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Abstract
Interspecific hybridization in Vitis holds immense potential for combining valuable adaptive traits and breeding superior cultivar development.

To evaluate the feasibility of hybrid breeding using the resilient wild species Vitis adenoclada and the commercially successful cultivar V. vinifera
'Shine  Muscat',  their  signatures  of  hybridization,  genetic  divergence,  and divergent  selection  were  investigated.  Analyses  of  28  resequencing

genomes revealed pronounced genetic differentiation between these two lineages and corroborated the hybridization event within a derived

progeny.  Notably,  'Shine  Muscat'  exhibited  stronger  genome-wide  selection  signals,  reflecting  its  intensive  breeding  history.  While  divergent

selection signatures associated with disease resistance were evident in both species, V. adenoclada displayed enrichment in pathways linked to

abiotic stress resistance.  Furthermore,  while 'Shine Muscat'  displayed potentially mitigated deleterious mutations compared to V.  adenoclada,

their  hybrid  offspring  exhibited  an  accumulation  of  heterozygous  deleterious  alleles,  emphasizing  the  crucial  need  for  monitoring  such

mutations in future breeding endeavors. Collectively, the findings unveil the significant genetic divergence and contrasting adaptations between

V.  adenoclada and  'Shine  Muscat',  highlighting  their  immense  potential  for  breeding  next-generation  cultivars  with  enhanced  resilience  and

superior quality.
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Introduction

Cultivated  for  millennia,  grapevines  (2n  =  2x  =  38)  rank
among the earliest documented examples of plant domestica-
tion, dating back approximately 22,000 years[1]. Grapevines play
a crucial role not only in human health but also in maintaining
ecological  diversity.  Covering  over  75,866  square  kilometers
globally  (Food  and  Agriculture  Organization  of  the  United
Nations,  2021),  grapevines  stand  as  one  of  the  world's  four
major  fruit  tree  crops.  Driven  by  this  importance,  advance-
ments  in  sequencing  technology  have  spurred  the  de  novo
assembly and analysis  of  numerous grape genomes,  including
those of cultivated varieties like 'Cabernet Sauvignon'[2], 'Caber-
net  Franc'[3],  'Carmenere'[4],  'Chardonnay'  ,  'Shine  Muscat'[5],  as
well as wild grape species such as V. riparis[6], V. rotundifolia[7], V.
amurensis[8], and V. adenoclada[9]. By elucidating these genomic
landscapes,  researchers  aim  to  propel  both  hybrid  breeding
and population genetics research.

Leveraging  genome  assembly,  whole  genome  sequencing
(WGS) and population genomics, significant progress has been
made  in  understanding  the  grapevine  genetic  characteristics.

For instance, a study analyzing 472 individuals identified selec-
tion  signals  linked  to  population  demographic  history,  fruit
edibility,  and  stress  resistance,  while  also  pinpointing  candi-
date  genes  associated  with  fruit  shape  and  other  traits[10].
Another study explored the functional impact of chromosomal
structural  variation,  demonstrating  how  an  inversion  on  chro-
mosome 2 influences grape sex and skin color, highlighting the
importance  of  such  variations  in  domestication[11].  Further-
more,  analysis  of  3,304  WGS  data  provided  insights  into  two
distinct grape domestication events, characterizing both gene-
tic diversity and domestication signatures[12]. However, despite
these advancements, research has primarily focused on under-
standing  grape  traits  and  their  domestication  history,  with
limited  exploration  of  population  genomic  studies  in  grape
hybrid breeding.

'Shine  Muscat',  a  popular  interspecific  hybrid  grape  (V.
labrusca × V.  vinifera)  originating  from  Japan,  has  gained
widespread cultivation, particularly in China[13]. This table grape
cultivar  is  renowned  for  its  large,  yellow-green  berries  with
crisp flesh,  distinct  muscat  flavor,  high sugar  content,  and low
acidity[5].  In  contrast, V.  adenoclada Hand.  Mazz.,  a  wild  grape
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species  native  to  China  thrives  in  the  regions  south  of  the
Yangtze River[9,14]. This species exhibits remarkable resilience to
high  temperatures,  humidity,  fungal  diseases,  drought,  and
poor  soil  conditions[15].  It  is  also  rich  in  phenolic  acids  and
flavanols, and has played a key role in Guangxi Province's grape
industry  by  enabling  the  cultivation  of  excellent  varieties  and
establishing  a  thriving  winemaking  tradition  in  China[9].  The
desirable phenotypic traits of both 'Shine Muscat' and V. adeno-
clada make  them  valuable  parental  candidates  for  further
breeding endeavors.

Hybridization is of great significance for crop breeding, espe-
cially  in  the  current  era  of  smart  crop  breeding  4.0[16].  Grape
hybridization  allows  for  the  development  of  new  grape  varie-
ties  with  improved  characteristics  such  as  disease  resistance,
yield,  flavor,  and  adaptability  to  different  climates  and  soil
conditions. Hybridization between 'Shine Muscat' and V. adeno-
clada may  play  a  crucial  role  in  grape  breeding  by  facilitating
the integration of favorable traits and increasing genetic diver-
sity.  Currently,  it  is  widely  suggested  that  numerous  genera-
tions  of  domestication  and  breeding  might  cause  the  altera-
tion  of  deleterious  mutations,  which  have  the  potential  to
affect  the  general  fitness  of  organisms[17,18].  Various  ways  of
propagation during breeding, such as crossing, selfing, or even
apomicts,  will  have  different  effects  for  deleterious  load
accumulation[19].  Therefore,  it  is  interesting  to  figure  out  what
hybridization could do to the genetic load of offspring.

In  this  study,  28  accessions  were  obtained  that  consist  of
cultivated  'Shine  Muscat'  varieties,  wild  species V.  adenoclada,
and their one progeny. We aimed to explore the specific charac-
teristics  among  these  accessions,  including  the  genetic  struc-
ture,  genetic differentiation,  selected loci,  and genetic burden.
The present study will serve as a foundation for the sustainable
development  of  the  grape  industry  and  the  improvement  of
grape varieties. 

Materials and methods
 

Sample collection
In  total,  28  whole  genome  sequencing  (WGS)  individuals

were used in this study. There are 13 samples originated from a
common  garden  in  Guangxi  Province,  China,  comprising  11
wild V.  adenoclada accessions  (ADE1-ADE11;  collected  from  a
wild population in Nanning, Guangxi, China), two V. labrusca ×
V.  vinifera 'Shine  Muscat'  accession  (MUS1,  MUS7),  and  one
hybrid offspring accession (HYB1) through hybridizing V. adeno-
clada (ADE1)  and  'Shine  Muscat'  (MUS1).  Besides,  nine  wild V.
adenoclada accessions  (ADE12-ADE20)  were  collected  in
Guangdong  Province,  China.  These  samples  were  all  newly
sequenced in this study. Besides, five 'Shine Muscat' accessions
(MUS2−MUS6)[5] data  were  downloaded  from  the  National
Center for  Biotechnology Information (NCBI).  All V.  adenoclada
accessions  were  clustered  into  the  ADE  group  below,  and  all
'Shine  Muscat'  accessions  were  regarded  as  members  of  the
MUS group. This diverse sample composition enables investiga-
tion  and  potential  elucidation  of  the  genetic  relationships
between these two Vitis species and their hybrid offspring. 

Sequencing and variants calling
The  genomic  DNA  of  all  samples  was  isolated  from  leaf

tissues  using  the  Qiagen  Dneasy  plant  kit.  Adhering  to  the

Illumina  library  construction  protocol,  paired-end  sequence
libraries  were  constructed  with  an  insert  size  of  300−400  bp.
Libraries  were  then  sequenced  using  Illumina  NovaSeq  6000
with  2  ×  150  bp  paired-end  reads.  The  raw  sequencing  data
newly generated in this study have been deposited in the NCBI
with the BioProject ID of PRJNA1082482.

After  sequencing,  fastp (v0.23.2)[20] was utilized with default
parameters  to  filter  out  the  adapters  and  low-quality  reads.
Then, the trimmed high-quality reads were aligned to the PN_
T2T  reference  genome[21] with  BWA-MEM  algorithm  (v0.7.17-
r1188)[22],  with  duplicated  reads  sorted  and  removed  by
SAMtools (v1.13)[23].  The 'vc' function implemented in GTX was
used  for  single  nucleotide  polymorphism  (SNP)  and  genotype
calling for all 28 samples[22]. After gaining the gvcf file for each
sample,  the  'joint'  function  in  GTX  was  used  to  join  SNPs
together.  Finally,  we  used  VCFtools  (v0.1.16)  to  reduce  false
positives  with  parameters:  '-minGQ  20 -min-alleles  2 --max-
alleles  2 -maf 0.001 -max-missing 0.8'.  These parameters  entail
removing  SNPs  with  quality  scores  lower  than  20,  eliminating
SNP sites containing more or fewer than two alleles, restricting
the  minimum  allele  frequency  to  0.001,  and  discarding  SNPs
with over 20% missing genotypes across all samples.[24]
 

Population structure
To  construct  a  phylogenetic  tree,  admixture  analysis,  and

principal  component  analysis  (PCA),  PLINK  (v1.90b6.21)  with
parameter  '--indep-pairwise  50  10  0.5'  further  filter  Linkage
Disequilibrium  (LD)  SNPs  was  used[25].  The  phylogenetic  tree
was  conducted  by  FastTree  (v2.1.10)  with  general  time  rever-
sible  models,  and  the  resulting  tree  was  visualized  using  the
online  tool  iTOL  (Interactive  Tree  of  Life  v3, https://itol.embl.
de)[26].  Individual  admixture  proportions  were  estimated using
ADMIXTURE  (v1.3, https://github.com/stevemussmann/admix-
turePipeline)  with  K  ranging  from  2  to  4[27].  Principal  compo-
nent analysis  (PCA)  was performed by PLINK (v1.90b6.21)  with
parameter  '--pca'.  Identity-by-descent  (IBD)  was  calculated
among  all  28 Vitis accessions  using  PLINK.  To  visualize  the
patterns  of  IBD  sharing,  networks  were  generated  using
Cytoscape (v3.6.0, www.cytoscape.org). 

Selection analysis
Selscan (v1.2) with the default settings was used for calcula-

ting  XP-EHH  values  of  SNPs,  which  could  specifically  identify
ongoing or nearly fixed selective sweeps by contrasting haplo-
types  between  two  populations[28].  The  principle  of  XP-EHH
(cross-population  extended  haplotype  homozygosity)  selec-
tion signal detection is based on the difficulty of breaking exis-
ting  mutation  segments  due  to  linkage  disequilibrium,  while
new mutations require a longer selection period to reach a high
gene frequency. Therefore, when a certain haplotype segment
appears  at  a  high  frequency  in  a  population,  it  indicates  that
the gene segment has undergone selection and can be identi-
fied  using  the  XP-EHH  selection  signal  method.  When  calcula-
ting XP-EHH, 'Shine Muscat' population (MUS) was used as refe-
rence population. SNPs with XP-EHH scores greater than 2 and
located in the top 1% were considered significantly selected in
V. adenoclada (ADE), while those with scores less than −2 and in
the bottom one percent were considered significantly selected
in  'Shine  Muscat'.  Windows  were  defined  as  20  kb,  and  the
mean XP-EHH scores were calculated by the selscan norm func-
tion for each window. 
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Gene Ontology enrichment
Gene  Ontology  enrichment  (GO)  analyses  were  conducted

using  the  DAVID  online  platform  (https://david.ncifcrf.gov/
tools.jsp).  Initially,  all  protein sequences from the PN_T2T refe-
rence genome were aligned to the Swissport protein database
(https://ftp.ncbi.nlm.nih.gov/blast/db/FASTA/swissprot.gz)  by
diamond blastp[29] command, and the whole genome success-
fully blasted genes were considered background genes. Genes
under selection were regarded as target genes, and submitted
to  the  DAVID  website  for  gene  function  annotation,  allowing
for the examination of gene function and enrichment pathway
results. 

Population deleterious mutations
Candidate  deleterious  alleles  were  identified  using  SIFT4G

(sorting  intolerant  from  tolerated)[30].  Before  annotation,  we
phased our SNP dataset by Beagle (v5.4),  then flipped it based
on  the  ancestral  populations Muscadinia running  Model  1  in
the  superSFS  (https://github.com/xhchauvet/superSFS)  script
with parameter 3.  Model 1 means only speculate the ancestral
allel and output new vcf file using speculated allel as reference.
Used PN_T2T genome and annotation to make a SIFT database
with  SIFT  (https://github.com/pauline-ng/SIFT4G_Create_
Genomic_DB) predictions, which were applied to annotate the
SNP  files.  A  nonsynonymous  position  with  a  SIFT  score  below
0.05 was deemed as potentially deleterious SNPs. 

Results
 

Sequencing quality and SNPs statistics
Following  variant  detection  and  strict  filtering  processes,  a

collection  of  22,072,042  high-quality  single  nucleotide  poly-
morphisms (SNPs) was retained from the 28 Vitis accessions for
subsequent analyses. The whole-genome resequencing data in
the present study had an average depth of 47 ×. And there are
23  samples  newly  sequenced,  which  ranged  from  17.52  giga-
bases  (Gb)  to  24.06  Gb.  The  base  pair  mapping  rates  for  the
ADE  and  MUS  groups  were  consistently  high,  spanning  from
80.59%  to  98.92%,  with  the  majority  exceeding  96%.  A  higher
number  of  SNPs  were  observed  within  the  wild  ADE  popula-
tion  compared  to  the  cultivated  MUS  counterparts.  Notably,
the  HYB  hybrid  accession  exhibited  the  highest  SNP  count,
suggesting  greater  genetic  variation  and  mixed  genetic
background. 

Genetic structure of hybrid offspring and
progenitor accessions

To better understand the relationship of the 28 samples from
'Shine  Muscat', V.  adenoclada,  and  their  progeny,  an  unrooted
maximum likelihood (ML)  tree  was  constructed with  28  acces-
sions  (Fig.  1a).  As  is  shown  from  the  tree,  the  wild V.  adeno-
clada individuals  and  cultivated  'Shine  Muscat'  varieties  were
well  divided into two clades,  with their hybrid progeny (HYB1)
intermediate between them.
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Fig. 1    Population structure of the 28 Vitis accessions. (a) Unrooted ML tree. The colors yellow, green, and blue represent the 'Shine Muscat'
group,  the V.  adenoclada group,  and  the  hybrid  offspring,  respectively.  (b)  Admixture  analysis  with  K  =  2,  3,  and  4.  (c)  PCA  results.  The
correspondence between colors and groups is consistent with Fig. 1a.
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The ancestry source of these accessions was inferred through
admixture (Fig. 1b) with K = 2, 3, 4. When K was equal to 2, the
Vitis accessions  could  roughly  be  divided  into  two  groups,
which  was  represented  respectively  by  MUS  and  ADE.  It  was
apparent  that  HYB1  showed  a  sign  of  hybridization  of  two
groups, which was consistent with the phylogenetic tree. When
K  was  3,  the  ADE  group  was  further  divided  mainly  into  two
parts, which distinguished individuals in different geographical
distribution.  Three  ADE  accessions  in  Guangdong  Province
(ADE_B) was further diverged as K = 4.

PCA results were concordant with the phylogeny and popu-
lation structure analysis that MUS group, ADE group, and HYB1
were clustered into three independent parts (Fig. 1c).  PC1 well
divided these three parts.  HYB1 was in the middle of  ADE and
MUS groups in the PCA plot, which indicated its specificity rela-
tive to parental accessions. ADE group was relatively scattered,
which  was  also  consistent  with  the  admixture  results  when
K = 3 and 4.

The relatedness among these accessions was further inferred
using identity  by descent  (IBD; Fig.  2).  Three IBD clusters  were
roughly  identified  from  the  network,  namely  the  ADE  group
and  the  MUS  group.  IBD  scores  between  ADE_A  accessions
(ADE1−ADE11)  were  generally  higher  than  0.7,  which  sugges-
ted that these accessions had a closer kinship, like parent-child
or  siblings  (Supplemental  Table  S1).  In  comparison,  the  IBD
score  calculated  within  ADE_B  accessions  exhibited  lower  IBD
scores (below 0.6). Because of the clonal reproduction property,
MUS  possessed  exceedingly  high  IBD  scores  (higher  than  0.9)
within the group. HYB1 had a higher IBD score (0.5) with ADE1
than  calculated  with  other  ADE  accessions,  and  meanwhile,
HYB1 exhibited a relatively closer kinship with MUS1. Given the
hybrid experiment conducted with ADE1, and MUS1, this result
reflected  the  parent-child  relationship  between  ADE1,  MUS1,
and HYB1. 

Selection sweeps signals in V. adenoclada and
Shine Muscat

XP-EHH  analysis  was  conducted  to  investigate  SNPs  and
regions  that  were  under  positive  selection  between V.  adeno-
clada and 'Shine Muscat' (Fig. 3). Selected SNPs in V. adenoclada

were distributed across 60 windows, whereas selected SNPs in
'Shine Muscat' were distributed across 362 windows.

Positively selected genes in V. adenoclada and 'Shine Muscat'
populations  were  then  extracted  respectively.  There  were  364
genes annotated to biological  process (BP) terms for V.  adeno-
clada,  and  1,558  genes  for  'Shine  Muscat'.  Five  GO  terms  in V.
adenoclada,  including  regulation  of  innate  immune  response
(GO:0045088), jasmonic acid and ethylene-dependent systemic
resistance  (GO:0009861),  DNA  integration  (GO:0015074),  RNA-
dependent  DNA  biosynthetic  process  (GO:0006278),  DNA
recombination (GO:0006310), were significantly enriched (Sup-
plemental Fig. S1). By contrast, the GO terms enriched in 'Shine
Muscat'  included  DNA  integration  (GO:0015074),  RNA-depen-
dent DNA biosynthetic process (GO:0006278), DNA recombina-
tion (GO:0006310), defense response (GO:0006952), and phyto-
chelatin biosynthetic process (GO:0046938).

Disease  resistance  is  one  of  the  major  agriculture  indicators
that  are  responsible  for  the  steady  crop  yield[31].  More  genes
associated  with  disease  resistance  were  under  selection  in
'Shine  Muscat',  and  some  distinct  defense-response-related
genes  were  found  in  both  MUS  and  ADE  groups.  Several
disease-resistant genes, like RPS4B, Xa21, MYC2, and MTB,  were
in  the  selected  regions  of  'Shine  Muscat'.  In  plants  like
Arabidopsis thaliana,  the RPS4B gene is a part of a paired resis-
tance  (R)  gene  system,  such  as RRS1B/RPS4B.  This  gene  pair
specifically recognizes the bacterial  effector AvrRps4, highligh-
ting its role in plant immunity[32]. Xa21 is  a prominent disease-
resistance  gene  in  rice,  encoding  a  receptor-like  kinase  critical
for defense against bacterial blight[33]. In tomato, the transcrip-
tion  factor  MYC2  not  only  activates  jasmonate  (JA)-responsive
genes  but  also  terminates  JA  signaling  through  the  activation
of  MYC2-targeted  BHLH1  (MTB1),  MTB2,  and  MTB3  proteins.
MTB  proteins  negatively  regulate  JA-mediated  responses  by
disrupting  the  MYC2-MED25  complex,  forming  an  autoregula-
tory negative feedback loop[34].

In V.  adenoclada,  some  disease-resistance  associated  genes
were  also  found,  such  as SUMM2,  RPP13,  RLP30, and EIX1,  that
were  under  positive  selection. SUMM2 plays  a  role  in  counter-
acting  the  suppression  of  basal  resistance  by  microbial
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effectors[35]. RPP13 safeguards  the  plant  against  pathogens
carrying a specific avirulence protein through an indirect inter-
action with the alleged avirulence protein[36].  RLP30 is a recep-
tor  for  microbe-associated  molecular  patterns  (MAMPs)  that
triggers  a  BAK1-dependent  basal  immune  response  to
necrotrophic  fungi,  such  as  Sclerotinia  sclerotiorum[37].  And
EIX1  was  involved  in  plant  defense,  which  confers  resistance
against the fungal pathogen T.viride through recognition of the
EIX elicitor protein[38].

Additionally,  the  selected  genes  from V.  adenoclada were
specifically  enriched  in  two  KEGG  pathways,  biosynthesis  of
secondary  metabolites  and  sesquiterpenoid  and  triterpenoid
biosynthesis.  Various  secondary  metabolites,  such  as  flavo-
noids, and terpenoids, were reported to be associated with the
abiotic  stress  response  in  plants  (Supplemental  Fig.  S2)[39,40].
Given the wild environment that  the V.  adenoclada habitats,  it
is  reasonable  that  these  genes  and  pathways  were  positively
selected by the harsh environment with multiple abiotic stress. 

Characterization of genetic load
The genetic burden of 28 individuals was investigated using

SIFT4G software. The number of heterozygous alleles, homozy-
gous alleles that carry deleterious SNPs, and the overall number
of  deleterious  SNPs  of  each  group  were  recorded  respectively
(Fig. 4). We found that wild individuals V. adenoclada showed a
significantly higher number of deleterious mutations than culti-
vated  individuals  'Shine  Muscat'  (Fig.  4c).  The  total  number  of
deleterious mutations in the hybrid individual HYB1 was higher
than the 'Shine Muscat' individuals but lower than the V. adeno-
clada individuals.  Specifically,  compared  with  those  parental
species, the deleterious recessive alleles in the hybrid offspring
HYB1 decreased substantially  (Fig.  4b),  while  deleterious  hete-
rozygous  alleles  detected  were  higher  than  any  of  their
parental accessions (Fig. 4a).

Then,  corresponding  genes  with  the  sites  that  were  consi-
dered homozygously deleterious within individuals of the ADE
and MUS groups were utilized for enrichment analyses in each
group,  respectively.  These  two  groups  were  both  enriched  for
some  of  the  identical  GO  terms,  such  as  defense  response
(GO:0006952), protein phosphorylation (GO:0006468), DNA inte-
gration  (GO:0015074),  protein  serine/threonine  kinase  activity
(GO:0004674),  ATP  binding  (GO:0005524),  calmodulin  binding
(GO:0005516),  and  plasma  membrane  (GO:0005886)  (Supple-
mental  Fig.  S3).  The  biological  process,  recognition  of  pollen
(GO:0048544), was specifically enriched in the MUS group. 

Discussion
 

Genetic structure of wild and cultivated Vitis
accessions

In  this  study, V.  adenoclada and  'Shine  Muscat'  were  clearly
differentiated through phylogeny, admixture, and PCA analysis.
Seven 'Muscat'  individuals exhibited a single ancestral  compo-
nent in admixture analysis, while V. adenoclada manifested two
main ancestries, which suggested the different sources of the V.
adenoclada distributed  in  different  regions.  Three  ADE  indivi-
duals collected from Guangdong Province showed a mix of two
ancestries, indicating that there might be gene flow of V. aden-
oclada in  Guangxi  and  Guangdong  Province,  China.  Besides,
relative to the wild ADE_B population in Guangxi Province, the
higher  IBD  score  within  the  ADE_A  group  reflected  the  lower
genetic  diversity  and  closer  kinship  of  these  individuals.  Com-
bining  genetic  structure  and  kinship  analysis,  the  HYB1  indivi-
dual can be confirmed to be a progeny from the hybridization
of V. adenoclada and 'Shine Muscat'. 

Divergence of selection signal within V.
adenoclada and Shine Muscat

The present analysis showed that there were many more loci
under selection in 'Shine Muscat' compared with V. adenoclada
individuals.  At  the  same  time,  a  lower  number  of  SNPs  was
detected in 'Shine Muscat' (Table 1), which echoed such a result
and  suggested  that  many  SNPs  within  the  selected  regions
might  be  swept.  This  substantial  difference  in  the  number  of
selected  loci  between  the  two  groups  suggested  the  artificial
selection  and  the  breeding  efforts  applied  to  the  cultivated
'Shine Muscat' and its parents[41].

Corresponding  to  the  selected  situation  around  the  whole
genome,  more  selected  genes  related  to  disease  resistance  in
'Shine Muscat'  were  detected than in V.  adenoclada.  There  are
several specific resistance genes with distinct functions respec-
tively  in these two groups,  which suggests  their  disparity  with
regard  to  the  defense  response.  Besides,  several  genes  asso-
ciated  with  the  pathway,  biosynthesis  of  secondary  metabo-
lites, were specifically enriched in V. adenoclada.  In light of the
divergence  exhibited  in V.  adenoclada and  Shine  Muscat,  it  is
possible  for  the  hybrid  offspring  to  inherit  the  premium  ele-
ments  of  each  parent  and  become  a  new  cultivar  integrating
the high resistance and good quality. 

The accumulation of the deleterious mutation
Deleterious mutations could cause changes or loss of genetic

functions,  thereby  potentially  affecting  the  adaptation  of  the
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organism[19].  Genes  have  been  detected  with  potentially  dele-
terious mutations in both the ADE and the MUS groups, many
of  which  were  enriched  in  the  same  biological  processes  or
molecular  functions.  This  suggests  a  common  impact  of  these
mutations on the fitness of all grapes. The wild species V. adeno-
clada was found to consist of more deleterious mutations, both
in  the  form  of  heterozygous  alleles  and  homozygous  alleles,

than the 'Shine Muscat'. Some studies indicated that during the
constant  breeding  period,  many  deleterious  mutations  with
large  effects  would  be  purged  by  negative  selection  due  to
the  exposure  of  recessive  deleterious  mutations  when
inbreeding[42]. In this case, cultivated 'Shine Muscat' individuals
might  have  undergone  the  same  process,  though  the  wild
ancestors  of  this  cultivar  need  further  consideration  in  future
studies.  The  present  study  also  investigated  the  accumulation
of  deleterious  mutations  in  the  hybrid  offspring  HYB1  and
discovered that most of the deleterious variations were embed-
ded in the heterozygous alleles. This phenomenon was consis-
tent  with  a  study  about  walnut  cultivar  improvement,  which
pointed  out  that  during  breeding,  the  deleterious  mutations
were  converted  from  homozygous  format  to  heterozygous
format[43].  Some  studies  revealed  an  accumulation  of  mode-
rately  deleterious burden in the context  of  modern crop bree-
ding, and showed that slightly deleterious mutations were more
likely  to  continue  to  exist  in  the  form  of  heterozygosity[18,42].
Combined  with  the  current  context  of  high  heterozygosity  in
the  hybrid  offspring,  it  suggests  that  in  the  future,  it  will  be
necessary to figure out a way to target such deleterious muta-
tions  that  are  hidden  within  the  heterozygous  alleles  and  are
detrimental  to  fitness,  and  eliminate  them  using  modern
molecular methods. 

Conclusions

In  this  study,  high-quality  resequencing  data  was  utilized
from V.  adenoclada,  'Shine  Muscat',  and  their  one  hybrid  off-
spring  to  investigate  the  genetic  divergence  between  them.
The  present  findings  revealed  distinct  genetic  structures
between V.  adenoclada and  'Shine  Muscat'  accessions  and
confirmed  the  hybrid  origin  of  HYB1.  A  marked  genetic  diver-
gence was observed, with the cultivated variety 'Shine Muscat'
showing stronger selection signals across the genome. In terms
of disease resistance,  different biological  processes,  and genes
under  selection  were  enriched  in  wild  and  cultivated
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Table 1.    Quality and SNPs statistics of all 28 resequenced accessions.

Sample Total base (bp) Depth Mapping rate SNP number

ADE1 17,520,817,445 35.40 97.32% 5,626,462
ADE2 24,257,947,082 49.02 88.66% 5,679,994
ADE3 18,328,442,529 37.04 80.59% 5,676,095
ADE4 21,011,413,063 42.46 94.82% 5,689,913
ADE5 22,031,567,287 44.52 97.23% 5,691,839
ADE6 24,068,277,235 48.64 96.30% 5,695,943
ADE7 23,436,537,148 47.36 96.31% 5,696,589
ADE8 21,950,203,360 44.36 96.11% 5,669,703
ADE9 22,002,259,768 44.46 96.97% 5,703,161
ADE10 22,309,202,148 45.08 96.37% 5,700,374
ADE11 22,049,567,098 44.56 96.66% 5,680,656
ADE12 27,580,752,978 55.73 97.70% 5,651,025
ADE13 22,064,551,844 44.59 97.65% 5,643,197
ADE14 24,850,211,192 50.22 97.83% 5,581,868
ADE15 22,814,344,130 46.10 97.74% 5,451,046
ADE16 23,240,185,342 46.96 97.54% 5,448,929
ADE17 19,291,800,581 38.98 98.07% 5,479,083
ADE18 19,298,624,750 39.00 97.67% 5,463,166
ADE19 20,634,991,493 41.70 97.95% 5,451,605
ADE20 20,619,496,304 41.67 98.06% 5,476,361
HYB1 19,995,439,567 40.41 94.71% 6,140,779
MUS1 20,104,866,097 40.63 97.08% 4,059,284
MUS2 31,473,565,455 63.60 98.29% 3,919,498
MUS3 32,273,677,414 65.22 98.88% 3,832,869
MUS4 35,479,482,412 71.69 98.91% 3,771,105
MUS5 35,076,902,316 70.88 97.71% 3,973,151
MUS6 36,508,316,389 73.77 98.92% 3,749,505
MUS7 7,963,746,000 16.09 98.68% 3,956,697
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accessions. V. adenoclada exhibited selection signals in specific
pathways,  like  the  biosynthesis  of  secondary  metabolites  and
sesquiterpenoid and triterpenoid biosynthesis, suggesting their
potential adaptability to abiotic stress in the wild. Genetic load
analysis  highlighted  that  deleterious  mutations  in  'Shine
Muscat'  might  have  been  mitigated  through  breeding,  and  it
also  indicated  the  importance  of  monitoring  heterozygous
deleterious  mutations  during  the  crossing  experiment.  How-
ever,  further  field  experiments  are  required  to  investigate  the
potential  influence  of  genetic  load  in  hybrid  offspring.  This
study delineates clear genetic differentiation between V. adeno-
clada and  'Shine  Muscat',  suggesting  the  potential  to  develop
superior hybrids from grapevines with various premium traits. 
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