
 

Open Access https://doi.org/10.48130/frures-0024-0034

Fruit Research 2024, 4: e040

Continuous monoculture of Xanthoceras sorbifolia Bunge leads to
continuous cropping challenges due to fungal pathogen accumulation
and reduced beneficial bacteria abundance
Gongshuai Wang1#, Lei Wang2#, Mei Yu2, Dan Wu2, Lu Lu2, Xiaoman Xie2, Jinhui Lv1* and Yongjun Zhao2*

1 Shandong Agriculture and Engineering University, Jinan 251100, Shandong, China
2 Key Laboratory of State Forestry and Grassland Administration Conservation and Utilization of Warm Temperate Zone Forest and Grass Germplasm Resources,

Shandong Provincial Center of Forest and Grass Germplasm Resources, Jinan 251100, Shandong, China
# Authors contributed equally: Gongshuai Wang, Lei Wang
* Corresponding authors, E-mail: m15589559329@163.com; 13305317857@163.com

Abstract
Xanthoceras sorbifolium Bunge, a unique oil crop native to northern China, has a long history of cultivation. In this study, X. sorbifolium Bunge was

continuously planted in Zibo and Weifang, Shandong Province, to explore the factors that cause a decline in X. sorbifolium Bunge yield and fruit

quality after long-term continuous planting. The results showed that the continuous cropping of X. sorbifolium Bunge led to a significant decrease

in the biomass of the plant's seedlings, markedly reduced the root activity, and reduced the soil nutrient content. A significant change in the soil

microbial community structure was observed after years of X. sorbifolia Bunge monoculture. At the genus level, the relative abundance of soil

pathogenic  fungi,  such  as Neocosmospora, Aspergillus,  and Penicillium,  significantly  increased  after  continuous  cropping,  with  the  relative

abundance  of Neocosmospora increasing  significantly  in  the  three  study  sites.  The  abundance  of  common  soil  bacterial  genera,  such  as

Mortierella, Bacillus, and Streptomyces, is significantly lower under continuous cropping than in regular soil. The number of soil-specific bacteria

was also reduced. The results showed that the accumulation of fungal pathogens, particularly Neocosmospora, may be the main challenge in the

continuous cropping of X. sorbifolium Bunge, as it reduces the abundance of beneficial bacteria, primarily Bacillus, Streptomyces, and Mortierella.
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Introduction

Xanthoceras  sorbifolium Bunge  is  a  small  deciduous  tree  or
shrub of the Xanthoceras genus in the Sapindaceae family. This
species is a woody oil tree unique to China and produces excel-
lent raw material for manufacturing biodiesel[1]. In addition, this
plant is used to produce high-grade edible oil[2]. The oil content
of  the  seed  kernel  is  high  (45.54%−56.26%),  and  it  is  rich  in
unsaturated fatty acids, which has high nutritional value and is
beneficial  to  human  health[3]. X.  sorbifolia Bunge  is  rich  in
phytosterols,  tocopherols,  fatty  acids,  and  rare  organic  acids
involved  in  nervous  system  development[4].  Consequently, X.
sorbifolia Bunge  oil  has  extremely  high  nutritional  value  and
health  benefits.  The  use  of  this  species  in  various  fields  has
significantly  increased  the  demand  for X.  sorbifolia Bunge  oil.
Moreover,  this  species  is  an  excellent  biomass  energy  source,
ornamental  tree species,  and barren hill  greening tree species.
Therefore,  it  is  widely  cultivated  in  over  ten  provinces  and
cities, such as Inner Mongolia, Shanxi, and Hebei[5]. The cultiva-
tion area of X.  sorbifolia has increased from 1.33 × 105 to 2.6 ×
105 ha  due to  its  significant  economic  value[6−8].  However,  the
monoculture  of X.  sorbifolium Bunge  is  adopted  without  any
rotation due to the increasing scarcity of land and the impacts
of  agricultural  industrialization.  This  practice  is  prevalent  in
China,  resulting  in  poor  growth  after  years  of  continuous
planting.

Continuous  planting  of  crops  often  leads  to  the  occurrence
of  replanting  diseases.  Furthermore,  repeated  monoculture
leads  to  reduced  plant  strength,  low  yield,  poor  fruit  quality,
increased risks  of  pests  and diseases,  and death of  the trees[9].
Wang  et  al.[10] observed  that  the Fusarium pathogen  caused
apple replanting disease in the Bohai Bay area of China. Allelo-
pathic  autotoxic  substances  such  as  amygdalin  and  benzoic
acid are observed in the soil of aged peach orchards and signifi-
cantly  inhibit  the  growth  of  replanted  plants[11].  Qin  et  al.[12]

reported that amygdalin, an allelotoxic substance in old cherry
orchard  soil,  significantly  inhibits  the  growth  of  replanted
plants.  These  findings  indicate  that  the  production  of  allelo-
pathic  substances,  changes  in  the  soil's  physicochemical  pro-
perties,  an  imbalance in  soil  nutrients,  and changes  in  the  soil
microbial community structure increase the risk of diseases and
poor  plant  growth  characteristics[13].  Notably,  the  replanting
challenges are not caused by a change in a single factor but by
an  interaction  between  soil,  environmental,  and  plant-related
factors[14−16].  Soil  microorganisms  are  involved  in  soil  nutrient
transformation  and  soil  structure  stability,  affecting  plant
growth[17].  Multiple  factors  cause  a  decrease  in  yield  and
increased  risk  of  diseases  in  continuously  cropped X.  sorbi-
folium Bunge. Notably, replanting challenges in some crops are
caused  by  changes  in  the  soil  microbial  community,  with
changes in the soil  fungal community structure as the primary
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factor[18].  The  total  bacterial  abundance  decreased  under  con-
tinuous  monoculture  tobacco,  and  the  soil  bacterial  commu-
nity structure changed significantly[19]. Continuous cropping of
cucumber  increases  soil Fusarium abundance  and  the  occur-
rence  of  cucumber Fusarium wilt,  affecting  cucumber  produc-
tion globally[17]. Konjac soft rot caused by Pectinobacillus causes
significant  losses  to Konjac farming  annually  due  to  the  conti-
nuous  cultivation  of  this  crop.  This  bacteria  is  the  main  chal-
lenge  in  the Konjac industry  worldwide[20].  Li  et  al.  observed
that the continuous cropping of peanuts markedly reduced the
crop quality and yield. A previous study demonstrated that the
accumulation  of  fungal  pathogens  in  the  soil  increases  the
occurrence  of  continuous  cropping  diseases  in  peanuts  at  the
expense of plant-beneficial fungi[21].

Increased  occurrence  of  diseases  and  pests  in  continuous
monoculture  farming[22] has  prompted  the  development  of
various  strategies,  such  as  chemical  treatments,  crop  variety
selection,  and  biological  control  methods,  to  increase  crop
yields  and  minimize  continuous  cropping  challenges[23−26].
Examples  include  using  beneficial  microorganisms  for  biologi-
cal  control  and  the  application  of Rhizobia and  arbuscular
mycorrhizal  fungi  (AMF)  to  mitigate  replanting  diseases  in
various  crops  and  enhance  crop  yield[27]. Bacillus  cereus WL08
effectively  breaks  down  the  autotoxic  substances  of  pinellia,
significantly  improving  the  photosynthesis,  growth,  yield,
and  quality  of  the  plant[28]. Ceratobasidum  stevensi effectively
increases the watermelon growth rate, enhances the activity of
key defense enzymes, modulates the soil microbiome, and alle-
viates  watermelon  repeated  cropping  challenges[29].  However,
the failure  to  effectively  prevent  continuous cropping challen-
ges is mainly due to a lack of understanding of the underlying
mechanisms. X.  sorbifolium Bunge  is  an  important  oil  woody
crop.  However,  only  a  few  studies  have  explored  the  chal-
lenges associated with the replanting of X. sorbifolium Bunge.

In this study, the effects of continuous planting of X. sorbifo-
lium Bunge on soil  physicochemical  properties  and soil  micro-
bial community structure in different areas was examined. The
purpose of this study is to analyze the relative abundance and
structure  of  soil  microbial  community  after  continuous  plan-
ting of X. sorbifolia Bunge in high-throughput sequencing, with
a single planting site as the control,  and to further explore the
mechanism of  yield  reduction caused by  continuous  cropping
obstacles of X. sorbifolium. 

Materials and methods
 

Experimental materials
The experimental materials were collected from Xilao Village

(36°99'  N,  118°28'E),  Fenghuang Town,  Linzi  District,  Zibo City,
Shandong Province (China), the altitude is 69 m; Hengdi Village,
Changyi  City,  Weifang City  (36°99'  N,  119°39'  E),  the altitude is
55 m; and Meiyu Village, Huiqu Town, Anqiu City, Weifang City
(36°27'  N,  119°01'  E),  the altitude is  23 m,  during the cropping
season in 2022. Red Xanthoceras sorbifolium varieties were used
for the experiments. 

Experimental design and treatments
Anqiu,  Weifang  (AQ),  Linzi,  Zibo  (LZ),  and  Changyi,  Weifang

(CY)  were  selected  as  the  study  sites.  Twenty-year-old Red  X.
sorbifolium orchards  continuously  planted Red  X.  sorbifolium

seedlings were used as the cropping samples (AQCK, LZCK, and
CYCK).  The  land  adjacent  to  the  old  orchards,  without Red  X.
sorbifolium seedlings  was  used  as  the  control  group  (AQ,  LZ,
and CY). The continuous cropping and control treatments were
compared separately for each region. Healthy 3–4-leaves seed-
lings  exhibiting  consistent  growth  and  no  pests  or  diseases
were  transplanted  in  mid-April,  with  20  replicates  per  treat-
ment  used  for  each  study  site[30].  The  roots  of  the  seedlings
were  washed  before  planting  to  minimize  the  presence  of
microorganisms in the roots.

Three  plants  were  randomly  selected  for  each  treatment  to
represent  three  biological  replicates.  Topsoil  within  30  cm  of
the  trunk  was  removed  by  digging  0–5  cm  deep,  lightly
attached to roots removed, tightly attached soil collected with
a sterile bristle brush, and filtered out of the soil impurities with
a  2  mm  screen.  Subsequently,  the  soil  samples  were  divided
into three portions[30]. Two portions of the samples were stored
at 4 °C and −80 °C. Using fresh samples stored at −80°C for soil
DNA extraction, high throughput sequencing. The third portion
was air-dried to determine soil physicochemical properties and
evaluation  of  soil-related  indicators.  The  plant  tissue  samples
were  stored  under  low-temperature  conditions  in  liquid  nitro-
gen  during  the  study  to  ensure  the  tissue  activity  was  effec-
tively preserved. 

Measurement index 

Biomass determination
Sampling  was  conducted  in  May,  June,  and  July.  During

sampling,  the  plant  height  and  stem  diameter  of  the  plants
were  measured  using  a  tape  measure  and  a  Vernier  caliper,
respectively. 

Determination of root activity
The  2,3,5-triphenyltetrazolium  chloride  (TTC)  method  was

used  to  evaluate  the  seedling  root  activity.  The  procedure
for  assessment  of  root  activity  was  adopted  from  a  study  by
Liu et al.[31]. 

Assessment of soil physicochemical properties
Soil  organic  matter  was  evaluated  using  the  organic  potas-

sium  dichromate  volumetric  method.  The  contents  of  ammo-
nium nitrogen and nitrate nitrogen (NH4

+-N and NO3
–-N) were

assessed  using  the  CaCl2 extraction  flow  injection  analyzer
method.  The  level  of  available  phosphorus  (P2O5)  was  deter-
mined  by  the  molybdenum–antimony  resistance  colorimetric
method.  The  amount  of  available  potassium  (K2O)  was  eva-
luated  with  flame  spectrophotometry.  Soil  physicochemical
properties  were  evaluated  following  methods  described  by
Bao[32]. 

Soil microbial community structure analysis
Total  DNA  was  extracted  from  each  soil  sample  using  the

E.Z.N.A.  Soil  DNA  Kit  (Omega  Bio-tek  Inc.,  Norcross,  GA,  USA)
according  to  the  manufacturer's  protocols.  The  quality  of  soil
DNA extraction was detected by 1% agarose gel electrophore-
sis,  and  the  samples  were  sent  to  Majorbio  Bio-pharma  Tech-
nology Co., Ltd. (Shanghai, China) for testing. High-throughput
sequencing  was  performed  to  explore  soil  fungi  and  bacteria
structure  and  abundance.  Amplification  was  performed  using
universal  primers  338F/806R  and  ITS1F/ITS2R  for  bacteria  and
fungi.  Soil  microbial  community  structure  analysis  was
conducted following methods described by Bennett  et  al.  and
Wang et al.[33,34]. 
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Statistical analysis
All data were expressed as the mean ± standard deviation of

three  replicates.  Microsoft  Excel  was  used  for  data  processing.
Graphs  were  generated  using  GraphPad  Prism  8.0  (San  Diego,
CA  92108,  USA).  Statistical  analysis  was  conducted  using  SPSS
26.0  software. T-test  or  one-way  ANOVA  was  used  to  explore
differences between the groups. p < 0.05 indicated statistically
significant differences between groups. 

Results
 

Effects of continuous cropping on seedling
biomass of X. sorbifolium planted in different
regions

The results showed that the biomass of X. sorbifolium Bunge
was significantly  lower in seedlings planted in soils  from areas
under  repeated  cropping  compared  to  those  grown  in  soil
under  regular  cropping  (Fig.  1).  The  plant  height  and  stem
diameter of the seedlings planted in July, August, and Septem-
ber in the AQ region were significantly inhibited by continuous
cropping compared to the control group. 

Effects of root activity of X. sorbifolia Bunge in
different areas

The results demonstrated that the root activity of the X. sor-
bifolium Bunge planted in continuous cropping soil was signifi-
cantly  lower  compared  to  plants  planted  in  regular  cropping
soil  (Table  1).  The  AQ,  LZ,  and  CY  soils  exhibited  significantly
higher root activity than the continuous cropping soil. The root
activity of seedlings planted in the regular soil was significantly
different  compared to  that  of  seedlings  planted in  continuous

cropping soil in the CY region. The root activity of the seedlings
planted in continuous cropping soil in the CY region decreased
by 57.8% compared to the seedlings in the regular soil. 

Effects of continuous cultivation of X. sorbifolium
Bunge on soil physicochemical properties in
different regions

Analysis  of  the  soil  physicochemical  properties  in  the  three
regions  showed  that  continuous  cropping  of X.  sorbifolium
Bunge significantly reduced the available potassium content in
the soil (Table 2). Notably, the available potassium levels in the
CY  area  showing  the  most  significant  decline,  with  a  49.82%
decrease compared to the regular soil.  The three regions exhi-
bited  a  reduction  in  available  phosphorus  content,  with  the
most  significant  decrease  observed  in  the  AQ  area  at  43.63%.
Notably,  the difference in the amount of available phosphorus
between  the  two  treatment  groups  in  the  CY  area  was  not
significant.  The  contents  of  nitrate  nitrogen  and  ammonium
nitrogen  decreased  significantly  in  the  three  regions.  Conti-
nuous cropping of X. sorbifolium Bunge significantly decreased
the soil nitrogen content compared to the regular soil. The soil
organic matter content decreased significantly after years of X.
sorbifolium Bunge  planting.  The  most  significant  decrease  in
soil  organic  matter  content  was  observed  under  continuous
cropping  in  the  LZ  area,  with  a  27.54%  decrease  compared  to
the regular soil. 

Effects of continuous cropping of X. sorbifolia
Bunge planted in different areas on soil enzyme
activities

The soil  enzyme activities  significantly  differed between the
regular  soil  and continuous cropping soil  in  the three regions.
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Fig. 1    Effects of continuous cropping on seedling biomass of X. sorbifolium Bunge planted in different regions. A t-test was used to determine
the significant differences between the two treatment groups. Data in the box plots are expressed as mean ± SE. AQ: Untreated soil in Anqiu;
AQCK: Continuous planting of X. sorbifolium Bunge in Anqiu; LZ: Untreated soil in Linzi;  LZCK: Continuous planting of X. sorbifolium Bunge in
Linzi;  CY:  Untreated  soil  in  Changyi;  CYCK:  Continuous  planting  of X.  sorbifolium Bunge  in  Changyi.  Significant  differences  are  presented  as
follows: * 0.01 ≤ p < 0.05, ** 0.001 < p ≤0.01, and *** p ≤ 0.001.
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AQ,  LZ,  and CY soils  exhibited  a  significant  decrease  in  urease
activity  under  continuous  cropping  compared  to  the  regular
soil  (Fig.  2a–c).  The urease activity under the continuous crop-
ping  treatment  in  the  CY  region  was  significantly  (29.20%)
lower compared to the regular  cropping soil.  Soil  sucrase acti-
vity  was  significantly  lower  under  the  continuous  cropping
treatment  in  the  three  regions,  with  18.24%,  22.55%,  and
31.03%  decreases  compared  to  the  regular  cropping  soil
(Fig.  2d–f).  The  phosphatase  activity  was  significantly  lower
under  the  continuous  cropping  treatment  compared  to  the
regular  soil.  The  continuously  cropped X.  sorbifolium Bunge
induced  the  most  significant  decrease  in  soil  phosphatase
activity  in  the  CY  area,  with  a  32.73%  decrease  relative  to  the
regular  soil  (Fig.  2g–i).  Catalase  activity  decreased  after  the
continuous  cropping  of X.  sorbifolium Bunge  compared  to  the
regular soil treatment (Fig. 2j–l). 

Effects of continuous cropping of X. sorbifolia
Bunge planted in different regions on soil
microbial community structure 

Effects of continuous cropping of X. sorbifolia Bunge on
soil bacterial community structure and abundance in the
AQ area

The  compositions  of  bacterial  genera  with  relative  abun-
dances  greater  than  0.5%  were  evaluated  (Fig.  3a,  d).  Conti-
nuous  cropping of X.  sorbifolium Bunge in  the  AQ area  signifi-
cantly affected the horizontal relative abundance of soil bacte-
ria.  The  average  relative  abundance  of Bacillus, Streptomyces,
and Blastococcus in the soil decreased significantly, whereas the
relative  abundance  of Gaiella, Rubrobacter,  and Arthrobacter
increased  significantly  after  continuous  cropping  of X.  sorbi-
folium.  The average relative  abundance of Aeromicrobium (p <
0.05) and Lysobacter (p < 0.05) in the AQCK group significantly
increased compared to the AQ treatment (Fig. 3e). The average
relative abundance of Chujaibacter (p < 0.001) decreased signi-
ficantly  after  continuous  cropping  of  X.  sorbifolium  Bunge.
The  abundance  of Bacillus (p <  0.05), Streptomyces (p <  0.05),
Rubrobacter (p <  0.05),  and Amycolatopsis (p <  0.05)  also

decreased  significantly  in  the  AQCK  group  relative  to  the  AQ
treatment.

Venn  diagram  analysis  (Fig.  3c)  of  soil  microorganisms
showed that the number of soil bacterial OTU species changed
after continuous planting of crown fruit. The results showed 31
endemic  species  in  the  regular  soil  and  77  unique  bacterial
species  were  observed  under  the  continuous  cropping  treat-
ment.  The  soil  bacterial  OTU  profile  markedly  changed  after
continuous cropping.

PCoA  of  the  soil  bacteria  (Fig.  2b)  showed  that  the  conti-
nuous  cropping  soil  treatment  formed  a  distinct  cluster  away
from the AQCK treatment, exhibiting different quadrants. These
findings  indicate  that  the  continuous  cropping  treatment
significantly changed the diversity of the soil bacterial commu-
nity  compared  to  the  control  treatment.  The  PC1  and  PC2
values  were  31.84%  and  29.78%,  explaining  61.62%  of  the
bacterial diversity differences. 

Effects of X. sorbifolia Bunge on the soil fungi community
structure and abundance in the AQ region

The  continuous  planting  of X.  sorbifolium Bunge  in  the  AQ
region  significantly  affected  the  soil  fungal  community
(Fig. 4a–e). Aspergillus genus exhibited the highest abundance
in  the  AQ  region,  followed  by Solicoccozyma, Chaetomium,
Mortierella,  and Penicillium (Fig.  4a).  The  abundances  of
Aspergillus, Fusarium, Penicillium,  and Neocosmospora were
significantly  higher  in  the  continuous  cropping  soil  compared
to  the  regular  soil.  Conversely,  the  relative  abundances  of
Mortierella, Kernia, Solicoccozyma, and Coniochaeta were higher
in  the  AQCK  treatment  than  in  the  AQ  treatment.  The  results
demonstrated that the average relative abundance of some soil
fungi genus decreased significantly after continuous cropping,
whereas  the  average  relative  abundance  of Mortierella
increased  significantly  (p <  0.05; Fig.  4e).  The  relative  abun-
dances  of Coniochaeta (p <  0.05)  and Trichoderma (p <  0.05)
were significantly higher in the AQCK treatment relative to the
AQ  treatment.  At  the  phylum  level,  the  relative  abundance
of Ascomycota, Monoblepharomycota,  and Glomeromycota
decreased  significantly  after  continuous  cropping  relative  to
the regular soil treatment (Fig. 4d).

A Venn diagram based on the abundance of soil  microorga-
nisms showed that the number of OTU species of soil fungi was
significantly affected after continuous planting of X. sorbifolium
Bunge (Fig. 4c). The results revealed 336 endemic species in the
regular  soil  and  468  species  of  unique  fungi  species  in  the
AQCK  treatment.  Notably,  28.21%  more  endemic  fungi  were
observed under the continuous cropping treatment relative to
the AQ treatment.

 

Table 1.    Root activity of crown fruit in different regions.

AQ
(μgTTF·g−1·h−1)

LZ
(μgTTF·g−1·h−1)

CY
(μgTTF·g−1·h−1)

T1 13.46 ± 0.68** 14.59 ± 1.68* 15.73 ± 0.50***
CK 7.40 ± 0.54 7.21 ± 0.83 6.64 ± 0.50

A t-test was used to determine the significant differences between the two
treatment  groups.  Data  in  the  table  are  expressed  as  mean  ±  SE.  T1
represents untreated soil;  CK denotes continuous planting of X.  sorbifolium
Bunge.  Significant  differences  are  presented  as  follows:  *  0.01  ≤ p <  0.05,
** 0.001 < p ≤ 0.01, and *** p ≤ 0.001.

 

Table 2.    Soil physicochemical properties in different areas.

Treatment Organic matter
(g·kg−1)

Nitrate nitrogen
(mg·kg−1)

Ammonium nitrogen
(mg·kg−1)

Available phosphorus
(mg·kg−1)

Available potassium
(mg·kg−1)

AQ 10.58 ± 0.20* 1.23 ± 0.00** 0.09 ± 0.00** 1.13 ± 0.06*** 16.79 ± 0.11***
AQCK 9.47 ± 0.19 0.23 ± 0.01 0.06 ± 0.00 0.75 ± 0.01 14.56 ± 0.56
LZ 11.62 ± 0.20*** 0.32 ± 0.01*** 0.10 ± 0.00** 0.10 ± 0.01** 15.13 ± 0.09**
LZCK 8.42 ± 0.37 0.14 ± 0.00 0.08 ± 0.00 0.86 ± 0.01 13.54 ± 0.17
CY 10.59 ± 0.19** 0.27 ± 0.01** 0.09 ± 0.01*** 1.24 ± 0.03* 12.81 ± 0.03***
CYCK 9.34 ± 0.07 0.17 ± 0.01 0.08 ± 0.01 1.06 ± 0.03 8.50 ± 0.20

A t-test was used to determine the significant differences between the two treatment methods. Data in the table are expressed as mean ± SE. AQ: Untreated
soil  in Anqiu;  AQCK:  continuous planting of X.  sorbifolium Bunge in Anqiu;  LZ:  Untreated soil  in Linzi;  LZCK:  Continuous planting of X.  sorbifolium Bunge in
Linzi; CY: Untreated soil in Changyi; CYCK: Continuous planting of X. sorbifolium Bunge in Changyi. Significant differences are denoted as follows: * 0.01 ≤ p < 0.05,
** 0.001 < p ≤ 0.01, and *** p ≤ 0.001.
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PCoA showed that the fungi under the continuous cropping
soil  treatment  clustered  distantly  from  the  regular  soil  treat-
ment and in different quadrants (Fig. 4b). This finding indicates
that  the  continuous  cropping  soil  treatment  significantly
changed  the  structure  and  composition  of  the  soil  fungal
community compared with the control treatment. The values of
PC1  and  PC2  were  51.30%  and  24.61%,  explaining  75.91%  of
the fungal diversity difference between the groups. 

Effects of continuous cropping of X. sorbifolia Bunge on
soil bacterial community structure and abundance in the
LZ area

Continuous  cropping  of X.  sorbifolium Bunge  significantly
changed  the  community  structure  and  abundance  of  soil
bacteria and microorganisms in LZ. At the genus level, Bacillus,
Gaiella,  and Streptomyces were  the  dominant  genera  with
significantly  higher  relative  abundance  under  the  continuous
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Fig. 2    Soil enzyme activities in different regions. AQ: Untreated soil in Linzi; AQCK: Continuous planting of X. sorbifolium Bunge in Linzi; LZ:
Untreated soil in Cangyi; LZCK: Continuous planting of X. sorbifolium Bunge in Cangyi; CY: Untreated soil in Anqiu; CYCK: Continuous planting
of X. sorbifolium Bunge in Anqiu. T-test analysis was conducted to determine the significant differences between the two treatment methods.
Data are expressed as mean ± SE. Significant differences are represented as follows: * 0.01 ≤ p < 0.05, ** 0.001 < p ≤ 0.01, and *** p ≤ 0.001.
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cropping  soil  treatment  compared  to  the  regular  soil.  The
abundance  of Norank_f_geminicoccaceae and Solirubrobacter
was  lower  in  the  LZ  treatment  than  in  the  LZCK  treatment
(Fig. 5a). Further analysis showed that the abundance of Gaiella
(p < 0.05) and MnD1 (p < 0.05) were significantly higher in the
continuous  cropping  soil  than  in  the  regular  soil  (Fig.  5e).
In  addition,  the  relative  abundances  of Blastococcus (p <
0.001), Sphingomonas (p <  0.01),  and Solirubirobacter were

significantly higher in the continuous cropping soil than in the
regular  soil.  At  the  phylum-level  analysis,  the  relative  abun-
dances  of Fibrobacterota, Sumerlaeota,  and Patescibacteria in
the  LZCK  treatment  were  significantly  lower  compared  to  the
LZ  treatment  (Fig.  5d).  Conversely,  the  relative  abundances  of
Dependentiae, Methylomirabilota,  and Acidobacteriota were
significantly  higher  in  the  regular  cropping  soil  relative  to  the
LZCK treatment (Fig. 5d).
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Fig. 3    Effects of continuous cropping of X. sorbifolium Bunge on soil bacterial community structure in the AQ area. (a) Horizontal abundance
analysis of bacterial genera; (b) PCoA plot showing the distribution of bacteria genera; (c) Venn diagram showing the distribution of bacterial
species;  (d)  A  heat  map showing the bacterial  community  composition;  (e)  Bacterial  community  differences  at  the  genus  level  between the
treatment groups. AQ: Untreated soil in Anqiu; AQCK: Continuous planting of X. sorbifolium Bunge in Anqiu.
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Venn  diagram  analysis  revealed  that  the  continuous  crop-
ping of X. sorbifolium significantly changed the soil fungal OTU
species, with the endemic bacteria increasing by 30.16% under
the  continuous  cropping  soil  relative  to  the  control  treatment
in the LZ region (Fig. 5c).

PCoA  demonstrated  a  significant  distance  between  the  soil
bacteria  under  the  regular  soil  treatment  and  the  continuous
cropping  treatment,  with  bacteria  under  the  two  treatments
clustering  in  different  quadrants  (Fig.  5b).  These  findings  indi-
cate  that  the  continuous  cropping  treatment  significantly
changed the diversity of the soil bacteria community compared
to  the  regular  soil  treatment.  The  value  for  PC1  was  50.99%,

whereas  the  PC2  value  was  20.69%,  explaining  71.68%  of  the
bacterial diversity difference.
 

Effects of X. sorbifolia Bunge on the community structure
and abundance of soil fungi in the LZ region

The soil fungal microbial community structure in the fungus
LZ  region  changed  significantly  after  long-term  continuous
cropping of X. sorbifolium Bunge. Chaetomium, Neocosmospora,
Mortierella, Humicola,  and Penicillium were the most  abundant
fungi genera in the soil samples from LZ (Fig. 6a). At the genus
level,  the  relative  abundance  of Neocosmopora, Humicola,
Penicillium, and Pyrenochaetopsis was significantly higher in the
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Fig. 4    Effects of continuous cropping of X. sorbifolium Bunge on soil fungal community structure in the AQ area. (a) Horizontal abundance of
fungi at the genus level;  (b) PCoA plot illustrating fungi distribution under the two treatments; (c) Venn diagram showing the distribution of
fungal OTU species; (d) A heat map showing fungal community composition; (e) Differences in the fungal horizontal community between the
two treatment groups. AQ: Untreated soil in Anqiu; AQCK: Continuous planting of X. sorbifolium Bunge in Anqiu.
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continuous cropping soil than in the LZ treatment. The relative
abundance  of Mortierella and Solicoccozyma was  significantly
higher in the regular cropping soil than in the LZCK (Fig. 6a). T-
test analysis showed that the relative abundance of Mortierella
(p < 0.05) and Acremonium (p < 0.01) was significantly higher in
the  regular  cropping  soil  than  in  the  LZCK  treatment.
Conversely, the relative abundance of Neocosmopora (p < 0.01),
Humicola (p < 0.05), and Penicillium (p < 0.05) was lower in the
regular  cropping soil  compared to  the  LZCK treatment.  At  the
phylum  level,  the  relative  abundances  of Ascomycota, Basidio-
mycota,  and Chytridiomycota were  significantly  higher  under
the LZCK treatment than in the LZ treatment (Fig. 6d).

Venn  diagram  analysis  showed  that  the  continuous  crop-
ping  of X.  sorbifolium Bunge  significantly  influenced  the  num-
ber  of  soil  fungal  species  in  the  LZ  region.  The  relative  abun-
dance of fungal species increased by 28.63% in the continuous
cropping  soil  compared  with  the  regular  soil.  PCoA  of  the  soil
fungi  revealed  that  the  LZ  treatment  clustered  distantly  from
the LZCK treatment and in different quadrants (Fig.  6b).  These
results  indicate  that  the  LZCK  treatment  significantly  changed
the diversity of the soil fungi community compared with the LZ
treatment. The values of PC1 and PC2 were 61.08% and 20.25%,
explaining 81.33% of the fungal diversity differences.
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Fig. 5    Effect of continuous cropping of X. sorbifolium Bunge on soil bacterial community structure in the LZ area. (a) Horizontal abundance of
bacterial genera; (b) Bacterial PCoA illustrating the distribution of bacteria genera under the two treatments; (c) Venn diagram analysis showing
differences in bacterial species under the two treatments; (d) A heat map showing bacterial community composition under the two treatments;
(e)  Community  differences  at  the bacterial  genus level  between the two groups.  LZ:  Untreated soil  in  Linzi;  LZCK:  Continuous planting of X.
sorbifolium Bunge in Linzi.
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Effects of continuous cropping of X. sorbifolia Bunge on
soil bacterial community structure and abundance in the
CY area

At  the  genus  level,  the  bacterial  community  structure  and
abundance  exhibited  significant  differences  between  the
regular  cropping  soil  and  continuous  cropping  soil  in  the  CY
region.  The  relative  abundance  of Bacillus, Sporomonas,  and
Streptomyces was significantly higher in the CY treatment com-
pared  to  the  CYCK  treatment.  Notably, Bacillus, Sporomonas,
and Streptomyces were  the  most  dominant  genera  in  the  CY
area.  The t-test  results  showed  that  the  relative  abundance  of

Bacillus (p < 0.05), Streptomyces (p < 0.01), and _TK10 (p < 0.01)
was  significantly  higher  under  the  CY  treatment  than  in  the
CYCK treatment. At the phylum level, the relative abundance of
Armatimonadota increased,  whereas Deferrisomatota abun-
dance decreased in the CYCK treatment relative to the regular
cropping soil (Fig. 7d).

PCoA  of  the  soil  bacteria  demonstrated  that  the  bacteria
under  the  CYCK  treatment  clustered  away  from  the  CY  treat-
ment and in different quadrants (Fig. 7b). This finding indicates
that  the CYCK treatment  significantly  changed the diversity  of
the soil bacterial community compared to the control. PC1 and
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Fig. 6    Effects of continuous cropping of X. sorbifolium Bunge on soil fungal community structure in the LZ area. (a) Horizontal abundance of
fungi at the genus level; (b) PCoA showing fungal distribution; (c) Venn diagram analysis of fungal OTU species; (d) A heat map showing fungal
community  composition  under  the  two  treatments;  (e)  Differences  in  fungal  horizontal  community  between  two  treatment  groups.  LZ:
Untreated soil in Linzi; LZCK: Continuous planting of X. sorbifolium Bunge in Linzi.
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PC2 values were 53.61% and 17.71%, explaining 71.32% of the
bacterial  diversity  difference.  Venn  diagram  analysis  showed
that the number of unique species in the soil bacterial commu-
nity decreased significantly after the continuous cropping of X.
sorbifolium Bunge,  exhibiting  a  59.84%  decrease  compared  to
the regular soil (Fig. 7c). 

Effects of X. sorbifolia Bunge on the community structure
and abundance of soil fungi in the CY region

The  classification  results  showed  that Tausonia, Neocosmo-
spora, Mortierella, Penicillium,  and Solicoccozyma were  the  top
five  fungal  genera  in  the  CY  area.  The  relative  abundance  of

these  genera  was  significantly  lower  in  the  CYCK  treatment
compared  to  the  CY  treatment  (Fig.  8a).  The  relative  abun-
dance of Talaromycetes was markedly higher (p < 0.001) in the
CYCK treatment compared to the abundance in the regular soil.
The  relative  abundances  of Clonostachys (p <  0.01), Chor-
domyces (p <  0.05),  and Mrakia (p <  0.05)  genera  were
significantly  higher  in  abundance in  the CYCK treatment com-
pared to the regular soil. At the phylum level, the relative abun-
dance  of Cladosporium and Glomus was  lower  under  the  CY
treatment  than  the  CYCK  treatment.  Conversely,  the  relative
abundance  of Ascomycota and Mortierellomycota increased
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Fig. 7    Effect of continuous cropping of X. sorbifolia Bunge on soil bacterial community structure in the CY area. (a) Horizontal abundance and
distribution of bacterial genera; (b) PCoA plot showing bacterial distribution under the two treatments; (c) Venn diagram analysis of bacterial
species  distribution;  (d)  A  heat  map  showing  bacterial  community  composition;  (e)  Community  differences  at  the  bacterial  genus  level
between the two treatment groups. CY: Untreated soil in Changyi; CYCK: Continuous planting of X. sorbifolium Bunge in Changyi.
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significantly  in  the  CY  treatment  than  the  CYCK  treatment
(Fig. 8d).

PCoA of the relative abundance of soil fungi showed distinct
clustering  of  the  fungi  under  CY  treatment  at  different  quad-
rants from the CYCK treatment (Fig.  8b).  These results indicate
that  the CYCK treatment  significantly  changed the diversity  of
the  soil  fungi  community  compared  with  the  CY  treatment.
The  PC1  and  PC2  values  were  56.69%  and  17.16%,  explaining
73.85% of the fungal diversity difference.  Venn diagram analy-
sis  of  the  soil  OTU  level  revealed  significant  differences  in
fungal  microbial  species  between  the  two  treatments,  with
only 280 common microbial species (Fig. 8c). 

Co-occurrence networks of soil microbial communities
between the two groups

The influence of continuous cropping on soil microbial com-
munities  was  primarily  reflected  in  the  weakening  of  interac-
tions between microbial communities. The effect of continuous
cropping of X.  sorbifolium Bunge on soil  microbial  interactions
was  explored  by  constructing  a  microbial  co-occurrence
network  (Fig.  9).  Co-occurrence  network  analysis  showed  that
different  phyla  in  the  same  family  appeared  in  different  co-
occurrence  networks,  indicating  that  they  exhibit  different
relative  abundances  and  play  different  network  roles.  Co-
occurrence network analysis of soil bacteria demonstrated that
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Fig. 8    Effects of continuous cropping of X. sorbifolium Bunge on soil fungal community structure in CY area. (a) Relative abundance of fungi
under the two treatments; (b) PCoA plot showing the fungal distribution under the two treatments; (c) Venn diagram showing the distribution
of  fungal  OTU  species;  (d)  A  heat  map  showing  fungal  community  composition  in  the  two  groups;  (e)  Differences  in  the  fungal  horizontal
community between the two treatment groups. CY: Untreated soil in Changyi; CYCK: Continuous planting of X. sorbifolium Bunge in Changyi.
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Proteobacteria accounted for a higher proportion and played a
more  significant  role  in  the  interaction  network  (Fig.  9a).
Notably,  the  proportion  of  Proteobacteria  in  soil  increased
significantly  after  the  continuous  cropping  of X.  sorbifolium
Bunge,  and  the  interactions  across  the  bacterial  communities
at  the  phylum  levels  were  closer.  The  abundance  ratio  of
Gammaproteobacteria, Myxococcia, Chloroflexia,  and other bac-
teria  decreased  after  continuous  cropping,  with  decreased
interactions.  Co-occurrence  network  analysis  of  soil  fungi
demonstrated that Basidiomycetes was the most dominant soil
microbial phyla before and after the continuous cropping of X.
sorbifolium Bunge  (Fig.  9b).  However,  after  continuous  crop-
ping,  the  interactions  of  the  soil  fungal  communities  became
closer, the abundance of fungi increased, and the abundance of
Mortierellomycota decreased.  In  addition,  the  importance  of
Mortierellomycota in  the  interactions  of  soil  fungi  decreased
after continuous cropping. 

Redundancy Analysis (RDA) of soil microbial
community structure and soil physicochemical
properties after continuous cropping of X.
sorbifolium Bunge

Bacterial  RDA  showed  that  (Fig.  10a),  with  soil  physicoche-
mical  properties  as  influencing  factors,  RDA1  accounted  for
34.85%  of  the  explanatory  weight  ratio,  whereas  RDA2
accounted  for  26.10%.  Available  potassium  (AK)  had  a  greater
explanatory  weight  in  explaining  the  composition  of  the
bacterial community in the regular cropping soil used for plan-
ting X.  sorbifolium Bunge.  All  soil  physicochemical  properties
were  positively  correlated  with  the  soil  bacterial  community.
In  addition,  all  soil  physicochemical  properties  exhibited  a
positive  correlation  with  the  bacterial  community  structural
changes  under  the  regular  cropping  soil.  OTU4225,  OTU4751,
OTU5234,  and  OTU5023,  the  strains  used  to  demonstrate  the
changes  in  soil  physicochemical  properties,  showed  a  signifi-
cant  correlation  between  soil  physicochemical  properties  and
soil  bacterial  communities.  Fungal RDA demonstrated that the
explanatory  weight  ratio  of  RDA1  was  30.75%  and  RDA2
was  23.73%  (Fig.  10b).  The  findings  revealed  that  the  soil

physicochemical  properties  significantly  influenced  the  distri-
bution  of  soil  fungal  communities  under  continuous  cropping
of X. sorbifolium Bunge in the AQ and CY regions. Soil physico-
chemical properties were negatively correlated with soil fungal
microbial  communities.  OTU998,  OTU1086,  OTU1102,  OTU935,
and OTU1011 represented the response strains to the changes
in soil physicochemical properties. These strains showed signifi-
cant  correlation  between  soil  physicochemical  properties  and
soil fungal communities. 

The relationships between soil physicochemical
properties and strains representing soil microbial
community changes

Correlation  analysis  was  conducted  to  explore  the  relation-
ship  between  the  abundance  of  microorganisms  and  the
change in the soil physicochemical properties (Fig. 10c). Analy-
sis of the soil fungal community showed that the abundance of
Silicocozyma was  positively  correlated  with  the  level  of  avail-
able  potassium  (AK).  Conversely,  the  abundance  of Mortierella
was  negatively  correlated  with  ammonium  nitrogen  (NH4

+-N)
level.  The  abundance  of Neocosmospora was  positively  corre-
lated  with  soil  nitrate  nitrogen  (NO3

−-N)  content  and  organic
matter  (SOM)  amount.  Analysis  of  soil  bacterial  community
revealed  that  the  levels  of  ammonium  nitrogen,  NO3

−-N,  and
SOM were negatively correlated with the abundance of Pseudo-
hodoplanes and A4b. 

The relationships between soil indicator
microorganisms and plant biomass indicators

Correlation  analysis  was  conducted  to  explore  the  relation-
ship  between  the  core  microorganisms  and  plant  biomass
index.  Analysis  of  the  bacterial  microbial  community  revealed
that the abundance of Streptosporangium was significantly posi-
tively correlated with the biomass of X. sorbifolium Bunge in the
three locations (Fig. 11a). The relative abundance of Streptospo-
rangium was significantly correlated with the stem diameter of
X.  sorbifolium Bunge.  Correlation  analysis  of  the  fungal
microbial  community  demonstrated  that  the  abundance  of
Mortierella was  positively  correlated  with  the  biomass  of X.
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Fig.  9    Soil  microbial  OTU  co-occurrence  network  ((a)  bacteria,  (b)  fungi)  for  the  continuously  cropped X.  sorbifolium Bunge  based  on
Spearman's coefficient. Each point represents a genus, the color indicates the bacterial or fungal phylum, and the size of the point represents
the  relative  abundance.  T:  Untreated  soil;  CK:  Continuous  planting  of X.  sorbifolium Bunge.  Species  information  with  an  absolute  value  of
correlation coefficient greater than or equal to 0.6, p < 0.05 for the two treatment conditions is displayed.
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sorbifolium Bunge  and  positively  correlated  with  the  stem
diameter of X.  sorbifolium Bunge (Fig.  11b).  Conversely,  signifi-
cant negative correlations were observed between the relative
abundances  of Neocosmospora, Phialemoniopsis, Aspergillus,
and  the  biomass  of X.  sorbifolium Bunge  in  the  three  places.
Notably,  the  change  in  the  relative  abundance  of Neocosmo-
spora had  a  significantly  higher  influence  on  the  change  in X.
sorbifolium biomass.

Correlation  analysis  was  conducted  to  explore  the  relation-
ship  between  the  plant  height  in  July  and  the  abundance  of
Streptosporangium and Neocosmopora.  The  results  showed  a
significant negative correlation between the height of X. sorbi-
folium Bunge  and  the  abundance  of Neocosmospora,  with  a
correlation coefficient of −0.9979 (Fig. 11d). Conversely, a posi-
tive correlation was observed between Streptosporangium and
the  height  of X.  sorbifolium Bunge,  with  a  correlation  coeffi-
cient  of  0.9969,  indicating  a  positive  relationship  between
(Fig. 11c). 

Discussion

Successive  crop  planting  often  leads  to  the  occurrence  of
continuous cropping diseases,  which result  in weakened plant
growth, reduced nutrient absorption and decreased yield[34−35].
Long-term  single  monoculture  of  coffee  changes  the  soil  pH,
reduces the organic matter content, and significantly decreases
the  abundance  of  soil  bacteria  and  fungi,  affecting  coffee
production[36].  Continuous  monoculture  of  wheat,  corn,  and

soybeans  reduce organic  carbon and nitrogen contents  in  the
soil,  significantly  affecting  the  crop  yield[37].  Moreover,  long-
term  continuous  cropping  of  cotton  induces  significant
changes  in  the  soil  physicochemical  properties,  with  dysregu-
lated  levels  of  soil  nitrogen,  phosphorus,  and  potassium,  and
a  decrease  in  soil  enzyme  activity  within  a  short  period  (1  to
10  years),  significantly  affecting  crop  production[38].  In  this
study,  the continuous cropping of X.  sorbifolium Bunge signifi-
cantly  reduced  the  plant  height  and  stem  diameter  and  inhi-
bited the root activity  of  plant  seedlings.  The physicochemical
properties  of  various  soils  have  changed,  and  the  contents  of
available  nutrients  such  as  nitrate  nitrogen,  ammonium  nitro-
gen,  available  phosphorus,  and  available  potassium  have
decreased. The amount of nutrients directly available to plants
depends on the community structure and corresponding func-
tions of soil microorganisms. As the main source of plant nutri-
ents, soil microorganisms can effectively promote the turnover
of  soil  organic  matter[39].  Therefore,  due  to  the  decrease  of
available  nutrients  of  soil  plants,  the  growth  of X.  sorbifolia
Bunge  is  slowed  down  and  the  resistance  is  reduced,  which
leads to continuous cropping obstacles.

High-throughput sequencing provides qualitative and semi-
quantitative information on the composition and abundance of
the  soil  microbial  communities  and  reveals  more  taxonomic
groups of soil fungi compared to conventional methods[40]. The
present  study  revealed  that  continuous  cropping  of X.  sorbi-
folium Bunge leads to continuous cropping diseases, inhibiting
plant  growth.  Significant  differences  in  the  soil  microbial
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community structure were observed under the different plant-
ing  systems.  Analysis  of  16S  rRNA  gene  sequencing  data
demonstrated that  the planting sequence of  peanuts  changes
the  soil  microbial  community[19].  However,  studies  have  not
explored  the  effects  of  continuous  cropping  of X.  sorbifolium
Bunge on soil microbial community structure. Continuous crop-
ping  of  this  species  in  three  areas  significantly  decreased
the  relative  abundance  of Ascomycetes and Basidiomycetes
compared to the regular cropping soil. Conversely, the relative
abundance  of Mucor, Cladosporium,  and Glomus significantly
increased  after  continuous  cropping.  These  results  show  that,
at  the  phylum  level,  the  fungal  community  structure  is  similar
across different locations and soil types.

Changes  in  fungal  microbial  community  structure  in  plant
rhizosphere,  caused  by  fungal  pathogens,  are  the  main  chal-
lenge in  the  continuous  cropping of  various  plants.  For  exam-
ple, continuous cropping of peas leads to the occurrence of soil
fungi  and  oomycetes,  forming  a  pathogen  complex.  At  the
genus  level,  the  abundance  of  Ascomycota,  Basidiomycota,
Phoma, Podospora Pseudaleuria Veronaea in the rhizosphere of
diseased peas is correlated with plant morbidity[41].  Analysis of
successive poplar  planting demonstrated changes in the com-
position,  diversity,  and structure of  the soil  fungal  community.
In  addition,  the  abundance  of  pathogenic  fungi  was  signifi-
cantly  higher  after  successive  poplar  planting  compared  to
non-continuous  cropping  soil,  significantly  affecting  poplar
growth[42].  The  abundance  of Candida, Hypocrea,  and

Sistotrema increased significantly after  continuous cropping of
Andrographis paniculate. Moreover, the community structure of
root  fungi  changed  significantly  compared  to  non-continuous
cropping,  leading  to  a  decrease  in Andrographis paniculata
yield  and  challenges  in  continuous  cropping[43].  In  this  study,
the relative abundance of common soil fungi such as Fusarium,
Chaetomium and Pseudosclerotium changed  significantly  after
continuous  cropping  of X.  sorbifolia Bunge.  These  findings
imply that the instability of the rhizosphere fungal community
structure  caused  by  the  continuous  cropping  of X.  sorbifolia
Bunge  is  the  leading  cause  of  the  continuous  cropping  chal-
lenges of this plant.

The  relative  abundance  of  other  primary  pathogens  in  the
continuous  cropping soil  did  not  change.  Degens  et  al.  obser-
ved  a  significant  positive  correlation  between  the  abundance
of Phoma sp. in peas and the severity of diseases[44].  Moreover,
continuous cultivation of Panax  Notoginseng increases  the risk
of root infection by pathogenic bacteria. Previous findings indi-
cate  that Leotiomycetes, Cylindrocarpon, Fusarium,  and Myco-
centrospora are  potential  pathogens  that  prevent  the  conti-
nuous  cultivation  of Panax  notoginseng[45].  These  microorga-
nisms  are  obligate  pathogens,  so  they  are  dominant  in  roots
rather  than  inhabiting  the  soil,  leading  to  plant  diseases.  The
present  research results  are consistent  with findings from pre-
vious  research  that  an  increase  in Neocosmospora abundance
is  a  significant  factor  that  limits  the  continuous  cropping  of
X.  sorbifolium Bunge. Neocosmospora was  identified  as  the
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dominant  pathogenic  fungus  in  this  study.  This  fungus  typi-
cally inhabits soil, plant debris, living wood, or grass matrix and
is  occasionally  observed  in  water  and  air[46].  Consequently,  it
may  be  the  primary  pathogen  that  causes  continuous  crop-
ping diseases in X. sorbifolium Bunge farms.

The relative abundance of Operational Taxonomic Unit (OTU)
identified as Mortierella, Talaromyces,  and Solicoccozyma in the
continuously  cropped X.  sorbifolium Bunge  field  was  signifi-
cantly lower than in the control field. Moreover, the abundance
of Mortierella in the three study sites was negatively correlated
with  continuously  cropped X.  sorbifolium Bunge.  These  fungi
have  been  used  as  soil  biocontrol  strategies  for  bacteria.  Pre-
vious  findings  report  that Mortierella transforms  nutrients,
promotes crop growth, improves soil quality, and prevents soil
degradation[47]. Talaromyces produces  secondary  compounds
with  a  significant  broad-spectrum  antibacterial  activity  and  is
widely used in the agricultural industry[48]. Some species with a
low abundance, including Penicillium, Mucor,  and Burkholderia,
are  involved  in  nutrient  transformation  and  promoting  crop
growth  in  the  rhizosphere  of  continuously  cropped  tobacco
plants.  Notably,  these  species  are  negatively  correlated  with
the  relative  abundance  of  continuously  cropped  tobacco
pathogens[49].  Researchers inoculated rhizobia and endophytic
fungi  in  the  continuous  cropping  of Panax  notoginseng.  They
observed  increased  diversity  of Ascomycota, Zygomycota,  and
Basidiomycota,  subsequently  alleviating  the  challenges  asso-
ciated with the continuous cropping of this plant[45].

In this study, the bacterial community structure in the soil of
X.  sorbifolium Bunge  also  changed  substantially  after  conti-
nuous  cropping.  The  relative  abundances  of Bacillus, Blasto-
coccus, Solirurobacter, Dependentiae, Methylomirabilota,  and
Acidobacteriota were  negatively  correlated  with  continuous
cropping.  Conversely,  the relative abundances of Blastococcus,
Solirurobacter,  and Dependentiae increased under regular crop-
ping. Previous studies report that soil bacteria undergo signifi-
cant changes under continuous cropping[50].  Continuous crop-
ping of cotton leads to a decline in the abundance of beneficial
bacteria such as Actinomycetes, Acidobacteriota, Sessilebacteria,
and  nitrifying  bacteria  in  the  soil[51].  Dynamic  changes  are
observed in the abundance and diversity of beneficial bacteria
during  the  continuous  planting  of  peanuts.  These  findings
demonstrate  that  bacterial  populations,  especially  benefi-
cial  ones,  can  be  used  to  minimize  continuous  cropping
diseases[52].  Pearson  correlation  analysis  of  all  categories
showed that the abundances of Actinomycetes, Basidiomycetes,
Bacteroides, Verruca,  and fungi were negatively correlated with
the  disease  index  (DI)  of  vanilla  after  continuous  cropping[53].
These  findings  imply  a  decline  in  the  abundance  of  beneficial
microorganisms  may  occur  under  the  monoculture  of  conti-
nuous cropping of X. sorbifolium Bunge, ultimately reducing the
biological  inhibition  of  other  regular  soil  microorganisms  on
continuous cropping diseases.

In  summary,  the  results  of  this  study  show  that  the  conti-
nuous  monoculture  of X.  sorbifolium Bunge  leads  to  slow
growth, reduced vitality, and low yield, resulting in continuous
cropping diseases. Among them, the soil microbial community
changed,  and  the  relative  abundance  of  pathogenic  fungi
including Neocosmospora and Alternaria is the main reason for
the continuous cropping obstacle of X. sorbifolia.  Hence, conti-
nuous cropping diseases can be mitigated by changing the soil
microbial community structure. These findings provide insights

for  formulating  strategies  for  the  prevention  and  control  of
replanting diseases. Soil fumigation and disinfection should be
adopted to reduce fungal pathogens, optimize microbial com-
munity structure, and prevent continuous cropping diseases. 
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