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Abstract
Russet formation in apple (Malus domestica Borkh.)  is  a superficial  skin disorder that detracts from fruit  appearance and is likely controlled by

many small-effect quantitative trait loci (QTLs). Genomewide prediction has been reported to be an effective breeding approach when targeting

highly quantitative traits in apple.  Our objective was to investigate the utility of  genomewide prediction for russet formation within an apple

breeding program. Germplasm included 1,009 unselected offspring from 13 full-sib families derived from 14 breeding parents. 'Honeycrisp' and

'Minneiska',  two breeding parents  prone to moderate levels  of  russet,  were highly  represented.  High-quality  single  nucleotide polymorphism

data (947 SNPs) and three years of shoulder and lenticel  russet formation data were leveraged in this study.  Moderate predictive abilities (r  =

0.28−0.35) were observed across training-testing set scenarios and models. In this germplasm, the inclusion of previously detected QTLs as fixed

effects in the model did not have significant effects on predictive abilities. Postdiction (retrospective) analyses demonstrated that genomewide

predictions  and  phenotypic  observations  agreed  for  54%  of  advanced  selections.  Genomewide  prediction  is  a  promising  approach  when

targeting  russet  formation,  a  trait  that  cannot  be  phenotypically  observed  in  offspring  in  apple  breeding  programs  until  they  are  past  their

juvenile phase.
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 Introduction

Appearance is an important attribute of fruit quality for fresh
eating  apples  (Malus  domestica Borkh.).  Poor  appearance  can
result  in fruit  being downgraded from the fresh-eating market
to  the  processed  market,  which  can  result  in  a  three-to-four-
fold  loss  of  wholesale  income[1].  Russet  formation a  superficial
skin disorder, affects the cuticle layer and forms a brown, corky
patch  that  can  be  localized  or  spread  across  the  fruit.  In  full
russet  cultivars  of  apples,  russet  is  not  considered  a  flaw  and
research  has  shown  full  russet  fruit  to  have  higher  concentra-
tions of sugar[2], which can be explained by the increased levels
of water loss in fruit with higher levels of russet[3]. In apple culti-
vars that only have partial russet, low levels of russet formation
are  typically  tolerated  but  high  levels  have  been  associated
with increased levels  of  fruit  shrivel  in  storage and predisposi-
tion  to  cracking,  usually  around  the  stem  cavity  and  shoulder
area[3,4].  Field  observations  have  shown  high  levels  of  russet
formation  on  the  lenticels  are  associated  with  higher  levels  of
infected  lenticels.  Infected  lenticels  can  result  in  discolored
lenticels and can also reduce storability,  though there is  a lack
of research on the topic in the literature[4].

Phenotyping partial russet formation can be challenging due
to  the  strong  influence  of  abiotic  and  biotic  environmental
conditions  on  russet  formation  and  the  challenges  associated
with  subjective  visual  ratings.  Several  genomic  regions  asso-
ciated with russet  formation have been previously  reported in
apple[5−12] with  most  having  small  effects  or  being  characte-
rized in a relatively narrow set of germplasm. One study using a
full russet cultivar as a parent reported a large effect of QTL on

linkage group 12[7].  The use of a full  russet cultivar as a parent
suggests  that  for  full  or  extreme  levels  of  russet  formation,
there is  a  single large-effect  genomic region underlying russet
formation.  For  partial  russet  formation,  a  quantitative  trait,
russet  formation  levels  are  likely  controlled  by  many  small-
effect loci throughout the genome.

Genomewide  selection  has  been  reported  as  an  effective
breeding  approach  in  many  crops,  including  for  quantitative
traits in apple[9,10,12−16].  Unlike marker-assisted selection (MAS),
which  relies  on  a  few  markers  associated  with  QTLs,  genome-
wide  selection  uses  hundreds  to  thousands  of  markers  to
predict  performance  (breeding  values).  Genomewide  predic-
tion  models  use  both  the  phenotypic  and  genotypic  data  of
one set of germplasm (a training set) to train a model that can
predict  performance  using  only  genotypic  data  of  another  set
of  germplasm  (a  testing  or  validation  set).  Model  accuracy,
quantified  as  predictive  ability,  is  assessed  by  calculating  the
correlation  between  observed  and  predicted  values.  Genome-
wide  prediction  models  are  most  accurate  when  a  large  train-
ing set is used, the testing and training sets are closely related,
the  trait  has  a  high  heritability  and  marker  coverage  is  suffi-
cient across the genome[17,18].

Four previous genomewide prediction studies have included
partial  russet  formation  on  apple[9,10,12,14].  Average  predictive
abilities  for  genomewide  prediction  models  for  russet  forma-
tion  ranged  from  −0.06  to  0.82[9,10,12,14],  with  most  studies
reporting  moderate  predictive  abilities  of  approximately  0.3.
Previous  studies  did  not  include  germplasm  derived  from
'Honeycrisp',  an  important  US  apple  cultivar  and  breeding
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parent[19−24]. Partial russet formation has been observed in both
the  ancestors  and  progeny  of  'Honeycrisp',  including  its  off-
spring, 'Minneiska' (SweeTango® apple), in conducive environ-
mental conditions. Previous research by Powell et al. has identi-
fied russet formation QTLs in 'Honeycrisp'-derived germplasm[8]

which can enable the investigation of  genomewide prediction
with russet formation QTLs as fixed effects and their impact on
predictive  abilities.  Genomewide  prediction  models  utilizing
fixed  effects  have  not  been  studied  in  relation  to  russet
formation.

In  this  study,  we  investigated  the  utility  of  genomewide
prediction  for  partial  shoulder  and  lenticel  russet  formation  in
'Honeycrisp'-derived breeding germplasm within the context of
the  UMN  apple  breeding  program.  Both  prediction  and  post-
diction  (retrospective  analysis)  were  used  to  determine  how
useful genomewide prediction models would be in a breeding
program  setting.  Here  it  was  hypothesized  that:  1)  use  of
genomewide  prediction  for  russet  formation  in  apple  would
result  in  moderate predictive abilities  as  seen in  other  studies;
2)  inclusion  of  previously  detected  russet  formation  QTLs  as
fixed effects in genomewide prediction models would result in
higher  predictive  abilities;  and 3)  in  a  postdiction analysis,  the
use of genomewide prediction would identify advanced selec-
tions prone to russet formation.

 Materials and methods

 Germplasm and genotypic data
Offspring  from  13  pedigree-connected  full-sib  families  (n  =

1,009 offspring) were evaluated for russet formation levels. The
13  families  were  comprised  of  two  half-sib  families.  Nine
families  had  'Honeycrisp'  as  a  common  parent  and  the  other
four families had 'Minneiska', an offspring of 'Honeycrisp', as the
common  parent.  The  second  parents  of  each  cross  comprised
12  individuals,  either  a  cultivar  or  advanced  selection,  from  a
diverse  set  of  parents  used  in  the  UMN  apple  breeding
program.

Individuals  were  genotyped  using  the  International
RosBREED  single  nucleotide  polymorphism  (SNP)  Consortium
8K  Illumina  Infinium® array  v1[25] or  the  Illumina  Infinium  20K
array[26] and  SNPs  common  to  both  arrays  were  used  for  ana-
lysis  (n  =  2,213).  The  germplasm  and  genotyping  were  pre-
viously  described in  detail  by  Powell  et  al[8].  Further  SNP cura-
tion was done via SNP-QC, a software that (1) imputes missing
marker  data  and  (2)  removes  markers  that  are  monomorphic,
redundant, have too many missing values, or have a low minor
allele  frequency[27].  Parameters  for  SNP-QC  are  reported  in
Supplemental Table S1. The total marker number was reduced
from  2,213  to  947  markers  with  an  average  of  56  markers  per
linkage group (Supplemental Table S1).

For  the  postdiction  analyses,  an  additional  163  advanced
selections were used. Genotyping for these selections followed
the  same  methods  described  in  Powell  et  al.[8].  SNP-QC  was
rerun to include both the training set and advanced selections
and the total markers used in postdiction analyses were 974.

 Phenotypic data
Phenotypic  russet  formation  data  on  the  1,009  unselected

seedlings,  previously  described in Powell  et  al.[8],  were used in
genomewide  prediction  analyses.  For  this  paper,  we  have
summarized  the  results  here  and  family  summaries  for

shoulder  and  lenticel  russet  formation  are  summarized  in
Supplemental  Tables  S2 and S3.  Visual  ratings  were  collected
across  three  years,  2017−2019,  using  a  1−10  scale  with  each
ordinal  value  associated  with  a  bin  of  10%  (i.e.,  1  =  1%−10%
area  affected  by  russet  formation).  Year  effect  had  been
observed[8] and  best  linear  unbiased  predictions  (BLUPs)  were
calculated  and  used  as  phenotypic  values  in  genomewide
prediction  analyses.  BLUPs  are  referred  to  throughout  this
paper,  and  the  study  data  was  collected  and  calculated  in,  as
'russet  ratings'.  Shoulder  russet  ratings  captured  the  propor-
tion of fruit shoulder surface area, which ranged from the edge
of the stem cavity to the body of the fruit that was affected by
russet.  Lenticel  russet  ratings  estimated  the  proportion  of
lenticels  affected  by  russet.  Average  rating  of  2.0  for  shoulder
ratings  (sd  =  1.6,  range  1.0−10.0)  and  4.4  for  lenticel  ratings
(sd = 2.5, range 1.0−10.0) were observed. Russet formation data
are described in detail by Powell et al.[8].

In this study, the severity of lenticel russet formation was also
investigated.  If  an  individual  had  severe  lenticel  russet  in  any
year,  meaning  russet  formation  on  the  lenticel  exceeded  the
immediate area of  and around the affected lenticel,  a  value of
one was added to the lenticel  russet rating to capture an indi-
vidual's  susceptibility  to  developing  severe  lenticel  russet  and
moving  them  up  a  russet  rating  category.  Seventy-one  indivi-
duals  had  severe  lenticel  russet  in  at  least  one  year  of  data
collection and their lenticel russet ratings were adjusted.

 Genomewide prediction
Genomewide  predictions  for  shoulder  and  lenticel  russet

ratings  were  computed  through  models  implemented via
ridge-regression  best  linear  unbiased  prediction  (RRBLUP)
using  the  software,  RRBLUP2[27].  For  shoulder  russet  ratings,
two  genomewide  prediction  models  were  tested:  (1)  all  SNPs
included as random effects and (2) most SNPs were included as
random effects while SNPs at previously detected russet forma-
tion  QTL  regions[8] were  included  as  fixed  effects.  Significant
SNPs within the QTL regions were identified and chosen using
the  output  generated  by  RRBLUP2  for  the  random  effect
models.  RRBLUP2  generates  the  effect  each  SNP  has  for  every
prediction model.  SNPs within the QTL region with the largest
absolute SNP effect value were chosen. For both LG2 and LG6,
the  SNP  chosen  had  the  largest  or  were  tied  for  the  largest
absolute SNP effect value within the QTL region for all random
effect  prediction  models.  An  unpublished  modified  version  of
RRBLUP2,  which  enables  the  inclusion  of  fixed  effects,  was
utilized to compute the model with fixed effects. The two SNPs
chosen to be fixed effects were called in the parameter files and
the  software  removed  them  before  calculating  the  random
effects.  As  no  large-effect  QTLs  associated  with  lenticel  russet
formation have been reported[8], a model that included all SNPs
as  random  effects  was  used  for  genomewide  predictions  of
lenticel russet.

For  each  genomewide  prediction  model,  a  single  untested
family  was  used  as  the  testing  set.  This  procedure  replicated
scenarios  often  seen  in  the  UMN  apple  breeding  program
where  half-siblings  or  more  distantly  related  material  are  the
only available related germplasm for phenotyping. Three diffe-
rent  types  of  training  sets  were  used:  (1)  All  =  all  breeding
germplasm  minus  the  test  family;  (2)  Honeycrisp  =  all  'Honey-
crisp'-derived families  minus the test  family;  and (3)  Minneiska
=  all  'Minneiska'-derived  families  minus  the  test  family.  Each
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family  was  used  as  a  testing  set  in  at  least  two  training  set
scenarios.  Each  family  was  used  as  a  testing  set  for  'All'  and
'Honeycrisp'  training  sets.  The  four  Minneiska-derived  families
were also used in a genomewide prediction model where each
family  was  used  as  a  testing  set  using  the  other  'Minneiska'-
derived  families  as  a  training  set.  Predictive  abilities  were
quantified  as  the  Pearson  correlation  coefficient  (r)  between
observed  and  predicted  russet  ratings  in  the  testing  set.  A
complete  list  of  all  genomewide  prediction  models  examined
with  a  summary  of  testing  and  training  sets  is  described  in
Supplemental Table S4.

 Postdiction
Retrospective  analyses  (i.e.,  postdiction)  were  conducted  to

determine if genomewide prediction would have enabled iden-
tification  of  advanced  selections  prone  to  russet  formation  in
University of  Minnesota's  apple breeding program in compari-
son  to  traditional  phenotypic  selection.  Russet  ratings  were
predicted  for  163  advanced  selections  using  all  unselected
offspring  (n  =  1,009)  as  the  training  set.  Field  notes  on
advanced  selections  were  composed  of  an  overall  score  (0−9)
and/or  notes  on  russet  formation  which  were  then  translated
into an estimated shoulder russet rating (1−10).

Assessment  of  postdiction  analyses  was  conducted  by
comparing  2021  and  2022  breeder  field  notes  (i.e.,  consensus
ratings  from  breeder  personnel)  to  predicted  values  for  a
subset of advanced selections with (n = 76). Due to the nature
of  the postdiction analysis  (e.g.,  different years  for  data collec-
tion,  different  assessment  methods  for  russet  formation,  etc.),
comparisons  were  made  on  a  broad  basis  by  independently
categorizing individuals as having 'high' or 'low' levels of russet
formation.  Categorization  of  'high'  and  'low'  was  conducted
using the mean of each population as the 'high'/'low' threshold.
The mean russet rating for the 76 advanced selections based on
breeder field notes was 2.2 (range = 1.0−7.0) and therefore 2.2
was used as the threshold to categorize advanced selections as
having  'high'  or  'low'  levels  of  observed  russet  formation
(Supplemental  Table  S5).  Predicted  values  for  advanced  selec-
tions  were  also  independently  used  to  categorize  advanced
selections  as  having  'high'  or  'low'  levels  of  predicted  russet
formation based on the average predicted russet rating.  Mean
russet  ratings for  genomewide prediction values,  using the All
germplasm  training  set,  was  2.0  (range  =  0.1−4.0)  and  there-
fore 2.0 was used as the threshold to categorize individuals  as
having  'high'  or  'low'  levels  of  predicted  russet  formation.  To
assess if genomewide prediction would have affected the accu-
rate categorization of russet formation levels,  a chi-square test
was  performed.  The  null  hypothesis  was  that  genomewide
prediction used retrospectively would not have had an impact
on  categorization  accuracy  and  individuals  would  have  been
evenly  categorized  into  'high'  and  'low'  bins  regardless  of
phenotypic  values.  Lenticel  russet  formation  was  not  investi-
gated  as  lenticel  russet  was  not  specifically  considered  in  the
breeder field evaluations and no postdiction analyses could be
done.

 Assessment of models for breeding purposes
Sensitivity analyses for both prediction and postdiction were

conducted  to  assess  the  effects  of  culling  thresholds  and
genomewide  prediction  models  on  culling  intensity  and
accuracy.  Accuracy  was  quantified  as  the  proportion  of  indi-
viduals  correctly  classified  in  'keep'/'cull'  categories  that  are

dependent upon culling thresholds. Two types of misclassifica-
tions  were  calculated  and  referred  to  as  Type  A  and  Type  B
errors.  A  Type A  error  described the  event  when an individual
was  culled  based  on  predicted  values  but  would  have  been
kept  based  upon  phenotypic  selection.  A  Type  B  error  was
when  an  individual  was  kept  based  on  predicted  values  but
would have been culled based on phenotypic selection. Culling
thresholds  for  shoulder  russet  formation  were  assessed  using
the  University  of  Minnesota's  apple  breeding  program  stan-
dards (maximum allowance of shoulder russet formation ~20%)
with  two  less  stringent  categories  also  assessed  for  cases  of
multiple  trait  selection  in  which  flexibility  of  threshold  is
required to accommodate higher priority traits. Culling thresh-
olds tested for shoulder russet formation were 2.0, 2.5, and 3.0.
Since  this  is  the  first  investigation  of  lenticel  russet  formation,
culling  thresholds  evenly  distributed  across  the  phenotyping
range was used. Culling thresholds of 2.5, 5.0, and 7.5 for lenti-
cel russet formation were tested.

To compare genomewide selection to marker-assisted selec-
tion  for  shoulder  russet  formation,  marker-assisted  selection
was included in the above sensitivity test. In this study, marker-
assisted  selection  for  russet  formation  was  based  on  alleles  at
QTLs  identified  in  Powell  et  al.[8].  Powell  et  al.[8] reported  that
the  presence  of  two  LOW  alleles  was  associated  with  lower
shoulder  russet  formation,  regardless  of  the  other  alleles
present[8].  Therefore,  individuals  with  fewer  than  two  LOW
alleles  across  the  LG2  and  LG6  QTLs  would  have  been  culled
based on marker-assisted selection.

 Results

 Genomewide prediction
Moderate predictive abilities (mean r = 0.28−0.35) were esti-

mated  for  both  shoulder  and  lenticel  russet  formation  across
models  and  training  sets  (Table  1, Supplemental  Tables  S2 &
S3).

 Random effects model
Mean predictive abilities for shoulder russet formation using

the random effects model were 0.33 for the All training set, 0.30
for  the  Honeycrisp  training  set,  and  0.28  for  the  Minneiska
training  set  (Table  1, Supplemental  Table  S2).  When  using  the
All  germplasm  training  set,  the  test  families  with  the  highest
predictive  abilities  were  'Honeycrisp'  ×  MN1964  (r  =  0.60)  and
'Honeycrisp'  ×  'Jonafree'  (r  =  0.58)  whereas  the  test  families
with  the  lowest  predictive  abilities  were  'Honeycrisp'  ×  AA44
(r  =  0.12),  'Honeycrisp'  ×  MN1915  (r  =  0.15),  'Honeycrisp'  ×
MN1836 (r = 0.18), and 'Minneiska' × 'Wildung' (r = 0.18). Predic-
tive  abilities  for  'Honeycrisp'-derived  families  were  consistent
between  training  sets  and  each  of  the  training  sets  predictive
abilities were within 0.05 of the All training set predictive abili-
ties  per  family.  'Minneiska'-derived  families  tended  to  have
lower  predictive  abilities  when  using  the  Honeycrisp  germ-
plasm  training  set  compared  to  using  the  All  or  Minneiska
germplasm training set (Supplemental Table S2).

Predictive  abilities  for  lenticel  russet  formation  were  similar
across training sets and were 0.34 using the All training set, 0.30
for  the  Honeycrisp  training  set,  and  0.35  for  the  Minneiska
training  set  (Table  1, Supplemental  Table  S3).  When  using  the
All  germplasm  training  set,  the  families  with  the  highest  pre-
dictive  abilities  were  'Minneiska'  ×  MN1702  (r  =  0.53),
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'Honeycrisp'  ×  MN1836  (r  =  0.49),  and  'Honeycrisp'  ×
'Minnewashta'  (r  =  0.47).  The  families  with  the  lowest  predic-
tive abilities were 'Honeycrisp' × 'WA 2' (r = 0.23), 'Honeycrisp' ×
MN1702  (r  =  0.25),  'Honeycrisp'  ×  MN1764  (r  =  0.26),  and
'Minneiska' × MN1965 (r = 0.26).

 Fixed effects
The  inclusion  of  SNPs  at  shoulder  russet  formation  QTLs  as

fixed  effects  in  genomewide  prediction  models  often  did  not
result  in  significantly  different  predictive  abilities  (Table  1,
Supplemental  Table  S2).  The  predictive  abilities  for  shoulder
russet  formation ranged from 0.08 to  0.62 when russet  forma-
tion  QTL  SNPs  were  included  as  fixed  effects.  Predictive  abili-
ties of models that included SNPs at QTLs as fixed effects were
higher  by  a  maximum  of  0.10  ('Honeycrisp'  ×  'Jonafree')  and
lower  by  a  maximum  of  0.16  ('Minneiska'  ×  'MN55')  compared
to  the  random  effects  genomewide  prediction  models.  Mean
predictive  abilities  for  shoulder  russet  formation  using  a  fixed
effect model were 0.33 using the All training set, 0.31 using the
Honeycrisp  training set,  and 0.35  using the Minneiska  training
set. Similar to the results for the random effects model, predic-
tive  abilities  for  shoulder  russet  formation  using  a  fixed  effect
model  for  'Honeycrisp'-derived  families  were  similar  between
the  All  training  set  and  Honeycrisp  training  set.  'Minneiska'-
derived  families  also  tended  to  have  lower  predictive  abilities
when  using  the  Honeycrisp  germplasm  training  set  when
compared to using the Minneiska or All germplasm training set
(Supplemental Table S2).

 Postdiction
Of the 76 advanced selections, 43 (57%) had matching cate-

gorizations  of  'high'  or  'low'  russet  formation  across  predicted
and observed russet ratings. Twenty advanced selections were
categorized  as  having  high  levels  of  observed  russet  ratings
based  on  breeder  field  notes  and  56  were  categorized  as
having  low  levels  of  observed  russet  ratings.  Forty-three
advanced  selections  were  predicted  to  have  high  levels  of
russet ratings and 31 were predicted to have low russet ratings.
In  43  advanced  selections,  predicted  and  observed  russet
formation categorizations were the same. Five advanced selec-
tions  had  prediction  categorizations  that  underestimated  the
level  of  russet  formation  and  18  advanced  selections  had
prediction  categorizations  that  overestimated  the  level  of
russet  formation  (Supplemental  Table  S5).  Chi-square  analysis
(Supplemental  Table  S6)  rejected  the  null  hypothesis  that

genomewide  prediction  would  not  have  had  an  impact  on
categorization  accuracy  (i.e.,  that  individuals  were  randomly
categorized into 'high' and 'low' bins).

Thirty-four  of  the  76  advanced  selections  have  been  previ-
ously  used  as  parents,  with  26  of  them  having  low  levels  of
observed  russet  formation  in  breeder  field  notes.  Of  those  26,
13 parents were predicted to have high levels of russet forma-
tion. One of those 14 parents, was released as a cultivar, 'MN80'.
While 'MN80' was predicted to have high levels of russet forma-
tion, the breeder field notes categorized it as having low levels
of russet formation.

 Sensitivity analysis
For shoulder russet formation, marker-assisted selection and

genomewide  selection  resulted  in  the  same  number  of  indivi-
duals being culled (n = 461) when the culling threshold was 2.0,
whereas selection based on phenotypic values would have only
culled  302  individuals.  The  two  DNA-based  selection  methods
agreed  for  62%  of  individuals  to  be  culled  (Table  2).  When
compared to marker-assisted selection,  genomewide selection
showed  a  reduction  in  Type  A  misclassifications  at  all  culling
thresholds. Type A misclassifications are individuals that would
have  been  kept  based  on  phenotypic  values  but  were  culled
based  on  predicted  values  (Table  2).  Type  B  misclassifications,
or individuals that were kept based upon predicted values but
would  have  been  culled  based  upon  phenotypic  values,  were
consistent  across  (within  1.8%)  culling  thresholds  and  predic-
tion  platforms.  As  the  culling  threshold  increased,  overall
misclassifications  decreased.  For  lenticel  russet  formation,
genomewide  selection  followed  a  similar  misclassification
trend  as  with  shoulder  russet  formation  errors.  Since  no  QTLs
were  previously  reported,  marker-assisted  selection  could  not
be examined.

Depending  on  the  culling  threshold,  between  76  and  146
(46%−90%) of advanced selections (n = 163) would have been
retained  based  on  predicted  values  for  shoulder  russet  when
using  genomewide  selection.  Seventy-three  (56%)  of  the
advanced  selections  (n  =  130)  would  have  been  kept  using
marker-assisted  selection  results.  For  the  advanced  selections
that had QTL haplotype information,  marker-assisted selection
and genomewide selection were in agreement for 89 individu-
als.  When  using  genomewide  selection  for  lenticel  russet
formation,  14−150 (9%−92%) advanced selections would have
been kept depending on culling threshold (Table 2).

 

Table 1.    Summary of genomewide prediction for shoulder and dual lenticel russet ratings.

Traita Training setb Fixed effectsc Mean predictive ability (r)d SDe Minimumf Maximumg

Shoulder All families No 0.33 0.15 0.12 0.60
Honeycrisp-derived families 0.30 0.15 0.11 0.57
Minneiska-derived families 0.28 0.15 0.09 0.46
All families Yes 0.33 0.15 0.10 0.62
Honeycrisp-derived families 0.31 0.15 0.09 0.58
Minneiska-derived families 0.35 0.18 0.08 0.48

Lenticel All families No 0.34 0.10 0.23 0.53
Honeycrisp-derived families 0.30 0.11 0.11 0.47
Minneiska-derived families 0.35 0.10 0.26 0.46

a Shoulder  russet  ratings  and  the  dual  lenticel  russet  ratings; b Three  training  sets  were  used:  (1)  all  breeding  germplasm  minus  untested  family,  (2)  all
'Honeycrisp'-derived families minus untested family, and (3) all 'Minneiska'-derived families minus untested family; c Fixed effect model included two SNPs at
the previously reported LG2 and LG6 shoulder russet QTLs[8] as fixed effects; d Correlation between observed and predicted values using Pearson correlation
averaged  across  testing  set  families; e Standard  deviation  of  r  all  runs  for  each  trait-training-model  set; f Minimum  r  within  each  trait-training-model  set;
g Maximum r within each trait-training-model set.
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 Discussion

This  is  the  first  report,  to  our  knowledge,  of  genomewide
prediction  targeting  russet  formation  in  'Honeycrisp'-derived
germplasm.  'Honeycrisp'  is  an  important  breeding  parent  that
is  commonly  used  in  major  apple  breeding  programs[19−21]

throughout  the  US  due  to  its  revolutionizing  crisp  texture.
'Honeycrisp'  also  has  a  unique  ancestral  background[24] which
has not been previously studied in the context of russet forma-
tion.  Moderate  predictive  abilities  (~0.30)  for  genomewide
prediction  were  estimated  with  no  significant  differences
between  random  effect  models  and  models  with  previously
reported QTL included as fixed effects.

 Predictive abilities for russet formation in this
study were consistent with other studies

Predictive  abilities  in  this  study  (r  =  0.08−0.62)  were  consis-
tent  with  other  genomewide  prediction  studies  (r  =  0−0.38)
that  examined  russet  formation.  The  exception  was  Kumar  et
al.[9] that  reported very high predictive abilities  (r  = 0.84−0.96)
for  genomewide  prediction  of  russet  formation.  The  reasons
are  unclear  for  the  higher  predictive  abilities  in  the  Kumar  et
al.[9] study  but  possible  reasons  for  high  predictive  abilities
include:  high  levels  of  relatedness  between  the  training  and
testing sets, heritability of russet formation in their germplasm,
the  environment  might  have  been  more  conducive  to  russet
formation, and the use of full russet parents.

 Predictive abilities varied among and between
different training sets

For  shoulder  russet  formation,  we  typically  observed  higher
predictive  abilities  in  families  that  had  larger  standard  devia-
tions  (i.e.,  'Honeycrisp'  ×  MN1764)  and  generally  saw  minimal
increases  in  predictive  abilities  when using the All  training set
when  compared  to  models  that  used  only  half-sibs  to  predict
other half-sibs. Testing families that had smaller standard devia-
tions  and  ranges  in  their  phenotypic  data  (i.e.,  'Minneiska'  ×
'Wildung')  had  in  general  the  lowest  predictive  abilities.  The
observation  of  a  smaller  phenotypic  range  producing  lower
predictive  abilities  suggests  that  the  model  was  over-predic-
ting russet formation in families that had low levels of observed

russet.  The  lack  of  significant  difference  in  predictive  abilities
between half-sib (Honeycrisp and Minneiska training sets)  and
the  All  training  set  is  most  likely  due  to  pedigree  connections
among  the  non-'Honeycrisp'  and  -'Minneiska'  parents.  Most  of
the second parents had pedigree connections to other second
parents or to 'Honeycrisp' and 'Minneiska'.

For  lenticel  russet  formation,  the  highest  predictive  abilities
were achieved when using the All  training set,  most likely due
to  the  increase  in  training  set  size.  Five  families  did  perform
best  when  using  other  half-sibs  only.  These  families  did  not
significantly  differ  from  other  testing  families  regarding  their
phenotypic  ranges  or  standard  deviations,  suggesting  that  an
increase in relatedness was more impactful on predictive abili-
ties than an increase in training set size for these families.

 Inclusion of fixed effects did not improve
predictive ability for shoulder russet formation

Predictive  abilities  were  not  significantly  different  among
genomewide  prediction  models  that  used  all  SNPs  as  random
effects and models that included SNPs with fixed effects. This is
consistent  with  previous  findings  that  the  inclusion  of  fixed
effects  in  genomewide  prediction  models  do  not  significantly
improve  prediction  unless  the  QTLs  have  a  large  effect,
accounting for at least 10% of the genetic variation[28]. The two
QTLs included as fixed effects, when combined, explained only
12%  of  the  phenotypic  variation  within  this  population[8] and
likely did not have large enough effects to result in significantly
higher  predictive  abilities.  It  is  also  possible  that  one  SNP  per
QTL region was  insufficient  to  capture  all  the  variations  found
within  that  region.  Powell  et  al.[8] used  several  SNPs  across
both  QTL  regions  to  capture  haplotype  effects  within  this
germplasm.

 Genomewide prediction could be useful to help
breeders identify advanced selections prone to
russet

In  this  study,  genomewide  prediction  identified  28  selec-
tions  potentially  prone  to  russet.  Breeders  had  not  observed
significant  russet  formation on these  28  selections  during two
years  of  advanced  clonal  testing.  Possible  overestimation  of

 

Table 2.    Comparison of culling using genomewide selection (GS) at different thresholds and marker-assisted (MAS) for shoulder russet and genomewide
selection at different thresholds for lenticel russet formation.

Model – Traita Testing setb Culling criteria Cull (n) Keep (n) Type A error (%)c Type B error (%)d

GS – Shoulder Full-sib families Over 2.0 461 548 26.0 10.2
Over 2.5 248 761 15.0 10.8
Over 3.0 105 906 7.1 11.5

MAS – Shoulder < 2 LOW alleles 461 548 28.2 9.7
GS – Lenticel Over 2.5 885 124 22.6 7.1

Over 5.0 331 678 17.0 21.1
Over 7.5 13 996 0.9 14.4

GS – Shoulder Selections Over 2.0 87 76 – –
Over 2.5 47 116 – –
Over 3.0 17 146 – –

MAS – Shoulder* < 2 LOW alleles 57 73 – –
GS – Lenticel Over 2.5 149 14 – –

Over 5.0 63 100 – –
Over 7.5 13 150 – –

a Model comparison between genomewide selection (GS) with all  markers as random effects using the all  training set and marker-assisted selection (MAS);
targeted  traits  were  shoulder  russet  formation  and  lenticel  russet  formation; b Germplasm  used  in  the  testing  set;  Breeding  =  all  13  'Honeycrisp'-  and
'Minneiska'-derived families were used as a testing family (n = 1,009); Selections = all advanced selections (n = 163), * Only 130 individuals were assessed for
MAS due to unresolved QTL alleles; c Type 1 error defined as individuals that were culled based upon predicted values but would have been kept based upon
observed values; d Type 2 error defined as individuals that were kept based upon predicted values but would have been culled based upon observed values.
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russet  formation  by  genomewide  prediction  models  might
have  been  due  to  differences  in  the  rating  systems  for  data
collection, lower levels of relatedness between advanced selec-
tions and the full-sib training set, or lack of conducive and simi-
lar environments between the years of data collection. Another
explanation of the assumed overestimation of predicted russet
ratings  is  that  the  model  could  be  correctly  estimating  the
propensity for high levels of russet formation to occur on these
advanced  selections.  The  environmental  conditions  during
phenotypic  data  collection  may  have  not  been  conducive  for
high  levels  of  russet  formation  and  therefore  causing  a
disagreement between predicted and observed values.

 Breeding implications
Russet formation is a complex trait that will continue to be a

challenging breeding target until  we can accurately assess the
susceptibility to russet, or until we can ascertain the true bree-
ding  values  of  the  trait.  Calculating  the  true  breeding  values
would  require  capturing  all  genetic  variation  in  an  environ-
ment  conducive  to  russet  formation.  The  moderate  predictive
abilities  observed  for  both  shoulder  and  lenticel  russet  forma-
tion allow for the utilization of genomewide selection in apple
breeding programs.

If  genomewide  selection  for  shoulder  russet  was  employed
in  the  University  of  Minnesota's  apple  breeding  program  or
other related breeding germplasm with similar distributions of
shoulder russet formation, a reduction in misclassification error
would  be  seen  when  compared  to  marker-assisted  selection
using QTLs identified in Powell  et al.[8] (Table 2).  In germplasm
more  distantly  related,  genomewide  selection  could  be
employed  to  predict  shoulder  russet  formation  but  might  be
less  cost-effective  than  marker-assisted  selection  unless  a
breeder is  already using genomewide selection for other traits
and has genotypic data.

Although lenticel  russet  formation is  not  well-studied,  there
have  been  field  observations  of  increased  levels  of  infected
lenticels  associated  with  higher  levels  of  lenticel  russet  forma-
tion,  which  can  affect  long-term  storability.  This  study  is
currently  the  only  study  to  investigate  and  report  an  effective
DNA-informed  breeding  strategy  for  lenticel  russet  formation.
Further  investigations  into  the  association  between  lenticel
russet  formation  levels  and  infected  lenticels  could  better
inform breeders on optimal thresholds for selection criteria.

An advantage of DNA-informed breeding is the reduction in
required  phenotyping  especially  for  traits  that  do  not  have
high-throughput  phenotyping methods,  such as  russet  forma-
tion.  To  date,  there  has  been  one  laboratory  study  that  has
reported a method of high-throughput phenotyping for russet
formation in Asian pears[29].  While both genomewide selection
and marker-assisted selection have misclassification errors,  the
benefit of reduction in phenotyping costs must also be consid-
ered.  For  phenotypic  selection  on  russet  formation  to  occur,
each tree must reach fruiting maturity (5−10 years) and have a
fruiting season that occurs within a year and/or a location that
is  conducive  to  russet  formation.  With  knowledge  from
genomewide  prediction,  a  breeder  could  modify  testing  envi-
ronments  or  protocols  to  confirm  susceptibility  or,  ultimately,
deploy a cultivar only in locations with low russet incidence.

While  this  study  focused  solely  on  russet  formation  traits,
breeding programs simultaneously target multiple traits at diffe-
ring prioritization levels. Within the context of the University of

Minnesota's  apple  breeding  program,  russet  formation,  which
is  undesirable,  has  become a  trait  with  increasing importance.
Apple  breeders  with  other  priorities  and  breeding  targets
might view russet formation similarly or as desirable. Moderate
predictive abilities  reported here highlight the potential  utility
that  genomewide  prediction  can  have  for  russet  formation  in
apple.
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