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Abstract
Transformation efficiencies of sweet orange cultivars 'Florida EV1' and 'Valencia', recalcitrant to Agrobacterium transformation, were investigated

using  liquid  culture  in  We-V™  vessels.  The  two  mature  cultivars  were  transformed  using Agrobacterium with  a  vector  containing  selectable

markers, nptII and TIPS-EPSPS, and the GFP reporter. Transgenics were identified with GFP in liquid culture at 0, 100, and 200 mg·L−1 kanamycin or

in the semi-solid control with 100 mg·L−1 kanamycin. For 'Florida EV1', there were significant differences in the mean transformation efficiency

based on the number of shoots screened (TES) at all kanamycin concentrations. Selection at 200 mg·L−1 was better than at lower concentrations

in liquid or semi-solid control medium with 100 mg·L−1 kanamycin. The variable TEE, transformation efficiency based on the number of explants,

did not discern differences. The means ± standard errors for TES at 200 mg·L−1 were 7.9% ± 2.7% for 'Florida EV1' and 2.4% ± 1.7% for 'Valencia'. In

total, 74 transgenics were produced in 'Florida EV1', whereas seven were generated in 'Valencia'. Obtaining transgenics in 'Florida EV1' was easy;

fewer shoots were screened at 200 mg·L−1. 'Florida EV1' exhibited better regeneration ability, and all transgenics survived on glyphosate medium,

suggesting the TIPS-EPSPS selectable marker  could be useful  in  transformation.  Molecular  analyses confirmed their  transgenic nature.  'Florida

EV1'  trees  produced  fruit  earlier  than  'Valencia'  in  less  than  two  years.  'Florida  EV1'  could  accelerate  the  production  of  HLB  disease-resistant

trees.
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Introduction

Agrobacterium transformation efficiency is influenced by the
plant  genotype  or  cultivar,  the  effectiveness  of  the  selection
system,  the  reporter  gene  used  to  identify  the  transgenic
shoots  and  the  meristematic  nature  of  the  plant  cells.  Highly
embryogenic  cell  cultures  and  meristematic  cells  in  organo-
genic  explants  yield  the  best  results  in  plant  transformation.
Generally,  cultivars  and  genotypes  with  high  transformation
efficiency will regenerate more transgenics and edited plants[1].

Agrobacterium-plant  interactions  are  complex  and  only
partially  understood[2].  Recalcitrance  among  different  species
might  be  due  to  any  number  of  reasons  stemming  from  the
physiology  of  the  donor  plant, in  vitro explant  manipulations,
plant  stress  physiology[3],  or  other  problems[4−11].  In  mature
citrus explants, cells in the cambial ring become competent for
transformation and regeneration[12], but there is immense culti-
var  variation  in Agrobacterium transformation  efficiency  (Zale
unpublished).

Mature 'Valencia' (Citrus sinensis L. Osbeck) citrus scions form
shoots  in  tissue  culture,  but  few  are  transgenic,  so  it  is  consi-
dered  recalcitrant  to Agrobacterium.  Transformation  efficiency
based on the number of shoots (TES) and based on the number
of  explants  (TEE)  is  consistently  less  than  5%  on  semi-solid
medium with 100 mg·L−1 kanamycin[13−15]. In practice, its trans-
formation  efficiency  is  considerably  less  than  5%,  and  higher

transformation  efficiencies  depend  upon  other  factors,  such
as  the  re-invigoration  of  the  mature  scion  donor  plant  by
budding[16].

'Florida Early Valencia 1' ('Florida EV1') is a somaclone derived
from 'Valencia' in tissue culture[17,18]. 'Florida EV1' matures from
December  to  January  in  central  Florida  (USA),  while  'Valencia'
matures from early to late March. The term somaclonal variant
was  introduced  by  Larkin  &  Scowcroft  in  1981  to  describe  the
genetic  variation  in  plants  regenerated  from  cell  cultures[19].
These  alterations  might  be  genetic  or  epigenetic  changes
induced  by  the  stress  of  tissue  culture  or  due  to  auxins  and
cytokinins  generating  disorganized  cell  growth[11,20,21].  In
wheat,  three  near-isogenic  lines  identified  in  tissue  culture
differed  in  regeneration  ability  and  transformation  ability,  but
the  most  amenable  wheat  line  had  two  translocations[9].
Somaclonal variation can create unwanted variations but is also
a potential source of useful genetic diversity[19].

Citrus  biotechnology  has  traditionally  used  the neomycin
phosphotransferase II  (nptII)  gene for  selection,  which,  unfortu-
nately,  is  riddled  by  escaped  shoots[22].  Canton  et  al.  deter-
mined the best concentrations of kanamycin in liquid vs. semi-
solid selection medium to screen two mature citrus rootstocks
by  GUS  staining[23].  They  found  that  selection  at  stringent
kanamycin concentrations (150 to 200 mg·L−1) in liquid culture
was optimal. The present research aims to apply this same tech-
nology using the GFP reporter to mature sweet orange scions. 
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Materials and methods
 

Vector
The TIPS-EPSPS vector has been previously described[24].  The

Citrus  sinensis EPSPS gene  was  mutated  at  two  sites  with  site-
directed  mutagenesis  and  shown  to  confer  tolerance  to
glyphosate  in  immature  citrus[24].  In  the  present  study,  it  was
transformed  into Agrobacterium  tumefaciens,  strain AGL1, with
the  appropriate  antibiotics  and  kanamycin  bacterial  selection
at  the  recommended  concentrations[25]. The  vector  also  con-
tains the neomycin phosphotransferase II (nptII) gene as a secon-
dary  selectable  marker  which  encodes  an  aminoglycoside
phosphotransferase  that  confers  resistance  to  kanamycin  in
plants,  and the enhanced green fluorescent gene (egfp)  as the
reporter in plants (Fig. 1). 

Plant material and growing conditions
Mature  internodal  explants  of  'Valencia  SPB-1-14-19'  and

'Florida  EV1'  were  used  in  transformation  experiments[18].
Mature  scions  were  budded  onto  immature  five-month-old
Citrus volkameriana (L.) rootstocks[23]. Conditions in the growth
room  were  maintained  with  a  12  h  light  cycle  photoperiod
provided by cool  white,  fluorescent lamps,  with 50% humidity
and  a  temperature  of  26  ±  4  °C.  Mature  scion  budsticks  were
collected at three months, and prepared accordingly[23]. 

Agrobacterium growth and tissue culture
Agrobacterium strain AGL1 was grown as described and used

in transformations[15]. Plant transformations and tissue cultures
were performed, and cultures were placed in a dark incubation
with  100  mg·L−1 kanamycin  selection  for  three  weeks[23].  After
three weeks,  the explants were placed in liquid culture vessels
with  3M  paper  or  paper  towels[23].  The  explants  were  placed
on top of this paper in the liquid culture vessels at 0,  100, and
200  mg·L−1 kanamycin  and  grown  for  four  weeks[23].  A  semi-
solid medium with 100 mg·L−1 kanamycin was used as a control
for  three  weeks  in  the  dark  incubation  and  four  weeks  in  the
light  incubation[23].  Micrografting  and  secondary  grafting  of
some but not all GFP positive shoots were performed[15,23]. 

Glyphosate assay of nodal budsticks
A glyphosate assay was developed to test whether the trans-

genic,  nodal  budsticks  positive  for  the EPSPS transgene  could
sprout shoots on glyphosate medium. Roundup Super Concen-
trate (50.2% active ingredient, containing 3.7 lb glyphosate acid
equivalent  per  US  gallon  or  2.6  M  glyphosate)  was  used  as  a
selection  system  in  transgenic  vs.  wild-type  (WT)  nodal  bud-
sticks in semi-solid MT medium (Phytotechnology Labs, Lenexa,
KS,  USA)  with 30 g·L−1 sucrose at  pH 5.7  and different  glypho-
sate  concentrations  (0,  2.6,  6.5,  and  13.1  mM)[24,26].  Transgenic
and  WT  budsticks  were  prepared[23],  cut  into  nodal  budsticks

with  one  node  per  budstick,  and  plated  onto  the  glyphosate
medium. Three to six nodal budsticks per petri dish were plated
onto the semi-solid medium and incubated in a chamber with a
12 h photoperiod, 45 μmol·m−2·s−1 light intensity,  at 26 ± 2 °C.
Sprouted  shoots  per  nodal  budstick  were  recorded  after  28
days and analyzed using ANOVA. 

Molecular analysis of transgenic plants
Shoots  were  examined  for  GFP  fluorescence  with  a  Nikon

SMZ 745T stereoscope (Nikon, Melville, NY, USA) equipped with
a  NIGHTSEA  fluorescence  adapter  (NIGHTSEA,  Lexington,  MA,
USA)  and  a  blue  filter.  These  shoots  were  micrografted  onto
decapitated seedlings[15,23]. Transgenic lines were confirmed by
PCR  using  primers  for EPSPS, nptII,  and gfp to  amplify  frag-
ments  of  455,  239  and  713  bp,  respectively.  The  oligonucleo-
tides used to amplify these genes were as follows: nptII (nptII-F:
GTGGAGAGGCTATTCGGCTATGA and nptII-R:  CTTCGCCCAATAG
CAGCCAGT), gfp (gfp-F: CTGACCGGATCGGCACATTA, and gfp-R:
CTTGTAGTTGCCGTCGTCCT)  and EPSPS  (EPSPS-F:  AGAGGACAC
GCTGAAATCAC  and EPSPS-R:  AAGCATATGGTGAATATCTTCGC).
Genomic  DNA  extractions  were  performed  with  the  Power-
Plant® DNA  Isolation  Kit  (MO  BIO  Laboratories,  Inc.,  Carlsbad,
CA).  The  PCR  reactions  were  set  to  a  15 μL  volume  total,
containing  0.15  mM  of  each  primer,  7.5 μL  of  Dream  Taq  PCR
Master  Mix  (2X)  (ThermoFisher  Scientific®,  Atlanta,  GA,  USA),
and  20  ng  of  DNA  template.  The  cycling  parameters  were
programmed  into  an  MJ  Mini™  thermal  cycler  (Bio-Rad®,
Hercules, CA, USA) with a preliminary denaturation at 95 °C for
3 min; followed by 35 cycles of 95 °C for 30 s; an annealing step
at  62  °C  for  30  s,  and  an  extension  step  at  72  °C  for  1  min,
followed by a final 5 min extension at 72 °C. Polymerase chain
reaction  products  were  analyzed  on  1.5%  agarose  gel  elec-
trophoresis  with  a  100  bp  EZ  Load  molecular  ruler  (Bio-Rad®,
Hercules, CA, USA). 

Duplexed real-time TaqMan quantitative PCR
(qPCR) for copy number

A  duplex  TaqMan  real-time  quantitative  PCR  (qPCR)  assay
determined  the  transgene  copy  number  in  some  transgenic
citrus  lines  vs  a  known,  single  copy,  'Hamlin'  control[27,28].
Amplification  of  the nptII  gene  and  the  internal  control  gene
CsLTP (Citrus sinensis lipid transfer protein) was analyzed in each
transgenic  line  against  the  'Hamlin'  control  known  to  contain
only  one  copy  of  the nptII  gene  (supplied  by  the  Mou  lab,
University of Florida, Microbiology and Cell Science, Gainesville,
FL,  USA).  Primer  probe  combinations  were  standardized  with
the  'Hamlin'  single  copy nptII  control  reference  line.  A  serial
dilution was performed starting with 100 ng of total DNA, and
Ct values were plotted vs the log nanograms of total DNA. The
R-squared value (coefficient of determination) for the standard
curves for both nptII and CsLTP genes was 0.99. The slope of the
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NOSp Tnos T35 eGFP prolD p(A)2×35Sp TIPSnptII

Fig.  1    Schematic  map  of  the TIPS-EPSPS vector  in  pBI101  vector  backbone  for Agrobacterium-mediated  genetic  transformation.  The nptII,
eGFP, and TIPS-EPSPS are driven by the NOS promoter, prolD promoter, and double 35S promoter, respectively. LB, left border; RB, right border;
NOSp, nopaline synthase promoter; prolD, A. rhizogenes rolD promoter; 2×35Sp, Enhanced Cauliflower Mosaic Virus promoter; nptII, neomycin
phosphotransferase;  p(A),  CaMV  polyadenylation  signal;  Tnos,  nopaline  synthase  terminator;  T35,  Cauliflower  Mosaic  Virus  terminator; eGFP,
enhanced green fluorescence protein; TIPS, citrus shikimate pathway enzyme 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) modified
to obtain glyphosate resistance[24].
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plot was −3.5 for nptII and −3.49 for CsLTP, giving an efficiency
of 1.93 (93%) (Table 1). This is in the range (90%−97%) of good
efficiency for a duplex qPCR. 

Primers and probes for the duplexed real-time
TaqMan qPCR reaction

Oligonucleotides  and  probes  were  designed  and  synthe-
sized  (Eurofins  Genomics,  Louisville,  KY,  USA)  for  the nptII
transgene[29,30].  The  oligonucleotide  and  probe  sequences  for
the nptII  gene  were  as  follows: nptII-F:  ATCATGGTGGAAAATG
GCCG, nptII-R:  GCCAACGCTATGTCCTGATAG  and nptII-probe:
[FAM]-TTCTGGATTCATCGACTGTGGC-[BHQ1], yielding an 86 bp
product.  The Citrus  sinensis lipid  transfer  protein (CsLTP) gene
was  used  as  the  endogenous  single  copy  control[27,28].  The
oligonucleotide and probe sequences for the CsLTP gene were
as  follows: CsLTP-F:  CGGATCAATCCCTAACCTCAAC, CsLTP-R:
GTCAGTGGAGATGCTGATCTTG and CsLTP-probe: [TxRed]-CGAG
CTTGTGGAGTCAGCATTCCT-[BHQ2] and they yield a 94 bp PCR
product. 

Duplexed real-time TaqMan qPCR reactions and
calculations

Duplexed TaqMan PCR reactions  were performed in  12.5 μL
volume in a 96-well  format using a QuantStudio™ 3 Real-Time
PCR system (Applied Biosystems, Foster, CA, USA). The reaction
mixture contained 6.25 μL of 2x TaqPath™ master mix (Applied
Biosystems,  Waltham,  MA,  USA),  1 μL  DNA  (~50  ng),  and
900  nM nptII-F/R  primers,  900  nM CsLTP-F/R  primers  and
100 nM each gene-specific  probe.  The PCR program consisted
of  initial  denaturation  at  95  °C  for  3  min,  40  cycles  of  10  s  at
95 °C, 20 s at 55 °C, and the fluorescence was collected at 55 °C.
A  no-template  control  and  non-transgenic  plant  DNA  were
included.  The  instrument  software  determined  the  Ct  values.
The  log10  of  the  DNA  dilution  series  was  plotted  vs  the  Ct
values  obtained  for  each  dilution.  The  PCR  efficiency  (E)  was
calculated  using  the  following  equation  (E=10(−1/slope))[31].  This
formula was used to calculate the copy number for each trans-
genic line and control as formulated by Pfaff[32].

Ratio =
(Etarget)(DeltaCt(target)(control−sample))

(Ereference)(deltaCT(reference)(control−sample))
 

Data collection and statistical analyses
Transformation  response  variables  included  the  total

number of shoots greater than 2 mm (SL > 2) and the number
of  positive  shoots  (PS).  The  mean  transformation  efficiencies
were  based  on  the  number  of  explants  (TEE,  the  number  of
positive shoots/number of explants × 100), and transformation
efficiencies based on the number of  shoots screened (TES,  the
number  of  positive  shoots/the  number  of  shoots  screened  ×
100).  Data  collection  occurred  after  seven  weeks.  ANOVA  was
performed  separately  for  each  cultivar  and  comparisons  were
made  within  each  cultivar.  For  'Florida  EV1'  the  statistics  were
calculated for 60 explants per vessel with ten replicates at each
kanamycin  concentration  (0,  100,  and  200  mg·L−1)  in  liquid
medium  and  with  ten  replicates  in  semi-solid  medium  at  the
standard kanamycin concentration (100 mg·L−1) . For 'Valencia',

the  statistics  were  calculated  based  on  60  explants  per  vessel
with seven replicates at each kanamycin concentration (0, 100,
and  200  mg·L−1)  in  liquid  medium  and  seven  replicates  in  the
semi-solid  medium  at  the  standard  kanamycin  concentration
(100 mg·L−1). The square root transformation was used to trans-
form  the  PS  variable  before  ANOVA.  Percentage  data  were
divided  by  100  and  transformed  into  the  arcsine  transforma-
tion before ANOVAs. The Mann-Whitney non-parametric statis-
tics  test  was used to compare the regeneration ability  of  each
cultivar (SL > 2/number of explants) across all  treatment levels
and at  0  mg·L−1 kanamycin.  Similarly,  a  non-parametric  Mann-
Whitney test compared the median number of positive shoots
(PS) between 'Florida EV1' and 'Valencia'.  Glyphosate tolerance
was assessed after 28 d as the number of shoots that sprouted
per nodal budstick at four different glyphosate concentrations
(0,  2.6,  6.5,  and  13.5  mM  glyphosate)  and  used  in  ANOVAs.
Descriptive  statistics,  ANOVAs,  and  multiple  comparisons  with
Fisher's LSD were used to analyze the variables in the cultivars
studied. All tests were calculated with Minitab Version 21. 

Results
 

'Florida EV1' has a higher transformation
efficiency and regeneration ability than 'Valencia'

In  separate  experiments,  mature  'Florida  EV1'  and  'Valencia'
sweet  orange  scions  were  transformed  with  the TIPS-EPSPS
vector  (Fig.  1),  which  possesses  two  selectable  markers  (P-
Nos::nptII::T-Nos and 2x35S::TIPS-EPSPS::p(A))  in Agrobacterium
strain AGL1. TIPS-EPSPS confers  resistance  to  glyphosate[24].  A
schematic  representation  of  the  process  is  shown  in Fig.  2.  A
total  of  74 'Florida EV1'  transgenics  and seven 'Valencia'  trans-
genics  were  identified  by  GFP  fluorescence  in  We-V™  liquid
culture  vessels  with  gravity  wells  using  three  levels  of
kanamycin  selection  (0,  100,  and  200  mg·L−1 kanamycin)  vs
semi-solid medium at 100 mg·L−1 kanamycin (Table 2 & Fig. 2).
The  results  of  these  experiments  were  analyzed  separately
using ANOVAs.

For  'Florida EV1',  the mean shoot length greater  than 2 mm
(SL  >  2)  variable  in  the  100  and  200  mg·L−1 kanamycin  treat-
ments in liquid media and the 100 mg·L−1 control in the semi-
solid medium was significantly less (p < 0.05) than the 0 mg·L−1

kanamycin  liquid  control  treatment  (Table  3 & Fig.  3a).  Fewer
shoots (n = 285) were screened at 200 mg·L−1 compared to the
0 mg·L−1 control (n = 875) (Table 2). The mean TES (transforma-
tion  efficiency  based  on  the  number  of  positive  shoots/total
number  of  shoots  ×  100)  variable  at  200  mg·L−1 kanamycin  in
liquid  medium  was  7.9%  ±  2.7;  at  100  mg·L−1 kanamycin  in
liquid medium, it  was 5.4% ± 1.4 (Table 3).  However,  the latter
treatment  generated  more  transgenics,  although  it  was  not
statistically  different  from  the  mean  TES  value  at  200  mg·L−1

(Fig.  3a).  The mean TES value of  7.9% was significantly greater
than  the  0  mg·L−1 kanamycin  liquid  medium  control  and  the
100  mg·L−1 kanamycin  semi-solid  control  (p <  0.05),  showing
that liquid medium selection is superior (Table 3 & Fig. 3a). The
mean  TEE  variable  was  not  significant  (Table  3 & Fig.  3b),  and
the number of positive shoots (PS) was not significant because
transgenics were produced at every kanamycin level  (Table 2).
Transgenics  readily  regenerated  in  'Florida  EV1'  at  all  kanamy-
cin concentrations.

For 'Valencia',  the mean SL > 2 variable at  0 mg·L−1 was sig-
nificantly greater (p < 0.05) than the other treatments (Table 3),

 

Table  1.    The  linear  range  and  standard  curves  for  endogenous CsLTP
and nptII genes.

Gene Linear range (CT) Regression equation Correlation coefficient

nptII 21.07−26.16 f(x) = −3.505x + 21.987 0.999
CsLTP 21.92−25.32 f(x) = −3.491x + 21.126 0.999

'Florida EV1'
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but there were fewer shoots to screen (n = 177) at 200 mg·L−1

kanamycin  (Table  2).  In  contrast,  361  shoots  grew  in  the
0 mg·L−1 control.  No significant differences existed for  the TES
or  TEE  variables  (Table  3, Fig.  4a & b).  Two  transgenics  were
identified  by  GFP  fluorescence  at  100  mg·L−1,  while  four  were
identified  at  200  mg·L−1 kanamycin  in  liquid  medium,  so

selection  was  increased  at  higher  kanamycin  concentrations.
Only  one  transgenic  developed  in  the  semi-solid  control
medium  with  100  mg·L−1 (Table  2).  No  transgenics  were
produced  without  kanamycin  selection  in  the  liquid  medium,
and the PS variable was not significant (Table 3). One 'Valencia'
transgenic died after grafting.

A  nonparametric  Mann-Whitney  test  was  used  to  compare
the  median  values  for  regeneration  ability  (the  number  of
shoots per explant) between the two cultivars. Across all treat-
ments,  the  median  value  for  'Florida  EV1'  was  0.71  (n  =  40),
which  was  significantly  greater  (p <  0.05)  than  the  median
value for 'Valencia' at 0.63 (n = 28). Yet in the control treatment
at 0 mg·L−1 kanamycin in liquid medium, the median regenera-
tion  ability  for  'Florida  EV1'  was  1.19  (n  =  10)  was  not  signifi-
cantly different from 'Valencia's' median regeneration ability at
0.98  (n  =  7).  A  Mann-Whitney  test  was  also  used  to  compare
both cultivars'  median values for  GFP positive shoots (PS).  The
median  value  for  'Florida  EV1'  was  1.5  (n  =  40),  while  the
median  value  for  'Valencia'  was  0  (n  =  28),  indicating  a  highly
significant difference (p = 0.00) in the medium number of posi-
tive shoots between the two cultivars. 

 

Mature scion Explants +
Agrobacterium

Semi-solid co-culture medium
(CCM) two days, selection medium

for three weeks in the dark

Liquid medium with gravity wells
for four weeks in the light

Agrobacterium

Mature tree with flowers &
fruit in less than 2 years

Micrograft GFP
positives shoots 0 mg·L−1 kanamycin

a b c

100 mg·L−1 kanamycin 200 mg·L−1 kanamycin

Fig. 2    Schematic representation of the transformation process using We-V™ liquid culture vessels with gravity wells with different kanamycin
concentrations of (a) 0, (b) 100, and (c) 200 mg·L−1.

 

Table  2.    'Florida  EV1'  and  'Valencia'  and  the  variables  that  were
measured (shoots longer than 2 mm (SL > 2) and positive shoots (PS))  in
liquid and semi-solid medium.

Cultivar1 Kanamycin
(mg·L−1) Medium Explants SL > 22 PS3

'Florida EV1' 0 Liquid 600 875 17
'Florida EV1' 100 Liquid 600 424 22
'Florida EV1' 200 Liquid 600 285 18
'Florida EV1' 100 Semi-solid 600 535 17
'Valencia' 0 Liquid 420 361 0
'Valencia' 100 Liquid 420 281 2
'Valencia' 200 Liquid 420 177 4
'Valencia' 100 Semi-solid 420 247 1

1The  two  cultivars  were  tested  and  analyzed  separately. 2SL  >  2,  shoots
longer than 2 mm. 3PS, GFP positive shoots.

 

Table 3.    The means for the number of positive shoots (PS), shoots with lengths greater than 2 mm (SL > 2), and transformation efficiencies (TES and TEE)
at three concentrations of kanamycin in liquid and semi-solid medium for 'Florida EV1' and 'Valencia'.

Cultivar1 Kanamycin (mg·L−1) Medium Mean PS2 ± SE3 Mean SL > 24 ± SE Mean TES5 ± SE Mean TEE6 ± SE

'Florida EV1' 0 Liquid 1.7 ± 0.4 87.5a ± 14.3 2.4b ± 0.7 2.8 ± 0.7
'Florida EV1' 100 Liquid 2.2 ± 0.6 42.4b ± 3.7 5.4ab ± 1.4 3.7 ± 1.0
'Florida EV1' 200 Liquid 1.8 ± 0.5 28.5b ± 3.2 7.9a ± 2.7 3.0 ± 0.8
'Florida EV1' 100 Semi-solid 1.7 ± 0.4 53.5b ± 8.7 2.9b ± 0.7 3.2 ± 1.0
'Valencia' 0 Liquid 0 ± 0 51.6a ± 4.4 0 ± 0 0 ± 0
'Valencia' 100 Liquid 0.3 ± 0.2 40.1b ± 2.0 0.7 ± 0.4 0.5 ± 0.3
'Valencia' 200 Liquid 0.6 ± 0.4 25.3c ± 2.7 2.4 ± 1.7 0.9 ± 0.7
'Valencia' 100 Semi-solid 0.1 ± 0.1 35.3bc ± 5.5 0.3 ± 0.3 0.2 ± 0.2

1The two cultivars were tested and analyzed separately. 2PS, GFP positive shoots. 3SE, Standard error. 4SL > 2, the number of shoots longer than 2 mm. 5TES,
transformation efficiency based on the number of shoots. 6TEE, transformation efficiency based on the number of explants.

 
'Florida EV1'

Page 4 of 8   Canton et al. Fruit Research 2024, 4: e036



Glyphosate as a selectable marker in mature
citrus

To  test  whether  glyphosate  can  be  used  as  a  selectable
marker in mature tissue transformation, an experiment to show
glyphosate tolerance conferred by the EPSPS selectable marker
was  conducted  with  four  levels  of  glyphosate  (0,  2.6,  6.5,  and
13.1  mM)  with  the  transgenic  lines  and  wild-type  (WT).  Nodal
budsticks  were  plated  on  glyphosate  medium,  and  the  sprou-
ting of shoots was measured after 28 d. An ANOVA of the data
comparing  transgenic  and  WT  nodal  budsticks  for  their  ability
to sprout shoots at these concentrations of glyphosate medium
revealed  significant  differences  (p <  0.05)  between  the  two
cultivars.  Across  all  treatments  and  the  control,  'Florida  EV1'
sprouted more shoots per node than 'Valencia'  (Figs 5 & 6).  At
0 mM glyphosate, 19 shoots sprouted from 12 nodal budsticks
in 'Florida EV1',  whereas in 'Valencia',  12 shoots sprouted from
12 nodal  budsticks.  Transgenic 'Florida EV1'  had a mean of 0.9
(SE  ±  0.1)  sprouted  shoots,  while  'Valencia'  had  a  mean  of  0.5
(SE ± 0.1)  shoots.  Citrus lines 3 and 22 died on the glyphosate
medium (photo not shown) (Fig.  5),  whereas line 14 died after
secondary grafting before this experiment. There was no signi-
ficant  difference  among  the  different  glyphosate  concentra-
tions,  indicating  that  the  lowest  concentration  (2.6  mM)  was
enough to select  for  herbicide resistance in transgenic mature
citrus  scions.  All  nodal  budsticks  of  WT  'Florida  EV1'  and
'Valencia'  died  at  all  concentrations  of  glyphosate  (Fig.  5,
Supplementary Table S1). 

Molecular confirmation and copy number
PCR tests were performed for the transgenes (nptII, egfp, and

EPSPS)  in 23 'Florida EV1'  and six 'Valencia'  transgenic lines.  All
transgenic lines analyzed carried the nptII and gfp genes at the
correct  sizes  (nptII  239  bp; egfp 713  bp)  (Fig.  7).  The  455  bp
EPSPS transgene was present in all samples except 'Florida EV1'
lines  3,  10,  14,  and  22.  Line  23  of  'Florida  EV1'  could  not  be
tested with the EPSPS primers because it died.

The  'Florida  EV1'  plants  selected  for  duplexed  TaqMan  real-
time PCR for copy number analysis were the ones that had the
greatest  number  of  shoots  on  the  glyphosate  selection
medium  (Supplementary  Table  S1)  as  well  as  the  'Valencia'
transgenics.  Eight  transgenic  lines  were  analyzed:  four  from
'Florida  EV1'  and  four  from  'Valencia'  (Table  3).  The  maximum
copy number determined was two. For 'Florida EV1', there were
three transgenic lines with a single nptII copy and one with two
copies  of  this  gene.  In  the  case  of  'Valencia',  there  were  two
lines with one copy and two lines with two copies. 

Discussion

There are no previous reports of transformation experiments
with  mature  'Florida  EV1'.  Earlier,  we  transformed  'Valencia'
with  the EHA101 Agrobacterium strain  and the GFP reporter[15]

and  obtained  similar  transformation  efficiency  for  TEE  as
reported here if you calculate the efficiency based on the same
number  of  explants  in  semi-solid  medium  at  100  mg·L−1

kanamycin.  From  the  present  study,  we  can  conclude  that
liquid medium doubles the transformation efficiency compared
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Fig.  3    TES  and  TEE  interval  graphs  for  'Florida  EV1'.  (a)  The
means,  standard  errors  (SE)  for  TES  (transformation  efficiency
based on the number of positive shoots/total number of shoots ×
100),  and  multiple  comparisons  are  shown  in  liquid  medium  at
0,  100,  and  200  mg·L−1 and  in  semi-solid  medium  at  100  mg·L−1.
(b)  The  means  and  standard  errors  (SE)  for  TEE  (transformation
efficiency based on the number of positive shoots/explants × 100)
are shown in liquid medium at 0, 100, and 200 mg·L−1 and in semi-
solid medium at 100 mg·L−1.
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to  semi-solid  medium  with  same  kanamycin  concentration.
One  additional  report  cited  a  higher,  but  still  low,  mature
'Valencia'  transformation  efficiency[14] ,  but  another  report
produced no transgenics in mature 'Valencia' whatsoever[13].

The  most  important  measures  in  screening  mature  citrus
shoots  for  transformation  or  gene  editing  in  mature  citrus  are
the  number  of  shoots  that  must  be  examined  that  are  long
enough  to  be  micrografted  (SL  >  2  mm)  and  the  number  of
positive  shoots  (PS).  Thus,  the  variable  of  transformation  effi-
ciency  based  on  the  number  of  shoots  (TES)  is  the  most
valuable  for  our  purposes[15,23,24,33].  In  contrast,  transformation
efficiency based on the number of explants (TEE) better reflects
the  starting  material  (explants)  required  to  initiate  an  experi-
ment  to  find  positive  shoots.  'Florida  EV1'  is  much  more
amenable to transformation and shoot regeneration, and it has
repeatedly  proven  so  in  our  transformation  facility  (unpub-
lished results).

In both mature and immature citrus biotechnology, the stan-
dard  for  kanamycin  selection  is  100  mg·L−1 in  a  semi-solid
medium,  except nptII  is  a  poor  selectable  marker  because  it

permits  many  escaped  non-transgenic  shoots  to  grow[15,22].
However, it is useful in both immature and mature citrus trans-
formation  and  gene  editing  because  it  does  not  kill  the
explants.  At  higher  concentrations  of  kanamycin  in  liquid
medium,  fewer  escaped  shoots  grew  from  mature  rootstock
explants as determined by GUS assays[23].  From that study and
the present work, it can be concluded that screening shoots of
mature  citrus  scion  explants  in  liquid  medium  with  high
concentrations of kanamycin is superior to screening shoots on
semi-solid  medium  with  100  mg·L−1 kanamycin.  Transgenics
were even produced at 0 mg·L−1 kanamycin, which is a normal
occurrence for mature citrus[33].

'Florida EV1' lines 3, 10, 14, and 22 were positive for the nptII
transgene but negative for the EPSPS transgene. EPSPS, on the
3'  end  of  the  T-DNA,  was  most  likely  truncated  during  T-DNA
transfer because it is on the left border, which is not protected
by the VirD2 protein[9,34,35].

The 5-enolpyruvylshikimate  3-phosphate  synthase (EPSPS)
genes in plants and microbes occur in nature and have evolved
naturally  in  response to glyphosate selection pressure.  Several
glyphosate-resistant EPSPS variants  have  been  successfully
engineered  to  impart  herbicide  resistance  in  a  variety  of  crop
plants[36,37].  The  highly  efficient  citrus TIPS-EPSPS glyphosate
selection  system  can  not  only  serve  as  an  alternative  to  anti-
biotic-based  selection  methods  in  the  genetic  transformation
of  citrus,  but  it  can  also  facilitate  the  production  of  intragenic
citrus plants. This present work suggests that it can be used as a
selectable marker in mature citrus.

Liquid  culture  maximizes  the  availability  of  water  and
nutrients  and  eliminates  the  adverse  effects  of  contaminants
in  agar,  which  might  contain  impurities  that  limit  plant
growth[38−42].  The  shoots  in  the  medium  avoid  hyperhydricity
and anoxia because the vessel is aerated[43].  A thin layer of 3M
paper  or  paper  towel  is  added  to  the  vessel,  allowing  the
explants  to  contact  the  liquid  without  being  submerged  and
suffering  hypoxia.  The  gravity  wells  gradually  dispense  liquid
as  the  explants  and  shoots  use  it.  Simple  systems  such  as
stationary  thin  films  often  yield  high-quality  plant  growth
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without the complexities and cost of mechanized systems that
require  shakers  and  aeration  tubes[44].  Liquid  selection  in
mature  citrus  rootstock  reduces  labor  and  costs  and  increases
transformation  efficiency[23],  and  the  results  were  confirmed
here  with  mature  citrus  scions.  The  liquid  medium  allows  for
larger,  more  elongated  shoots  for  micrografting,  better  multi-
plication, and easier subculturing. 

Conclusions

'Valencia' is one of the most important citrus cultivars grown
in the US, yet it is recalcitrant to Agrobacterium transformation.
Mature 'Florida EV1', a 'Valencia' somaclone, has better transfor-
mation  efficiency  and  regeneration  ability  than  'Valencia'.
'Florida  EV1'  performed  remarkably  well  at  all  kanamycin
concentrations in liquid and semi-solid medium. The TES varia-
ble  in  liquid  selection  in  We-V™  vessels  with  gravity  wells  at
stringent  kanamycin  concentrations  (200  mg·L−1)  was  signifi-
cantly  better  for  identifying  transgenics  than  in  semi-solid
medium  at  100  mg·L−1 and  the  controls.  A  glyphosate  assay
with mature nodal budsticks suggests that the TIPS-EPSPS gene,
which  confers  resistance  to  glyphosate,  can  be  used  as  a
selectable marker in mature citrus. 'Florida EV1' is being used in
gene  editing  to  alleviate  disease  problems  afflicting  the  citrus
industry  in  Florida.  Transgenic  and  WT  'Florida  EV1'  trees
produced  fruit  earlier  than  'Valencia',  which  agrees  with  field
performance  data[18].  Future  research  will  investigate  the
reasons  for  the  differences  in  transformation  efficiency  and
regeneration  ability  at  the  DNA  sequence  and  chromosomal
level between 'Florida EV1' and 'Valencia'. 
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