with
RT-PCR, there is fewer step of reverse transcription of RNA into
cDNA,  and  the  product  can  be  visualized  in  5  min  with  LFD,
which  is  not  limited  to  gel  electrophoresis  detection  of  prod-
ucts, and also reduces the cost of using chemical reagents.

The  design  of  primers  amenable  to  RPA  amplification  is  a
necessity  in  using  RT-RPA  technique  to  detect  of  RNA  viruses.
RPA primers are usually longer than PCR primers[21,25].  In order
to obtain RPA primers specific to the ASGV genome, we down-
loaded  and  compared  the  ASGV  coat  protein  (CP)  gene  in
apples  and  designed  an  RPA  primer  from  highly  conserved
regions  of  the  CP  gene  (Fig.  6).  Specificity  validation  of  this
study  showed  that  only  samples  infected  with  ASGV  present
positive  test  lines  in  RT-RPA-LFD  assay,  thus  confirming  the
specificity of this detection method.

10−1 10−2 10−3 10−4 10−5 10−6 10−7 10−8

10−1M

a

b 10−2 10−3 10−4 10−5 10−6 10−7 10−8

 
Fig. 4    One- step RT-RPA-LFD and RT-PCR amplicons at total RNA
(500 ng/µL) dilutions levels ranging from 10−1 to 10−8 detect ASGV.
(a) Detect ASGV by one- step RT-RPA-LFD. (b) Detect ASGV by RT-
PCR. Lane M (b): 100 bp DNA marker.

Table  1.    Comparison  on  the  ASGV  detection  results  between
conventional RT-PCR protocol and One-step RT-RPA-LFD using crude RNA
extracts.

Sample no.
RT-PCR One-step

RT-RPA-LFD

ASGV ASPV ACLSV ASGV

Gala-1 (Positive control) + − − +
Gala-2 (Negative control) − − − −
Gala-3 + + − +
Gala-4 − − + −
Gala-5 + + + +
Gala-6 + − + +
Gala-7 + − − +
Gala-8 + − − +
Gala-9 + − − +
Gala-10 + − + +

'+': ASGV positive; '−': ASGV negative.

10−15 mg of leaf samples RNA crude extraction RT-RPA LFD

5 min40 ℃, 30 min3−5 min 
Fig. 5    Rapid detection of ASGV with one-step RT-RPA-LFD using crude RNA.
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Sensitivity  is  also  an  important  factor  affecting  the  usability
of  pathogen  detection  methods.  In  this  study,  we  found  that
RT-PCR  detected  the  ASGV  amplicon  diluted  samples  to  10−4

whereas  RT-RPA  could  detect  the  ASGV  amplicon  diluted
samples  to  10−6 (Fig.  4).  One-step  RPA  detection  is  100  times
more sensitive than RT-PCR. Kim et al. reported that the level of
sensitivity  of  the  RT-RPA  assay  for  ASPV  detection  was  1000-
fold higher than that of the RT-PCR assay[17]. Qin et al. reported
the  sensitivity  of  the  RPA-LFD  assay  for  BCMV  was  1000  times
higher than the PCR assay[18]. RT-RPA is also more sensitive than
RT-PCR  in  the  detection  of  potato  virus  X  and  potato  virus
Y[21,24,34]. Our finding agrees with these studies highlighting the
higher sensitivity of RT-RPA technique for virus detection.

Requires  a  high  concentration  of  total  RNA  during  the
normal  detection process,  which makes all  methods limited in
the  field  detection  process.  Our  study  also  showed  that  RNA
crude  extracts  could  be  used  in  the  detection  of  ASGV  by  RT-
RPA-LFD with high level  of  specificity.  Our finding agrees with
this study with fast, sensitive, and robust direct RT-RPA assay of
potyviruses[22,35].  In  the  RT-PCR  method  for  virus  eradication,
RNA extraction and purification are often required before cDNA
synthesis.  All  these  procedures  should  be  performed  in  the
laboratory,  thus  inhibiting  the  broad  use  of  virus  detection  to
manage  viral  diseases.  Therefore,  the  one-step  RT-RPA-LFD
established  in  this  study  can  overcome  these  constraints  and
enable the rapid on-site diagnosis of ASGV in the field.

 Conclusions

Crude  RNA  extracts  can  be  used  for  the  rapid  detection  of
ASGV  using  one-step  RT-RPA-LFD,  and  the  detection  can  be
completed within 1 h with an incubator set at 40 °C.

 Materials and methods

 Plant material
In this study, the ASGV-infected in vitro apple of 'Gala', which

had been obtained by Wang et al.[23], the three-infected (ASGV,
ASPV and ACLSV) 'Yanfu 8' derived from the Laboratory of Fruit
Tree Developmental Biology for Northwest Arid Area. All in vitro
stock cultures were maintained on the Subculture and Prolifer-
ation Medium (SPM), including: Murashige and Skoog (1962)[36]

medium (MS) 4.43 g/L,  sucrose 30 g/L,  6-BA 0.4 mg/L, IBA 0.01
mg/L and agar 8 g/L, the pH of the medium was adjusted to 5.8
with  NaOH  prior  to  autoclaving  at  121  °C  for  20  min.  Subcul-
ture were done every month, and stored at a temperature of 22
±  2  °C  with  a  photoperiod  of  16  h  and  a  light  intensity  of  50
µmol/m2/s.  The  light  source  was  provided  by  a  white  fluores-
cent  tube.  The  field  samples  of  'Gala'  were  collected  at  the
Yangling  Subsidiary  Center  of  the  National  Apple  Improve-
ment  Center  in  Shaanxi,  China  (Yangling,  Shaanxi;  34°31′N,
108°05′E).

 RNA isolation and virus detection by RT-PCR
Total  RNA  were  extracted  from  fresh  in  leaf  samples  (0.5  g)

and the Spectrum Plant Total RNA Kit (Sigma-Aldrich, USA) was
used to obtain total RNA with the genome removed. cDNA was
performed in the following reaction: 2 µL total RNA (500 ng/µL),
2.5 µL of DEPC water, 0.5 µL of Primer-R (10 µM), incubated for
5 min in a 70 °C water bath; 1.75 µL of DEPC water, 2.5 µL dNTPs
(10  mM),  2.5 µL  M-MLV  5  ×  Reaction  buffer,  0.5 µL  M-MLV
reverse transcriptase and 0.25 µL RNase inhibitor, incubated at
42 °C for 60 min, kept at 95 °C for 5 min, the reaction was termi-
nated on ice.

 
Fig. 6    Primer and probe design position within the coat protein of ASGV.
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PCR operation reaction included 2 µL cDNA template, 12.5 µL
2  ×  Taq  PCR  Mix  (GS101,  Innovagene  Biotech,  China),  1 µL
Primer-F (10 µM), 1 µL Primer-R (10 µM), 8.5 µL DEPC water. The
sequences of all PCR detection primers in this study are shown
in Table 2. The PCR reaction amplification was as follows: 94 °C
for  3  min;  followed  by  repeat  for  35  cycles  of  94  °C  for  30  s,
56 °C for 45 s, and 72 °C for 50 s; finally, an extension at 72 °C for
10  min,  ending  the  reaction  and  stock  at  4  °C.  The  PCR  prod-
ucts  were  electrophoresed on 2.0% agarose  gel  (w/v)  contain-
ing DuRed dye (A168, Biomiga, China), and then photographed
and recorded under ultraviolet light.

 Detection by RT-RPA-LFD
Using  DNAMAN  to  compare  the  ASGV  coat  protein

sequences (MH378810.1, LN823987.1, LN823989.1, LN823988.1,
LN823986.1, LN559083.1, LN559086.1, LN823990.1, AF438409.1
and LN627002.1)  from NCBI  to  elucidate the conserved region
of the virus genome, the ASGV special sequence was cloned by
design  primers  in  the  conserved  region  (Fig.  6).  The  RT-RPA
primers and probes are shown in Table 2. The RT-RPA amplifica-
tion reaction of the TwistAmp® nfo kit (INTANFO, TwistDK, UK)
is  as  follows:  2.1 µL Primer-F (10 µM),  2.1 µL Primer-R (10 µM),
1.2 µL RPA-Probe (10 µM), 29.5 µL Rehydration Buffer,  2 µL M-
MLV reverse transcriptase (10 mM), 1 µL RNA template and 9.6
µL ddH2O to 47.5 µL, vortex gently; add the above mixture into
the  RPA  reaction  tube  which  contains  the  solid  product  after
vacuum  freeze-drying,  pipette  and  mix  well  to  rehydrate  the
lyophilized solid reactant; then add 2.5 µL 280 mM/L MgOAc to
start  reaction.  The  RT-RPA reaction amplification for  30  min  at
40  °C,  and  then  the  RT-RPA  product  was  tested  by  LFD  (MILE-
NIA01,  TwistDK,  UK).  The  coat  protein  of  ASGV  amplified  by
GenBank and PCR was sequenced in Seqman;  the unfilled box
represents  the  primer  region,  and  the  arrow  represents  the
position of the probe used in this study.

 Determination of RT-RPA-LFD conditions
The RPA reaction temperature was set to 40 °C, and the incu-

bation  time  was  set  to  0,  10,  20,  30,  and  40  min  respectively,
based  on  the  optimally  set  reaction  temperatures  of  37  °C,
38  °C,  39  °C,  40  °C,  and  41  °C.  The  optimal  reaction  time  and
temperature  were  determined  by  agarose  gel  electrophoresis
and LFD RPA product analysis.

 Specificity and sensitivity of RT-RPA-LFD
Testing  of  the  specifics  for  one-step  RT-RPA-LFD  assays  was

conducted, the primer and probe designed in conserved region
from coat protein of ASGV, using single ACLSV-infected, ASPV-
infected, and ASGV-infected in vitro as the materials,  the virus-
free 'Gala' as the negative control, and the infected ASGV, ASPV
and ACLSV in vitro 'Yanfu 8' as a positive control. For the sensi-
tivity test of one-step RT-RPA-LFD, dilute total RNA (500 ng/µL)
with a 10-fold gradient (10−1 to 10−8) as a template for amplifi-
cation  one-step  RT-RPA-LFD  detection.  RNA  samples  are  also
used for RT-PCR detection, and 1.5% agarose gel electrophore-
sis analysis RT-PCR product.

 Rapid detection of ASGV by crude RNA
Apple  leaf  (13  mg)  were  immersed  in  300 µL  of  freshly

prepared  alkaline  polyethylene  glycol  (PEG)  buffer  (6  %  PEG
200, 20 mM NaOH) and ground, and incubated at 37 °C for < 5
min to obtain a crude extract[22,35],  which was directly used for
the RT-RPA assay.

 Data analysis and processing
Each experiment consisted of three groups, and each experi-

ment was repeated twice.
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