
 

Open Access https://doi.org/10.48130/frures-0024-0015

Fruit Research 2024, 4: e022

Phyto-fabrication of copper oxide nanoparticles (NPs) utilizing the
green approach exhibits antioxidant, antimicrobial, and antifungal
activity in Diospyros kaki fruit
Iftikhar Hussain Shah1#, Irfan Ali Sabir2#, Muhammad Ashraf1, Asad Rehman1, Zishan Ahmad3, Muhammad
Azam4, Ghulam Abbas Ashraf5, Haroon ur Rasheed4, Guohui Li6, Jeridi Mouna7, Mohammad Faizan8,
Muhammad Ahsan Altaf9, Awais Shakoor10, Cheng Song6*   and Muhammad Aamir Manzoor1*

1 Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
2 College of Horticulture, South China Agricultural University, Guangzhou 510642, China
3 Bamboo Research Institute, Nanjing Forestry University, Nanjing 210037, China
4 Department of Agriculture, University of Agriculture, Faisalabad 38000, Pakistan
5 New Uzbekistan University, Mustaqillik Ave. 54, Tashkent 100007, Uzbekistan
6 Anhui Dabieshan Academy of Traditional Chinese Medicine, Anhui Engineering Laboratory for Conservation and Sustainable Utilization of Traditional Chinese

Medicine  Resources,  Anhui  Engineering  Research  Center  for  Eco-agriculture  of  Traditional  Chinese  Medicine,  College  of  Biological  and  Pharmaceutical
Engineering, West Anhui University, Lu'an 237012, China

7 Biology Department, College of Science, King Khalid University, Abha 61413, Saudi Arabia
8 Botany Section, School of Sciences, Maulana Azad National Urdu University, Hyderabad 500032, India
9 School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
10 Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW 2751, Australia
# Authors contributed equally: Iftikhar Hussain Shah, Irfan Ali Sabir
* Corresponding authors, E-mail: lanniao812329218@163.com; aamirmanzoor1@hotmail.com

Abstract
Nanotechnology  has  emerged  as  a  prominent  field  in  recent  times.  The  fabrication  of  biocompatible  materials  has  taken  on  highlighted

significance owing to their requisite application in diverse sectors including medicine, water treatment and purification, health, and other related

fields. There has been a lot of research done recently on the green synthesis of various nanoparticles (NPs). Copper a high-performance metal

used in agriculture to combat pathogenic attacks, has received less attention. The current work demonstrates the successful preparation of green

synthesized copper oxide nanoparticles (CuO.NPs) from Mangifera indica (M. indica) leaf extract. The spectral and morphological characterization

biosynthesized were observed using, FTIR, XRD, and TEM analysis. The FTIR analysis revealed the functional groups present in plant extracts. XRD

was carried out to demonstrate the crystalline nature and size of nanoparticles using the Scherrer formula.  UV was performed to observe the

optical properties of NPs. Further, Transmission electron spectroscopy (TEM) was carried out to confirm the physical shape of CuO.NPs with 50

nm. The M. indica mediated NPs were evaluated against gram-negative and positive bacteria Escherichia coli (E. coli) and Staphylococcus aureus (S.
aureus)  at  different  concentrations.  The in  vivo fungicidal  activity  was  performed  against Rhizophus  oryzae (R.  oryzae)  on Diospyros  kaki
(persimmon  fruit).  The  detach  fruit  method  was  applied  to  evaluate  the  potential  of  NPs.  Higher  exposure  of  100 µg·mL−1 CuO.NPs  showed

mycelia  inhibition  followed  by  30,  60,  and  control  treatments.  Furthermore,  Green  CuO.NPs  showed  prominent  antioxidant  activities  as

compared to plant sources. The findings obtained suggest that the green-formulated CuO.NPs could be further investigated for the treatment of

many phytopathogenic diseases.
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 Introduction

A  sustainable  increase  in  agricultural  production  is  needed
due to a predicted increase of 100%−110% in demand for crops
globally  from  the  year  2005  to  2050[1].  Abiotic  stresses  can
physically damage the plant or weaken the plant's defense and
health,  thus  assisting  the  entry  or  attack  of  pathogens  on  the
plant[2].  Biotic  stresses  mainly  involve  infections  caused  by
pathogens,  such  as  viruses,  fungi,  nematodes,  bacteria,  and
protozoa[3]. Disease in plants is defined as the response of plant
cells  and  tissues  to  any  environmental  stress  or  a  pathogen,

resulting in abnormality in plant health[4].  Disease endemics in
plants  occur  yearly  on  various  crops  in  different  parts  of  the
world[5]. Phytopathogens have a severe negative impact on the
quality  and  quantity  of  agricultural  products,  parallelly  a  bad
effect  on  the  economy  of  a  country.  Thus,  a  sustainable  food
supply  is  at  risk,  due  to  the  rapid  propagation  of  pathogens
with  an  increase  in  the  incidences  and  severity  of  infectious
diseases[6].

At  present,  the  increasing  demand  for  crop  production
depends on synthetic agrochemicals to reduce the risks posed
by  plant  diseases  and  ensure  crop  yield[7].  The  Food  and
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Agriculture Organization of the United Nations (FAO) Statistics
database  shows  that  the  use  of  fungicides,  bactericides,  and
pesticides  worldwide  is  increasing  rapidly[8].  However,  exces-
sive use of agrochemicals without discrimination contributes to
global  warming  and  has  several  adverse  effects—such  as
making  pathogens  more  resistant,  causing  toxicity  to  non-
target  organisms,  and  posing  severe  risks  to  human  and  envi-
ronmental  health[9,10].  Consequently,  innovative  plant  disease
control  approaches  and  advancements  in  technology  need  to
be  established  and  employed  to  enhance  the  effectiveness  of
plant  disease  control  measurements  and  minimize  environ-
mental  damage.  Nowadays,  antimicrobial  nanomaterials  are
attracting  more  attention  in  the  scientific  community  as  they
can  unlock  the  limitations  experienced  by  other  antimicrobial
agents  and  traditional  pesticides.  Nanomedicine  is  a  new
approach to overcoming the challenges of  conventional  treat-
ments,  based  on  the  manufacturing  and  fabrication  of
nanoparticulate[11,12].  Numerous  types  of  nanostructures  such
as  metal  nanoparticles,  nanogels,  biodegradable  polymeric
nanoparticles,  nanoliposomes,  and  solid  lipid  nanoparticles,
have been endeavored as probable drug delivery systems[13,14].
Nanoparticles  are  generally  no  larger  than  100  nm  in  size  and
their  smaller  size  along  with  their  higher  surface-to-volume
ratio,  govern  them,  as  effective  biocidal  agents,  as  both  these
combined  effects  facilitate  the  intimate  interaction  on  the
microbial  membrane[13,15].  The  fungicidal  ability  of  biosynthe-
sized  metallic  nanoparticles  was  found  to  be  more  aggressive
than  commercially  applied  antibiotics  such  as  amphotericin
and  fluconazole.  Obvious  membrane  damage  in  Candida  sp.
has  been  observed  after  the  application  of  plant-mediated
silver  nanoparticles,  which  not  only  damaged  the  intercellular
components  of  the  fungus  but  also  destroyed  the  cell
functions[16,17].  In  antibacterial  activity,  the negative charge on
the  bacterial  cell  wall  interacts  with  the  positive  charge
nanoparticles  due  to  their  electrostatic  forces  resulting  in  the
disruption  of  the  bacterial  cell  walls.  Furthermore,  nanoparti-
cles also release metal ions from their extracellular place, which
then  enter  the  cell  wall  and  disrupt  the  normal  biological
process  of  bacteria.  Inside  the  bacterial  cell,  either  nanoparti-
cles  or  metal  ions,  persuade  the  ROS  level  and  damage  the
protoplasm.  The  generation  of  oxidative  stress  leads  to  the
oxidation of glutathione, which results in the destruction of the
antioxidative  defense  mechanism  of  organisms  against  ROS.
The  metal  ions  are  therefore  free  to  interact  with  cellular
systems (e.g., membranes DNA, proteins, etc.), disrupting cellu-
lar functions. Metal ions can develop a solid coordination bond
with  O,  S,  or  N  atoms  which  are  present  in  abundance  in  bio-
molecules and organic systems. Meanwhile, the bond between
biomolecules  and  metal  ions  is  generally  non-specific,  ulti-
mately,  metallic  nanoparticles  exhibit  a  broad  spectrum  of
potential[18,19].

To  synthesize  eco-friendly  and  low-cost  metallic  nanoparti-
cles, researchers are utilizing the capabilities of biological mate-
rials  to  manufacture  metallic  nanoparticles[20].  In  the  green-
fabrication  of  metallic  nanoparticles,  the  reduction  of  metals
involves the biological mass as reducers—either intra-cellularly
or  extra-cellularly[21].  Apart  from  eco-friendliness  and  cost-
effectiveness, the advantage of the biological approaches over
classical approaches (physical and chemical methods), comprise
the efficiency of the technique in catalyzing the reactions in the
aqueous  environment  at  standard  pressure  and  temperature
conditions,  as  well  as  the  flexibility  of  the  process  by

implemented in almost at any scale and any settings[22]. The ele-
ments  of  biological  sources  are  responsible  for  the  reduction
and the process may often be triggered by various compounds
and constituents such as proteins, terpenoids, flavonoids, alka-
loids,  terpenoids,  phenols,  amines,  carbonyl,  amide  groups,
different pigments, and other reducing agents. One or more of
these reducing agents may be responsible for  the synthesis  of
metallic  nanoparticles[23].  Applications  of  nanomaterials  are
extended to the fields of both human and plant pathology and
biotechnology[24,25].  Based  on  their  unique  characteristics,
various  biogenically  synthesized  nanoparticles  serve  as  anti-
cancer and antimicrobial agents in various fields[26,27]. CuO nano-
particles  have  vast  unique  characteristics  from  pharmacology
to pest ecology for overcoming various pathogenic diseases[28].

Mangifera  indica is  a  famous tree that  belongs to  the family
Anacardiaceae used in traditional medicines, especially for skin
problems,  cough,  diarrhea,  malaria,  dysentery  jaundice,  and
their  anti-microbial  properties[29,30].  Thus,  due  to  the  antioxi-
dant,  antimicrobial,  and  pharmacological  importance  of M.
indica,  it  was  assumed  that  employing  plant  leaves  as  a  redu-
cing and capping agent would enable the formation of CuO.NPs
with  vital  phytochemicals.  The  main  objective  of  the  current
study  is  to  synthesize  eco-friendly  and  economically  viable M.
indica-mediated  CuO.NPs  to  explore  their  antifungal  and
antibacterial  potential.  This  current  work  shows  that  CuO.NPs
synthesized  by M.  indica are  biocompatible,  eco-friendly,  and
environmentally  sustainable  Nano  fungicides  against  phyto-
pathogens.  Therefore,  improving  the  yield  of  nanoscale  metal
particles,  using  low-cost  raw  materials,  and  greensource,  and
employing  simple  energy-saving  technology  are  the  research
directions  needed  in  the  future.  At  present,  there  have  been
successful  cases  of  using  grass  to  synthesize  CuO.NPs.  There-
fore,  green  synthesis  of  nanoscale  metals  may  have  a  broad
prospect and a great potential for development.

 Materials and methods

 Chemicals and pathogenic strains
The  chemicals  used  in  this  work  were  Copper  (II)  sulphate

pentahydrate  (CuSo4·5H2O),  deionized  H2O. Escherichia  coli,
Staphylococcus aureus and Rhizopus oryzae.

 Plant material processing
The  healthy  leaves  of Mangifera  indica were  collected  from

Punjab province, Pakistan, and identified from the well-reputed
plant  herbarium  center  of  the  taxonomy  laboratory  depart-
ment at Quaid-i-Azam University (QAU) Islamabad Pakistan. The
fresh  plant  leaves  were  thoroughly  washed  with  de-ionized
water and dried under ambient temperature (1−2 weeks). After
plant  materials  had completely  air  dried,  extracts  were pulver-
ized with  a  blender  to  a  fine  powder.  Afterward,  30  g  of  plant
powder was added to 300 mL of distilled water and boiled for
half an hour at 74 °C. The material was then shifted in an incu-
bator shaker for 2−3 h at 50 rpm at 40 °C. The resultant mixture
was then filtered with Whattman No. 1 filter paper. The extract
filtered  was  kept  at  4  °C  for  further  synthesis  process  of
CuO.NPs[31].

 Preparation of CuO.NPs
The formulation of green CuO.NPs were mediated by the co-

precipitate  method  by  applying Mangifera  indica leaf  extract.
For the green synthesis of CuO.NPs, 40 mL copper (II) sulphate
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pentahydrate  (CuSo4·5H2O)  solution  (1  M)  was  prepared  by
adding  in  10  mL  aqueous  plant  extract  and  stirring  on  a  hot
plate at 80 °C for 4 h at 200 rpm. The brownish color CuO.NPs in
precipitate  form  were  collected via 12,000  rpm  of  centrifuga-
tion (Velocity 14R, 220VAC 50/60HZ, 10A China), for 10 min. The
resulting  pellet  was  washed  thrice  with  deionized  water  and
dried in a drying oven for 4 h at 60 °C. Finally, the radish-brown
NPs were collected, and stored at room temperature for further
use[32].

 Phytochemicals screening
The antioxidant,  antifungal,  and antibacterial  compounds in

plant  extracts  were  carried  out  by  manual  procedure  in  a  lab
using chemicals.  The phytochemical  screening of  phenols  and
saponins,  alkaloids  triterpenes,  flavonoids,  and  tannins  accor-
ding to the already well-established protocol[33].

 Phenols and tannins test verification
To confirm the presence of phenols and tannins in M. indica

plant  extract  solution.  A  few  drops  of  FeCl3 3%  were  added
drop by drop to a 1 mL extract solution. After some time, deep
blue  coloration  formed  which  was  the  first  identification  of
phenolic and tannins.

 Test for triterpenes
For  triterpene  compound  analysis,  1  mL  of  chloroform  was

added into the solutions, and then 1 mL of concentrated H2SO4

was  carefully  mixed  into  the  test  tubes  by  sliding  it  down  the
walls.  The  confirmation  of  triterpenes'  presence  was  indicated
by the development of red coloration in the solution.

 Test for flavonoids
Lead acetate solution was added to 1 mL of the extract solu-

tions  and  the  presence  of  flavonoids  was  confirmed  by  the
formation of a yellow precipitate in the solution.

 Test for alkaloids
The alkaloid test was carried out by adding 5 mL of HCl to the

extract  solution.  The  solution  was  agitated,  filtered,  and  kept
for further analysis. Meyer's test was then carried out by adding
2 mL of the filtrate to 5 mL of Meyer's reagent. The formation of
a yellow precipitate indicates the presence of alkaloids.

 Characterizations of CuO.NPs
The  crystallographic  nature  and  intrinsic  characteristics  of

green  synthesized M.  indica-mediated  NPs  were  confirmed  by
XRD analysis (Schimadzu-Model Kyoto, Japan) ranging 2θ from
10° to 90° via Cu/Kɑ radiations with wavelength 1.5406 Å ran at
40 kV with 30 mA at room temperature. The size of synthesized
particles  was  determined  using  the  Debye-Scherer  equation
(D  =  K/cos),  where  D  is  the  crystal  size  and  is  vertical  to  the
reflecting  planes.  K  is  constant  in  this  equation  (0.9),  and  the
variables  are  the  X-ray  wavelength  (1.5406),  the  angular  full-
width  at  half-maximum  in  radians,  the  Bragg's  angle,  and  the
angular full-width at half-maximum in radians.

FT-IR  analysis  for  the  green  synthesized M.  indica-mediated
CuO.NPs  were  analyzed  to  confirm  the  functional  groups  of
biomolecules  in  the  prepared  NPs.  The  wavelength  was
set in the range of 400−4,000 cm−1 using an FT-IR spectroscope
(Schimadzu-Model  FT-IR,  Kyoto,  Japan)  having  a  resolution  of
4 cm−1.

The surface morphology of green synthesized CuO.NPs were
assessed  by  scanning  electron  microscopy.  The  drop  of  metal
NP  solution  sample  was  loaded  on  copper-coated  stubs  and
then  evaporated  at  light  for  full  drying.  Finally  sample  was

loaded  in  the  transmission  electron  microscope  (JEOL  JSM-
5910),  with  10  KV  of  accelerating  voltage  for  4  min[34].  The
morphology of synthesized samples was further proven with a
high-resolution  application  of  the  protocol.  The  size  of  the
synthesized particles was measured by determining the diame-
ter of the nanoparticles[35,36].

 Antibacterial assay
The  antibacterial  potential  of  synthesized  green  CuO.NPs

were evaluated against E. coli and S. aureus bacteria via the disc
diffusion  method[37].  The  bacterial  inoculum  was  prepared  by
culturing a single colony of E. coli in nutrient broth at 37 °C for
24  h.  Then  the  prepared  fresh  inoculum  was  swabbed  evenly
on media plates (nutrient broth agar), and 5 mm of wells were
created in the plates by using an autoclaved cork borer. A total
volume  of  20 µL  of  the  sample  having  various  concentrations
(100,  50,  and  30 µg·mL−1)  was  added  according  to  the  wells.
The cefixime was applied as  a  positive control  and DMSO as a
negative control. The culture plates were incubated at 37 °C for
24 h and their zones of inhibitions were measured. The experi-
ment was performed three times.

 Antifungal assay
The antifungal potential of synthesized green CuO.NPs were

explored in vivo against R. oryzae. In vivo was accomplished by
adding R.  oryzae mycelia  in  Czapek  Dox  Broth  medium.  The
components  of  Czapek  Dox  Broth  media  were  sucrose  (7.5  g),
potassium chloride (0.25 g), sodium nitrate (0.5 g), magnesium
sulphate  (0.25  g),  dipotassium  phosphate  (0.25  g),  ferrous
sulphate  (0.005  g),  and  250  mL  distilled  H2O.  The  media  was
incubated  at  32  ±  2  °C  for  24  h  at  50  rpm  with  continuous
shaking.  The D.  kaki was  surface  sterilized via 50  %  sodium
hypochlorite  suspension  before  treatment  with  synthesized
CuO.NPs. Then the artificial wounds were created in the center
of the fruits by a 2 mm sterile cork borer. In the wound of fruits,
5 µL spore suspension was inoculated into the wounds of each
fruit, further treated with 30 µL volume of both concentrations
(100  and  60 µg·mL−1)  of  CuO.NPs.  To  provide  moisture  and
avoid contamination, the treated fruits were covered with a wet
muslin cloth.  After a week of post-inoculation, the diameter of
the lesion was measured[38,39].

 Antioxidant activity
The antioxidant activity was assessed using the 2,2-Diphenyl-

1-picrylhydrazyl (DPPH) radical scavenging experiment, 100 µL
of green synthesized CuO.NPs at a concentration of 1 mg·mL−1

were  serially  diluted  with  100 µL  of  methanol.  The  well  was
filled with  100 µL of  0.1  mM methanolic  DPPH,  and the plates
were then let to sit at room temperature in the dark for 30 min.
M.  indica extract,  CuO.NPs,  and  ascorbic  acid  concentrations
were evaluated at an ELISA plate reader were used to read the
plates at 517 nm. Where A0 and A1 are the absorbances of the
control and treatment, respectively, were used to calculate the
DPPH inhibitory percentage[34].

DPPH inhibitory% =
A0−A1

A0
×100

Where  A0 and  A1 are  absorbances  of  control  and  treated,
respectively.

 Results and discussion

In  the  last  few  years,  nanotechnology  has  attained  great
impetus  in  applied  material  due  to  its  unique  physiochemical
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properties.  Numerous  methods  for  synthesizing  metal
nanoparticles  are  currently  documented  in  the  literature  and
employed  by  researchers  in  their  quest  to  discover  novel  and
emerging  uses  for  these  nanoparticles.  Nanoparticles  are  the
upcoming plant pathogen weapons in modern agriculture, and
green-produced  nanoparticles  have  shown  significant  poten-
tial  for  disease  prevention[40].  The biological  approach encom-
passes  the  creation  of  nanoparticles  through  the  utilization  of
living  organisms,  including  plants,  bacteria,  fungi,  and  algae.
When plants are involved in the synthesis of nanoparticles, it is
referred to as green nanotechnology[41]. The utilization of plant
biomaterials  for  the  synthesis  of  metallic  nanoparticles  is  now
recognized as  a  highly emerging field.  Plants  possess inherent
organic  reducing  agents,  which  render  them  well-suited  and
adaptable  for  nanoparticle  synthesis[42].  Numerous  plant
extracts  have  been  effectively  tested  for  the  production  of
metallic  nanoparticles.  Extracts  from  various  plants  such  as
Camellia sinensis, Azadirachta indica, Halymenia dilatata, Stachys
lavandilfolia,  Eucalyptus,  and  Mentha  have  been  documented
as capable of synthesizing diverse types of CuO.NPs, each with
distinct and specific applications[38,43,44].

Mangifera  indica,  a  significant  plant  with  numerous  medici-
nal  uses,  has  gained  recognition.  Phoenix  dactylifera  has  pre-
viously  been  employed  for  the  production  of  various  metallic
nanoparticles. To investigate the antimicrobial and antioxidant
activity,  researchers have utilized leaf  extract from M. indica to
synthesize silver oxide nanoparticles (AgNPs)[45].  In the present
study, M.  indica was  utilized  as  a  source  to  generate  copper
oxide nanoparticles (CuO.NPs). The synthesis of green M. indica-
mediated  CuO.NPs  were  confirmed  via  a  color  change  from
yellow  to  copper-reddish  indicating  CuO.NPs  synthesis.  The
main  objective  of  green  synthesis  was  the  fabrication  of  cost-
effective,  environmentally  friendly,  and  biocompatible
nanoparticles[46].  The  production  of  green  CuO.NPs  are  a
complicated process that depends on various variables due to
their  colloidal  properties.  The  main  objective  is  to  develop  a
phyto-fabricated  approach  that  can  be  commercialized  with-
out using complex processes such as magnetic filtration, ultra-
centrifugation,  co-precipitation,  and  flow  field  gradient.
Another objective is to specify the reaction conditions that aid
in controlling the size of  the particle.  Already reported studies
confirmed  the  suitability  of  the  co-precipitation  method  to
synthesize  reduced  size  and  homogenous  texture.  The  results

of  this  study  align  with  previous  research,  demonstrating  that
this  method  can  meet  the  increasing  need  for  well-dispersed
green  CuO.NPs  in  biomedicine  and  engineering[47].  In  this
present  work,  green  synthesized  CuO.NPs  were  characterized
through  different  techniques.  After  visual  confirmation  of
biomolecules from M. indica plant extract.  To confirm the anti-
fungal  and  antibacterial  biological  molecules  in  green  source
plant  extract  visual  confirmatory  tests  were  performed  in  the
laboratory.  The Mangifera  indica filtrate  solution  contained  all
antioxidant  flavonoids  necessary  for  the  reduction  of  green
synthesized CuO.NPs (Fig.1).

FTIR  spectroscopy  was  carried  out  to  investigate  biomole-
cules  responsible  for  the  reduction  of  Cu  nanoparticles.  The
functional  groups  act  as  capping  and  reducing  agents  in
synthesizing nanoparticles and were analyzed by FT-IR (Fig. 2).
FT-IR  exhibited  absorption  peaks  3,404.13,  300.37,  2,382.35,
1,641.84, 1,476.90, 1,072.42, 872.66, and 651.51 cm−1 matching
to  several  functional  groups  that  are  C-N  stretching  aromatic
amino  groups,  C-O  carboxylic  anions,  alcohol  O-H  stretching,
and amine N-H stretching groups respectively,  while peaks for
CuO.NPs  were  instituted  nearby  550–600  cm−1.  The  fabricated
CuO.NPs  were  covered  by  proteins  and  various  metabolites
occupying  functional  groups.  The  FT-IR  result  confirmed  that
the  proteins  and  amino  acids  residues  built  a  strong
connection  to  attract  the  metals  and  prevent  clusters  due  to
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Fig. 2    FTIR spectra of M. indica mediated CuO.NPs. FTIR showed
corresponding peaks 3,404.13, 300.37, 2,382.35, 1,641.84, 1,476.90,
1,072.42,  872.66,  and  651.51cm−1 corresponding  to  various
functional groups.
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Fig. 1    Proposed hypothetical picture of the reduction mechanism of copper sulphate by the aqueous leaf extract solution of M. indica on a
hot plate at 80 °C for 4 h at 200 rpm.
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the capping of CuO.NPs and stabilizing the respective medium
(Table 1).

The  current  FT-IR  analysis  demonstrates  that  green  synthe-
sized  CuO.NPs  have  potential  as  an  organic  core  through  the
presence  of  various  functional  groups,  as  well  as  an  inorganic
support to penetrate the cell  wall  of microorganisms. Previous
studies have indicated that green synthesized CuO.NPs have a

variety of reactive functional groups, providing enough poten-
tial  to  be  utilized  as  an  effective  means  of  combating  patho-
gens in the agricultural sector[48]. The FT-IR analysis verified the
existence  of  functional  groups  in  the  green  synthesized
CuO.NPs,  which  possess  the  potential  to  effectively  inhibit
pathogenic growth.

The  XRD  spectra  of  synthesized  green  CuO.NPs  demon-
strated six major peaks at 2θ angles of 49.67, 39.36, 36.75, 29.56,
and 25.34 corresponding to  113,  202,  111,  002,  −111,  and 110
plans respectively depicting the crystalline nature of nanoparti-
cles (Fig. 3).  However, a few unknown peaks were also noticed
denoted  by  *.  The  average  size  of  the  particles  was  evaluated
by Scherrer's  equation (D = kλ/β Cosθ)  and was retrieved from
XRD  findings  to  be  55.29  nm.  The  XRD  results  are  compatible
with the previously studied XRD patterns[49].  The XRD patterns
portray  the  crystalline  texture  of  synthesized  particles  which
play an important  role  in  the interaction of  nanoparticles  with
microbial cell walls[50]. Moreover, the crystalline nature of small-
size  particles  helps  to  control  the  formation  of  biofilm  by
producing oxidative stress[38].

The TEM analysis indicated that the CuO.NPs display a spheri-
cal  morphology  and  are  effectively  dispersed  without  aggre-
gating,  with  sizes  ranging  from  40−80  nm,  corresponding
closely to the sizes determined from the XRD analysis (Fig. 4a &
b).  The  current  analysis  is  in  correspondence  with  the  already
reported  analysis  of  green  fabricated  CuO.NPs.  The  particle
aggregation  can  be  attributed  to  the  electrostatic  attraction
forces between them. Previous studies suggest that a spherical
object  can  easily  enter  the  microbial  cell  wall  which  is  mainly
responsible for sustaining the integrity of microbes and distur-
bances in cell walls eventually leading to microbial death[51,52].

The TEM results of CuO.NPs shown in Fig.  4 demonstrated a
spherical  shape  having  a  diameter  in  the  range  of  30−90  nm.
The  electrostatic  forces  among  the  particles  result  in  slight
agglomeration,  but  the  presence  of  organic  core  and  plant
extract  material  provides  a  clear  demarcation for  each particle
(Fig.  4).  The shape is likely to increase the surface area of both
the particles and the substrate, thereby enhancing their ability
to attach and ultimately leading to the antimicrobial  effects of
CuO.NPs[53].

 Antimicrobial activities of CuO.NPS
The antibacterial activity of CuO.NPs were evaluated at diffe-

rent doses (30, 60, and 100 µg·mL−1) against E. coli and S. aureus

 

Table 1.    Possible functional groups in M. indica plant extract.

S.
No.

Functional
groups Compounds Wave.

no. Vibration Bonding Peaks

1 OH Alcohol 3,404.13 Stretching Strong Broadband
2 O-H Carboxylic 300.37 Stretching Strong Broadband
3 O=C=O Carbon

oxide
2,382.35 Stretching Medium Broadband

4 −C=C Alkanes 1,641.84 Stretching Medium Broadband
5 N-H Amine 1,476.90 Bending Medium Broadband
6 N-H Anhydride 1,072.42 Stretching Strong Broadband
7 C-Cl Aldehyde 872.66 Bending Medium Broadband
9 C-Br Alkyl

Halides
651.51 Stretching Strong Broadband
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Fig.  3    XRD  spectra  of M.  indica mediated  CuO.NPs.  The  XRD
spectra  of  the  green  synthesized M.  indica mediated  CuO.NPs
exhibit seven main peaks at 2θ angles of 49.67, 39.36, 36.75, 29.56,
and 25.34 plains respectively.
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(Fig.  5).  In E. coli,  the  results  showed  the  highest  inhibition
antibacterial  zone  at  100 µg·mL−1 of  CuO.NPs  at  10.8  ±  0.41
(mean ± SD) while 60 and 30 µg·mL−1 from three repeated trials
showed  inhibitions  respectively  relative  to  control  6.4  ±  0.20
and 3.6  ±  0.20  (mean ±  SD).  Similarly,  it  was  found that  green
CuO.NPs  inhibited  the  growth  of  gram-positive  bacterial  stain
efficiently  8.89  ±  0.69  at  100 µg·mL−1 compared  with  other
treatments.  While  60 µg·mL−1 of  NPs  showed  a  6.0  ±  0.2  mm
zone  of  inhibition.  In  the  current  findings,  3.8  ±  0.2  inhibition
zone was  observed at  the  lowest  concentration of  30 µg·mL−1

of CuO.NPs. Previously reported studies showed that the bacte-
ricidal effects of green fabricated NPs are due to the small size
of  particles  and  the  availability  of  various  organic  functional
groups  on  the  nanoparticle's  surface[54].  It  was  reported  in  a
previous  study,  CuO.NPs  found  to  have  highly  bactericidal
potential  to  stop their  growth.  The  organic  base  of  nanoparti-
cles attracts the bacterial cells due to strong electrostatic forces
of  attraction,  resulting  in  the  deactivation  of  the  cellular
enzymes and causing damage to plasma membrane permeabi-
lity ultimately causing cell death[55,56]. Moreover, the accumula-
tion  of  different  phytocompounds  on  the  surface  of  CuO
nanoparticles  causes  damage  to  the  microbial  DNA  and  their
proteins formulating enzymes and inhibiting microbial growth.
Additionally,  the  particles'  small  sizes  and  crystalline  texture
were  verified  by  XRD,  SEM,  and  TEM  causing  the  inhibitory
effects of the CuO.NPs[57].

The antifungal  activity in  vivo of  green synthesized CuO.NPs
were  evaluated  on  detached  fruit  assay.  The in  vivo study  on
persimmon  fruit  resulted  in  an  obvious  reduction  of  disease
with an increase in the doses of synthesized CuO.NPs (100, 60,
and  30 µg·mL−1)  (Fig.  6). In vitro, the  highest  concentration  of
100 µg·mL−1 of  particles  showed  maximum  inhibition  of
disease incidence 23.4 ± 1.81 (mean ± SD) against R.  oryzae as
compared to control 97.0 ± 0.81 (mean ± SD) (Table 2).

In this current work, antifungal potential has been shown by
green  fabricated  CuO.NPs  both in  vivo and in  vitro.  The  pre-
sence  of  plant  phytocompounds  on  the  surface  of  nanoparti-
cles  is  the  main  reason  for  their  potential  and  the  ability  of
CuO.NPs  to  penetrate  fungal  cell  walls  are  also  dependent  on
their  small  size  and  crystalline  texture.  The  small  size  of  the
particles  provides  a  large  surface  area  to  adsorb  the  biomole-
cules  to  the  cell  wall  and  results  in  disruption  of  the  cell  wall
and cellular  components,  leading to  the  death of  microorgan-
isms. The green fabricated CuO.NPs exhibit potential microbici-
dal  effects,  cost-effectiveness,  and  reproducibility  over  chemi-
cally generated nanoparticles[58]. To identify synergistic effects,
copper  nanocomposites  were  tested  against  the  phytopatho-
genic fungus Alternaria alternata, Rhizoctonia solani,  and Botry-
tis  cinerea.  According  to  the  findings,  nanocomposite  showed
greater  activity  at  a  concentration  of  90  g·mL−1.  Bimetallic
blends  antifungal  properties  were  similarly  successful  in
controlling Rhizoctonia  solani growth  at  doses  of  30,  60,  and
90  g·mL−1.  In  a  greenhouse  setting,  they  also  demonstrated
successful management of cotton seedling damping-off[59,60].

 Antioxidant activity
In  humans,  free  radicals  are  created  by  several  metabolic

pathways  and  cause  degenerative  diseases  and  lowered
immune function (Liu et al.)[61]. To combat free radicals, medici-
nal plants with phenolic components are employed as antioxi-
dants.  The  proportion  of  scavenging  action  was  substantially
higher in the standard and plant extracts, Das et al.[62] reported
comparable  findings.  While Mangifera  indica contain  polyphe-
nols  and  other  phytochemicals  with  significant  antioxidant
activity  and  are  employed  as  natural  antioxidants  to  control
degenerative  diseases  (Ssekatawa  et  al.)[63],  ascorbic  acid  is  a
recognized  antioxidant.  The  mechanism  behind  the  antioxi-
dant activity of inorganic nanoparticles involves the binding of
transition  metal  ion  catalysts  by  free  radicals,  which  results  in
the  enhancement  of  radical  scavenging  activity.  Antioxidant
activity  was  noticeably  elevated  in  the  green  synthesized  NPs
and ascorbic acid. The capping of the CuO.NPs with the phyto-
chemicals  utilized  in  their  production  were  confirmed  by  FTIR
analysis.  The  biosynthesized  CuO.NPs  antioxidant  activity
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Fig. 5    In-vitro antibacterial activity of CuO.NPs were evaluated at
different  doses  (30,  60,  and  100 µg·mL−1)  against E.  coli and S.
aureus.

 

Fig. 6    Fruit detached antifungal in vivo assay. Persimmon fruits were infested and treated with different concentrations of CuO.NPs including:
(a) 30 mg·L−1, (b) 60 mg·L−1, (c) and (d) 100 mg·L−1. Control fruit were without any NP.
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against  the  DPPH  radical  was  assessed,  and  its  efficacy  was
plant  extract  and  conventional  ascorbic  acid.  CuO.NPs  had  a
potent  inhibitory  effect  on  DPPH,  with  an  IC50  value  of  10.68

0.03 g·mL−1. A dose-dependent reaction of CuO.NPs and ascor-
bic acid to the DPPH radical are shown in Fig. 7.

CuO.NPs biosynthesized with Sargassum longifolium demon-
strated  an  inhibitory  percentage  of  20%  when  tested  at
5  g·mL−1,  which  is  consistent  with  our  previous  findings[64,65].
On the other hand, copper mixed oxide (CuO/Cu2O) nanoparti-
cles  made  from Phoenix  dactylifera leaves'  antioxidant  proper-
ties showed strong DPPH inhibition at 4 mM[66]. Green chemis-
try of inorganic metal and metal oxide nanoparticles (NPs) have
a  wide  range  of  applications  in  agriculture,  particularly  in  the
management and treatment of plant diseases due to fungi. For
the correct uses, the biocompatibility and toxicity of the nano-
materials should be investigated[67].

Nanoparticles  exhibit  antimicrobial  and  antioxidant  poten-
tial  through  multifaceted  penetration  mechanisms.  The  nano-
particles  bind  to  microbial  membrane  and  their  penetration
inside  the  protoplasm  of  pathogenic  cells  has  been  docu-
mented  as  the  most  prominent  mode  of  antimicrobial  action.
NPS  released  into  the  microbial  cells  react  with  thiol  groups
causing a denaturation of the proteins and enzymes Fig. 8. The
results  demonstrated  that  green  modified  CuO.NPs  can  repre-
sent  a  successful  alternative  treatment  for  fungi  and  bacterial
infections.

 Conclusions

The  current  work  provides  an  efficient  and  cost-effective
protocol  for  the  synthesis  of  CuO  nanoparticles  by  the  green
approach and its safe use in phytopathology. Using plant mate-
rials for particle synthesis allows for the safe and effective use of

 

Table 2.    Effectiveness of green CuO.NPs on fruit against disease.

Treatment Diseased area (mm)

30 mg·L−1 64.6 ± 1.6
60 mg·L−1 44.2 ± 0.6
100 mg·L−1 23.4 ± 1.8
Control 97.0 ± 0.81
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these particles as antimicrobial agents to combat diseases. This
approach  is  essential  in  meeting  the  growing  demand  for
biocompatible solutions in food and agriculture. In this current
work,  the  nanoparticles  used  against  pathogens  suppressed
their  growth  by  damaging  their  cell  walls  and  delaying  their
spore  germination.  Based  on  our  findings,  it  is  highly  recom-
mended  to  apply  green  synthesized  CuO.NPs  mitigate  devas-
tating and lethal plant diseases due to their  significant antimi-
crobial  effects.  This  work  offers  a  new  avenue  for  additional
investigations  of  metallic  nanoparticles  in  vital  domains  like
phytopathology  and  agriculture.  The  use  of  this  environmen-
tally  friendly  method  of  biogenic  nanoparticles  may  help  to
reduce  the  fungal  infection  in  sweet  fruit  and  improve  the
socio-economic standing of farmers.
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