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Abstract
The MADS-box protein SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1 (SOC1) is a key floral activator that coordinates external and internal

stimuli to ensure timely floral transition. During early development, SOC1 represses floral organ identity to prevent premature differentiation and,

thus, is also linked to the successful development of functional flowers. In woody perennials, SOC1 has established a divergent function in the

regulation of bud dormancy release. Apart from reducing flowering time in Arabidopsis, little is known about the function of VviSOC1a and its

gene  regulatory  network.  In  this  study, VviSOC1a was  functionally  characterized  through  overexpression  in  tomato,  where  it  was  found  to

promote  the  development  of  leaf-like  sepals  and  petals  with  an  increased  accumulation  of  chlorophyll.  In  severe  cases,  overexpression  of

VviSOC1a led to the formation of defective floral organs resulting in plant sterility phenotypes. Gene expression analyses revealed the significant

downregulation of important floral organ identity genes in tomato, such as SIMC, SlRIN, SlCMB1, and SlMBP21. Additional downstream impacts on

ripening  and  cuticle-associated  gene  expression  warrant  further  characterization  of VviSOC1a within  the  context  of  these  crop  traits. In  silico
analysis  of  the VviSOC1a expression  profile  revealed  patterns  distinctive  of  genes  involved  in  floral  induction.  This,  in  combination  with  an

association gene network significantly enriched in flower developmental processes, supports a predicted function for VviSOC1a in floral initiation

and floral organ specification.
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Introduction

To  ensure  timely  floral  transition,  plants  have  acquired
an  intricate  network  of  genetic  pathways  driven  by  various
environmental  and  developmental  cues[1].  Flower  develop-
ment  takes  place  over  three  main  phases,  including  (i)  signal
integration,  (ii)  meristem  determination,  and  (iii)  organ
determination[2].  Key regulators directing each of these phases
have  been  extensively  studied  in  Arabidopsis,  including  the
identification  of  the  floral  signal  integrator  SUPPRESSOR  OF
OVEREXPRESSION OF CONSTANS1 (SOC1)[3].

SOC1  has  been  shown  to  act  as  an  activator  of  floral  transi-
tion  in  many plant  species[4−8].  In  Arabidopsis, SOC1 is  directly
regulated  by  an  upstream  floral  repressor  complex,  involving
FLOWERING  LOCUS  C  (FLC)  and  SHORT  VEGETATIVE  PHASE
(SVP), which acts in response to flowering signals received from
the vernalization and autonomous pathways[9]. Contrarily, SOC1
is  activated  through  the  photoperiodic  pathway  using  the
central  floral  regulator  CONSTANS  (CO), via the  activity  of
FLOWERING LOCUS T (FT)[10]. In addition, SOC1 has been shown
to  interact  with  AGL24,  another  floral  signal  integrator,  to
induce floral meristem identity through the activation of LEAFY
(LFY)  which,  in  turn,  drives  part  of  the  floral  organ  determina-
tion phase[11,12].  During the  early  stages  of  floral  initiation and
meristem determination,  SOC1 acts  redundantly  with  SVP and
AGL24 to prevent the precocious differentiation of floral organs
by directly repressing SEPALLATA3 (SEP3)[2,13].

In Arabidopsis, floral organ determination is driven by organ
identity  genes  which  are  categorised  as  either  A-function
(APETALA1 [AP1] and AP2),  B-function (AP3 and PISTILLATA [PI]),
C-function (AGAMOUS [AG]) or E-function (SEP1-4), according to
the  ABCE  flower  model[14,15].  Each  of  these  genes,  with  one
exception (AP2),  encode for MADS-box proteins which interact
with  each  other  to  form  different  combinations  of  multimeric
complexes  that  drive  the  development  of  each  floral  organ
type, namely sepals (A and E), petals (A, B, and E), stamens (B, C,
and E), and carpels (C and E)[15].

Flower development differs greatly between Arabidopsis and
grapevine (Vitis  vinifera)  with regards to flower anatomy,  floral
inducive  signals,  and  lifecycle  (reviewed  in  Carmona  et  al.[16]),
and, as such, variations in their flowering gene networks are to
be  expected.  Nevertheless,  it  has  recently  been  reported  that
the  expression  patterns  of  Arabidopsis  and  grapevine  floral
organ  identity  gene  homologs  are  well  conserved[17].  In  addi-
tion,  previous  research  characterizing  grapevine  homologs  of
the FT and SVP genes  indicated  similar  flowering  functions  to
those  held  in  Arabidopsis[18,19],  suggesting  that  key  regulators
of  the  general  flowering  pathway  may  be  partly  conserved
between these two plant species.

VviSOC1a, a SOC1 homolog of grapevine, has previously been
shown to reduce flowering time in Arabidopsis, thereby identi-
fying  as  a  possible  floral  activator  involved  in  signal
integration[18].  Currently,  however,  no  research  efforts  have
been  made  in  identifying VviSOC1a downstream  targets  or
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characterizing  its  gene  regulatory  network.  In  addition,  its
potential  function  in  floral  organ  identity  has  not  yet  been
explored.  To  better  understand  the  role  of VviSOC1a in  flowe-
ring  regulation,  this  study  conducted  phenotypic  and  gene
expression  analyses  in  overexpressing  (OE)  tomato  (Solanum
lycopersicum)  lines.  The  association  gene  network  and  expres-
sion profile of VviSOC1a were also investigated. 

Materials and methods
 

In silico analysis
Protein  sequence  alignments  were  performed  with

CLUSTALW[20] on  the  MEGAX  software[21].  A  phylogenetic  tree
was  subsequently  constructed  using  the  Neighbor-Joining
method[22] and  p-distance  model[23],  with  bootstrap  values
calculated for 100 replicates[24].  The list of VviSOC1a associated
genes,  computed  using  the Vitis OneGenE  method[25],  was
retrieved by querying the http://ibdm.disi.unitn.it/onegene/vv/
onegene-vv.php and http://vitis.onegenexp.eu websites  with
the  V1  gene  ID  (VIT_15s0048g01250).  Genes  were  selected
according to relative frequency values (FreI > 0.5) and used for
Gene Ontology (GO) enrichment analysis  on the ShinyGO 0.77
database[26],  under  default  settings  and  false  discovery  rates
(FDR)  <  0.05.  Developmental  and  tissue-specific  expression
data is based on the grapevine expression atlas[27]. Hierarchical
clustering of expression data was created using the Expression
Atlases  application  within  the Vitis Visualization  (Vitviz)  plat-
form (www.vitviz.tomsbiolab.com). 

Plant transformation and growth conditions
The  coding  sequence  of VviSOC1a was  PCR-isolated  from

cultivar  'Pinot  Noir'  complementary  DNA  (cDNA)  and  cloned
into pCXSN,  driven by the constitutive CaMV 35S promoter[28].
Primer  sequences  used for  gene isolation  are  listed  in Supple-
mental  Table  S1.  Transgenic  tomato  lines  were  generated
through Agrobacterium-mediated  transformation  of  cultivar
'Ailsa  Craig'  cotyledons  as  previously  described[29],  with  the
exception  of  using  zeatin  (2 μg/mL)  and  indole-3-acetic  acid
(IAA)  (0.01 μg/mL)  as  plant  hormones  for  shoot  regeneration.
Growth chamber conditions for plant regeneration were set at
± 23 °C and a 16-h photoperiod. Transgenic plants were trans-
planted  in  potting  soil  and  grown  in  a  greenhouse  equipped
with  supplemental  lighting  (200−250 μmol/m2/s),  for  further
use  in  gene  expression  and  phenotypic  analysis.  As  reference
plants, ripening  inhibitor (rin)  mutants  were  grown  up  concur-
rently under the same conditions described above[30]. 

Gene expression analysis
RNA was extracted using the Spectrum™ Plant Total RNA Kit

(Sigma-Aldrich,  Burlington,  MA,  USA)  and  On-Column  DNase  I
Digestion  Set  (Sigma-Aldrich,  Burlington,  MA,  USA),  according
to  the  manual.  First-strand  cDNA  was  synthesized  with  an
UltraScript  2.0  cDNA  Synthesis  Kit  (PCR  Biosystems,  London,
England).  Real-time  qPCR  analysis  was  performed  using  gene-
specific  primers  and  qPCRBIO  SyGreen  Mix  (PCR  Biosystems,
London,  England)  on a  ViiA  7  instrument  (Applied Biosystems,
CA,  USA)  under  default  parameters.  For  transgene  quantifica-
tion,  three  plants  were  analyzed  per  independently  trans-
formed  line,  while  for  downstream  target  genes,  one  plant
(each) was used for three independently transformed lines. Two
technical replicates were performed per sample. Relative expres-
sion  levels  were  calculated  using  the  LinRegPCR  program  for

amplification data analysis[31] and the delta-delta Ct method[32].
The  qPCR  data  was  normalized  against Expressed (Exp)  gene
expression[33]. Primers used for the qPCR experiments are listed
in Supplemental Table S1. 

Chlorophyll and carotenoid quantification
At the anthesis stage, flowers were sampled and pooled from

three  plants  per  independently  transformed  line.  Photosyn-
thetic pigments were extracted from 50 mg of fresh petal tissue
with  600 μL  of  pre-chilled  acetone  :  water  80:20  (v/v),  accord-
ing  to  a  previously  described  protocol[34].  Absorbance  (A)  was
measured at 470, 647, 663, and 750 nm, using the Synergy™ 2
Plate Reader (BioTek,  Winooski,  VT,  USA).  Total  chlorophyll a/b
and carotenoids were calculated as suggested[34]:

Chlorophyll a (Ca) (μg/mL) = 12.25A663−2.79A647

Chlorophyll b (Cb) (μg/mL) = 21.50A647−5.10A663

Carotenoids (μg/mL) = (1,000A470−1.82Ca−85.02Cb)/198
 

Statistical analysis
A two-tailed t-test was performed to compare means, where

p ≤ 0.1, p ≤ 0.05, and p ≤ 0.01, were considered low, moderate,
and high significant differences, respectively. 

Results
 

VviSOC1a is closely associated with the flowering
gene network

Molecular  phylogenetic  analysis  grouped  the  VviSOC1a
protein  with  previously  characterized  SOC1  clade  members  of
the  Type  II  MIKCc  MADS-box  family  (Fig.  1).  VviSOC1a  shared
highest amino acid similarity with SlTM3 (63%),  PsSOC1 (58%),
GhSOC1  (55%),  and  FaSOC1  (53%),  which  have  primarily  been
shown to regulate flowering time, in addition to having roles in
meristem branching control[6,7,35,36].

To  further  explore  the  predicted  function  of VviSOC1a in
floral  transition,  GO enrichment analysis  of  the VviSOC1a asso-
ciation  gene  network,  computed  using  the Vitis OneGenE
method[25] (Supplemental  Table S2),  was performed. From this
analysis it was found that genes interacting with VviSOC1a were
significantly  enriched  in  biological  processes  related  to  flower
development  and  vernalization  response  (Supplemental
Fig.  S1).  Of  particular  interest  were  14  grapevine  genes  that
were identified as putative homologs of regulators involved in
the  general  flowering  pathway  of  Arabidopsis[2,37],  including
those  related  to  floral  signal  integration  (VviSOC1b, VviSOC1c,
and VviSVP2-7)  and  floral  meristem  determination  (VviFRUIT-
FULL1 [VviFUL1]),  as  well  as  genes  predicted  to  regulate  floral
organ  identity  in  grapevine  (VviAG1, VviAG2, VviAP3b, VviFUL1,
VviSEP1, and VviSEP3)[17] (Fig. 2). Another important gene is the
TERMINAL  FLOWER1 (TFL1)  homolog, VviTFL1,  which  was  pre-
viously characterized as a repressor of floral development[38].

Analysis  of  genome-wide  transcriptomic  data  across  54
grapevine  tissues  and  developmental  stages[27] revealed  that
VviSOC1a is  predominantly  expressed  during  vegetative
growth,  except  the  seedling  stage  (Supplemental  Fig.  S2).  In
particular, VviSOC1a expression tends to be highest in younger
tissue types,  for  example in  younger  leaves and stems,  as  well
as  in  the  latent  buds  and  during  budburst. VviSOC1a is  also
strongly  expressed  during  early  flowering,  and  especially  in
pollen  grains,  but  has  little  to  no  expression  during  berry
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including  SlSISTER  OF  TOMATO  MADS-box  gene  3  (SlSTM3,  Solyc01g092950),  SlTM3  (XP_025887600),  PsSOC1  (AHJ60268),  GhSOC1
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ZmSOC1 (NP_001105152), OsMADS50 (NP_001388955), TaSOC1 (AB281427), OsMADS56 (NP_001390992), DnAGL19 (AMO66151), and DoSOC1
(AGK07583),  as  well  as  the  closely  related  VviSOC1b  (VIT_16s0022g02400)  and  VviSOC1c  (VIT_02s0025g04650).  AtAP1  (NP_177074)  was
selected as the outgroup. The scale bar represents the number of amino acid differences per site. The tree was generated using the Neighbor-
Joining method and p-distance model[22,23]. Numbers at each node indicate bootstrap values calculated from 100 replicates[24]. At, Arabidopsis
thaliana; Dn, Dendrobium nobile; Do, Dendrobium orchid; Fa, Fragaria × ananassa; Gh, Gossypium hirsutum; Gm, Glycine max; Mt, Medicago
truncatula;  Os,  Oryza sativa;  Ps,  Paeonia suffruticosa;  Sa,  Sinapis  alba;  Sl,  Solanum lycopersicum; Vvi,  Vitis  vinifera;  Ta,  Triticum aestivum; Zm,
Zea mays.
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development  or  ripening  (Supplemental  Fig.  S2).  When
comparing  expression  profiles, VviSOC1a shares  similar  trends
to  associated  putative  grapevine  homologs  involved  in  floral
signal  integration  and  meristem  determination  (Fig.  2),  where
expression  mainly  occurs  in  the  vegetative  and  flowering
tissues,  and is  mostly  absent at  fruit  stages (Supplemental  Fig.
S3).  Contrarily,  putative  grapevine  homologs  involved  in  floral
organ  determination  display  opposite  patterns,  in  that  gene
expression  occurs  almost  exclusively  in  the  reproductive
tissues,  such  as  during  later  flowering  stages  and  throughout
berry development (Supplemental Fig. S3). 

Overexpressing VviSOC1a leads to floral reversion
and sepal elongation

Transgenic  tomato  lines  showed  significant  changes  to  flo-
wer morphology, where the most striking phenotype observed
was the formation of leaf-like sepals (Figs 3 & 4). In severe cases,
impacts  on  normal  floral  development,  such  as  absent,  dwar-
fed,  and loosely  packed reproductive  organs,  resulted in  plant
sterility  (Fig.  3a−h).  Three VviSOC1a-OE  tomato  lines  showing
comparable,  albeit  weaker,  floral  reversion  phenotypes  were
further assessed (Fig. 3i−k & Supplemental Fig. S4). For the two
higher  expressing  lines  (Fig.  3i, j),  a  significant  elongation  in
curly  sepal  growth  was  observed  compared  to  the  wild  type
(Fig.  3l & Supplemental  Fig.  S5),  but  not  in  the  case  of  the
lowest  expresser  (Fig.  3k).  This  was  particularly  evident  when
comparing  isolated  floral  organs  (Fig.  4a−c).  In  addition,  the
extensive sepal growth found in the highest expresser (Fig. 4a)
resembled  the rin mutant  flower  (Fig.  4d).  Apart  from

alterations to the sepal size,  there was a notable development
of  greener  sepaloid  petal  tissue  in  the  transgenic  flowers
(Fig.  4a−c).  To  further  assess  petal  color,  photosynthetic  pig-
ment  quantification  of  all  three  independently  transformed
lines  (Fig.  4e),  as  well  as  the  two  highest  expressing  lines
(Fig. 4f), confirmed that a significant increase in total petal chlo-
rophyll (a + b)  content was observed for the higher expressers
(Fig.  4e).  Post-anthesis,  transgenic  lines  showed  further  sepal
elongation,  however,  did  not  display  noticeable  changes  in
length  between  different  mature  fruit  stages  (Fig.  5a, b).  As
observed with the flowers, the red-ripe fruit sepal phenotype of
the highest expresser (line 3) was comparable to the rin mutant
(Fig. 5b). 

VviSOC1a represses flowering and ripening-
related genes

Gene  expression  analysis  in  young  leaf  (Fig.  6a)  and  floral
sepal  (Fig.  6b)  tissues  showed  that VviSOC1a expression
repressed  the  downstream  tomato AP1/FUL (SlFUL2 and
SlMACROCALYX [SlMC]), SVP (SlJOINTLESS [SlJ]),  and SEP3
(SlCMB1, SlRIN,  and SlMBP21) homologs, which are well-charac-
terized  flowering  genes  in  Arabidopsis[2],  in  addition  to  the
SOC1 homolog, SlSOC1-like.  However,  the  down-regulation  of
these  targets  was  tissue-dependent.  It  was  further  observed
that  the  overexpression  of VviSOC1a down-regulated  genes
involved  in  ripening  (Fig.  6a, b),  including SlCHALCONE
SYNTHASE1 (SlCHS1), SlMYB12, and SlRIN[39−41], as well as SlFUL2,
which  regulates  both  flowering  and  ripening[42,43].  Since  each
of  these  ripening-related  genes  has  been  shown  to  regulate
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Fig. 3    Whole-flower phenotypes of tomato lines overexpressing VviSOC1a. (a)−(h) Transgenic lines developed leaf-like sepals and displayed
severe floral  dwarfing phenotypes resulting in plant sterility.  Transgenic lines displayed moderate floral  phenotypes of (i),  (j)  sepal extension
and curling compared to (k) line 6 and (l) wild type plants.
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and/or  impact  cuticle  deposition,  the  transcript  levels  of
important  cuticle  regulators  and  biosynthetic  enzymes  were
also analyzed in the leaf tissue (Fig.  6c).  It  was found that cuti-
cle  regulators, SlMIXTA,  and SlSHINE3 (SlSHN3)[44],  were  signifi-
cantly  repressed  in VviSOC1a-OE  lines,  along  with  the  down-
stream target gene SlCYP77. Contrarily, VviSOC1a was observed

to  induce  the  expression  of  other  cuticle-related  genes
involved  in  the  biosynthetic  pathway,  namely SlLACS2 and
SlGDSL1 (Fig.  6c).  Significantly  down-regulated  genes  that  are
associated with  sepal  size  regulation in  tomato[45−47] are  high-
lighted in Fig. 6d. Importantly, these genes are homologous to
flowering pathway members that form part  of  a positive feed-
back loop that is repressed in the presence of SOC1[2,37]. 

Discussion
 

VviSOC1a is a predicted floral signal integrator
promoting floral transition

The MADS-box SOC1 protein plays a vital function in the inte-
gration of external stimuli, such as those derived from tempera-
ture,  photoperiod,  hormone,  and  age-related  pathways,  to
drive timely floral transition[2]. SOC1 gene homologs, in a multi-
tude  of  plant  species,  have  been  shown  to  hold  conserved
functions  in  positively  regulating  the  flowering  time,  causing
hastened  or  delayed  flowering  phenotypes  in  constitutively
expressed  or  knockout  lines,  respectively[4−8,35,36,48−52].  These
studies  include  the  SOC1  homologs  of  tree  peony  (PsSOC1),
cotton  (GhSOC1),  and  strawberry  (FaSOC1),  which  were  found
to  share  the  highest  protein  homology  (53%−58%)  with
VviSOC1a.  While VviSOC1a has  previously  been  reported  to
cause  early  bolting  in  Arabidopsis[18],  the  current  study  found
no obvious  changes to  flowering time in VviSOC1a-OE tomato
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Fig.  5    Fruit  sepal  phenotypes  of  tomato  lines  overexpressing
VviSOC1a.  Sepal  development  is  displayed  at  two  different  fruit
developmental stages, including (a) mature green and (b) red ripe.
(a) Elongated sepals observed for lines 2 and 3 compared to line 6
and wild type. (b) Comparable sepal extension observed for line 3
and the rin mutant[30] in relation to wild type.
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lines.  However, SOC1 may hold divergent  functions in  tomato,
since  two  previously  characterized  tomato SOC1 gene  homo-
logs, SlSTM3 and SlTM3,  are involved in the promotion of floral
meristem branching[36],  as opposed to the repressive role held
by SOC1 in Arabidopsis[53]. Further, only SlSTM3 displayed regu-
latory functions promoting floral transition, with SlTM3 expres-
sion  (sharing  higher  sequence  similarity  with VviSOC1a, Fig.  1)
having  no  effect  on  flowering  time[36].  Nevertheless, VviSOC1a

is  expected  to  hold  a  function  in  floral  signal  integration  in
grapevine due to its increased expression in vegetative tissues,
particularly  young  leaves  and  stems  where  floral  inducive
stimuli  are perceived (Supplemental  Fig.  S2). VviSOC1a expres-
sion  also  persists  into  early  flowering  stages,  although  at  a
much  lower  level.  This  expression  profile  agrees  with  those
described  for SOC1 in  Arabidopsis[54],  and  other  crops  such  as
kiwifruit (Actinidia spp.)[55] and cotton[7]. 
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Floral organ specification is repressed by
VviSOC1a through the down-regulation of floral
organ identity genes

SOC1 holds another function during the early stages of floral
meristem  establishment  in  Arabidopsis,  where  it  acts  redun-
dantly  with SVP and AGL24 to  negatively  regulate  organ  iden-
tity genes[2]. This function is crucial for timely flowering and the
prevention  of  premature  organ  differentiation.  In  relation  to
this, floral reversion phenotypes, including the development of
enlarged  leaf-like  sepals  and  sepaloid-type  petals,  have  com-
monly  been  reported  for  these  three  genes  across  multiple
plant species[4,19,56−59]. Similarly, the overexpression of VviSOC1a
led to sepal elongation and the formation of leaf-like sepals (in
severe  cases),  as  well  as  greener  sepaloid  petals,  in  tomato
plants (Figs 3−5). This phenotype may be, in part, explained by
the  repressive  activity  of SOC1 on SEP3,  an  E-function  floral
gene[13].  SEP3  directly  interacts  with  AP1,  an  A-function  floral
identity  protein,  to  drive  sepal  and  petal  specification[56].  In
tomato,  as  in  Arabidopsis, SEP3 (SlCMB1)  and AP1 (SlMC)  gene
homologs  have  been  characterized  as  sepal  size  regulators
since their knockdown or knockout has led to elongated sepal
phenotypes[47,56,60,61].  This function is further supported by the
well-known rin mutant,  which  is  the  product  of  a  knockout
mutation involving the fusion of SlRIN (an E-function SEP gene)
and SlMC[30]. In this mutant, leaf-like sepals are formed that are
comparable  to  those  observed  in VviSOC1a overexpression
lines (Figs 4 & 5). SlCMB1 has also been shown to directly inter-
act  with  another  E-function  protein,  namely  SlMBP21,  which
holds  a  similar  sepal  size  regulatory  role[47,62].  Since  all  four
genes  (SIMC, SlRIN, SlCMB1,  and SlMBP21)  were  shown  to  be
down-regulated in VviSOC1a-OE sepal  tissue (Fig.  6),  it  may be
assumed  that  their  combined  suppression  at  later  stages  of
floral  organ  development  is  what  led  to  the  observed  sepal
phenotype.  Further,  it  is  expected  that SlCMB1 acts  as  a  key
contributor to the development of sepal-like petals and defec-
tive plant organs which, in acute cases, lead to sterile VviSOC1a
transgenic  lines  (Fig.  3).  This  is  because SEP3 is  known  to  acti-
vate,  in  concert  with LFY,  B-function,  and  C-function  identity
genes  to  specify  the  petal,  stamen,  and  carpel  organs  (Fig.  2),
with  double  mutants  developing  comparable  floral  organ
defects and vegetative petals in Arabidopsis[13].  The repressive
activity  of VviSOC1a on  the SlCMB1 gene  in  tomato  is  likely
conserved  in  grapevine,  given  that VviSOC1a and VviSEP3
display  opposite  expression  profiles  across  vegetative  and
reproductive tissues (Supplemental Fig. S3). Despite the redun-
dant  functions  held  by SOC1 and SVP in  repressing  organ
identity  (Fig.  2),  these  two  genes  play  antagonistic  roles  in
Arabidopsis during the early floral transition, as floral activators
and repressors,  respectively[9].  This  may explain  the significant
down-regulation  of  the  tomato SVP homolog, SlJ,  observed  in
young leaf tissues (where floral induction takes place),  but not
in the sepals of the VviSOC1a-OE lines (Fig. 6). 

VviSOC1a activity has a downstream impact on
cuticle and ripening pathways

Since  carpel  specification  precedes  fruit  development  and
ripening, it was speculated that VviSOC1a may impact the regu-
lation of genes driving these later reproductive stages, through
down-regulation  of  the SlCMB1 gene.  In SlCMB1-silenced
tomato  lines,  ripening-related  genes,  including SlRIN and
SlFUL2 were  significantly  repressed,  leading  to  delayed  ripe-
ning  phenotypes[63].  Although  phenotypic  ripening  analyses

were not conducted in the current study, these genes, in addi-
tion  to  those  forming  part  of  the  flavonoid  pathway  (SlMYB12
and SlCHS),  were  also  down-regulated  in  the VviSOC1a-OE
tomato  lines,  supporting  the  likely  impact  of SlCMB1 suppres-
sion on ripening regulation (Fig.  6).  However,  gene expression
was only analyzed in young leaves and sepals.  Thus,  confirma-
tion of the relationship between VviSOC1a and ripening within
a fruit  background may be necessary to draw a more accurate
conclusion.  Previous  studies  have also  shown that  each of  the
ripening-related  genes  modulated  in  this  study  impact  fruit
cuticular  properties  linked  to  crop  quality  traits[39−42].  As  such,
further  analyses  of  the  transcript  levels  of  well-known  cuticle
genes were also performed in young leaf tissues, revealing that
VviSOC1a may also affect cuticle formation, though contrasting
findings  were  observed.  For  example,  key  cuticle  regulators
(SlMIXTA and SlSHN3)  were significantly down-regulated,  while
VviSOC1a activated  the  expression  of  genes  coding  for  cuticle
biosynthetic  enzymes  (SlLACS2 and SlGDSL1)[44,64,65] (Fig.  6).  In
conclusion,  further characterization is  needed to better under-
stand  the  impact  of VviSOC1a function  on  ripening  and  fruit
cuticle formation. 

VviSOC1a may hold a conserved perennial crop
function in bud break regulation

Functional divergence has been reported for SOC1 homologs
in  woody  perennial  plants,  such  as  grapevine,  which  display
significantly  different  growth  habits  to  Arabidopsis.  For  one,
floral  induction  in  grapevine  is  believed  to  occur  in  the  latent
primary buds during summer, while flower development takes
place the following spring after bud burst, a phenological event
requiring  a  vernalization  period[16,66].  In  the  woody  perennials
kiwifruit  and  poplar  (Populus  tremula × alba), SOC1 homologs
have  been  shown  to  promote  early  bud  break  in  overexpres-
sing  lines[55,67].  Interestingly, SOC1 was  also  found  to  hold  a
function in determining the annual  growth habit  of  Arabidop-
sis,  with soc1  ful double  mutants  displaying  perennial  growth
characteristics[68].  The  heightened  expression  observed  for
VviSOC1a in latent buds supports its predicted function in floral
induction  (Supplemental  Fig.  S2).  The  fact  that VviSOC1a also
displays  expression  peaks  during  bud  burst  stages,  suggests
that it may hold an additional role in bud dormancy release as
well,  similar  to  other  woody  perennials,  however,  functional
confirmation is required. 

Conclusions

SOC1 is  an important regulator  of  flowering that  has prima-
rily  been  associated  with  floral  initiation,  though,  additional
functions  related  to  the  prevention  of  precocious  floral  organ
development  and  the  control  of  bud  dormancy  release  have
also  been  reported.  The  grapevine  gene  homolog, VviSOC1a,
has  previously  been  shown  to  reduce  flowering  time  in
Arabidopsis. In the current study, a new function involving the
repression of floral organ differentiation was identified through
heterologous expression in tomato. This role is likely mediated
through  the  suppression  of SIMC, SlRIN, SlCMB1,  and SlMBP21,
gene  expression.  An  additional  function  for VviSOC1a relating
to  the  regulation  of  bud  dormancy  release,  based  on  gene
expression  data,  is  further  postulated,  though,  experimental
confirmation  is  still  required.  Another  interesting  result  is  the
repressive  activity  of VviSOC1a on  ripening and cuticle-related
genes,  since  these  hold  important  functions  related  to  crop
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stress  tolerance  and  quality[69].  As  such,  future  research  may
benefit from the further characterization of VviSOC1a to better
understand its influence on these crop traits. 
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