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Abstract
Anthocyanins are an important quality trait in horticultural crops. Transcription factors (TFs) play critical regulatory roles in the biosynthesis of anthocyanins.

Many TFs are well-known as transcriptional activators of anthocyanin biosynthesis in horticultural crops, whereas TFs suppressing anthocyanin synthesis

have  recently  been  acknowledged.  Here  we  focus  on  recent  advances  on  the  roles  and  mechanisms  of  TFs  that  negatively  regulate  anthocyanin

biosynthesis in horticultural crops. We discuss the TFs repressing the function of the activation complexes, the TFs regulating repressors, and the repression

motifs,  as  well  as  posttranscriptional  regulations,  post-translation  modifications,  and  methylation  of  TFs  to  repress  anthocyanin  biosynthesis.  This

information will provide insights into the future utilization of these TFs to improve the quality of horticultural crops.
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Introduction

Anthocyanins are a subgroup of flavonoids with a distinctive C3-
C6-C3 carbon structure found widely in plants[1,2].  Anthocyanins,  as
water-soluble  natural  pigments,  confer  red,  blue,  and  purple  hues
found  in  fruits,  flowers,  and  vegetables[3−5].  Anthocyanins  exert
multiple functions in plants. The vivid colors of anthocyanins attract
animals  for  pollination  and  seed  dispersal[6].  Anthocyanins  protect
plants  from  ultraviolet  B  damage  and  enhance  the  tolerance  of
plants under abiotic and biotic stress[7,8]. Furthermore, anthocyanin-
rich  foods  are  also  beneficial  for  humans  as  antioxidants  to  reduce
the  onset  of  various  chronic  diseases,  such  as  cancer,  obesity,  and
cardiovascular disease[9,10].  Therefore, there is substantial interest in
improving  the  contents  of  anthocyanins  with  enhanced  color  and
visual appeal, a significant quality trait for horticultural crops[5].

Anthocyanins  are  produced  through  the  phenylpropanoid  path-
way on the surface of the endoplasmic reticulum and accumulate in
cell vacuoles of fruits, flowers, and leaves[11−16]. Anthocyanin biosyn-
thetic pathway is highly conserved and well-studied in plants[17,18]. A
large number of the anthocyanin biosynthetic pathway genes from
enormous horticultural  crops have been identified[19,20].  The antho-
cyanin  biosynthetic  pathway  genes  (ABPs)  include  phenylalanine
ammonia  lyase  (PAL),  chalcone  synthase  (CHS),  chalcone  isomerase
(CHI), flavanone 3-hydroxylase (F3H), flavonoid 3′-hydroxylase (F3′H),
dihydroflavonol 4-reductase (DFR), anthocyanin synthase (ANS), and
flavonoid 3-O-glucosyltransferase (UFGT)[19−21].  The transcript abun-
dances of these structural  genes are modulated by numerous tran-
scription factors  (TFs).  Many TFs  that  promote anthocyanin biosyn-
thesis have been identified in horticulture crops[22−32]. Among these
TFs,  MYB  proteins  are  the  most  studied  TFs[19,22,26,28,32].  MYB  inter-
acts with bHLH and WD40 to form the well-known MYB-bHLH-WD40
(MBW)  complexes  that  centrally  regulate  the  anthocyanin  biosyn-
thesis pathway[19,22,26,28,32]. Numerous MYBs and other TFs or regula-
tory  factors  activate  the  expression  of  ABPs  via  direct  or  indirect
regulation  of  MBW  complexes[19,22,26,28,32].  Besides  the  MBW

complexes,  other  activation  complexes  including  MBW-WRKY26[33],
BBX18-HY5[34],  and  ERF3-MYB114-bHLH3[35] have  also  been  docu-
mented to promote the expression of  ABPs or  MYBs.  In  contrast  to
these  positive  regulatory  TFs  on  anthocyanin  biosynthesis,  an
increasing  number  of  TFs  involved  in  repressing  anthocyanin  bio-
synthesis  have recently  been identified[16,36−38].  This  review focuses
on  TFs  repressing  the  function  of  the  activation  complexes,  TFs
regulating repressors, and the repression motifs, as well as posttran-
scriptional regulations, post-translation modifications, and methyla-
tion of TFs to repress anthocyanin biosynthesis in fruits, flowers, and
vegetables. 

TFs that interfere with the MBW and other
activation complexes to repress anthocyanin
biosynthesis

Transcription  factors  play  important  roles  in  the  regulation  of
anthocyanin biosynthesis. Among these TFs, R2R3-MYB, basic-helix-
loop-helix  (bHLH),  and  WD40  form  a  critical  transcriptional  activa-
tion  complex  (MBW)  that  plays  a  central  role  in  modulating  the
expression  of  anthocyanin  structural  genes[39].  A  large  number  of
studies  have  focused  on  the  positive  regulation  of  anthocyanin
production by this highly conserved MBW complex[2−4,6,7]. Neverthe-
less,  TFs  that  repress  anthocyanin  biosynthesis,  or  repressors  of
anthocyanin  biosynthesis,  have also  been discovered[16,36−38],  espe-
cially in recent years.

Numerous  studies  reveal  that  the  main  machinery  for  the  TFs
repressing anthocyanin biosynthesis is obstructing the formation of
MBW  activation  complexes  (Fig.  1).  Peach  PpMYB18  regulates  the
biosynthesis of anthocyanins and proanthocyanidins by competing
with MYB activators PpMYBPA1 and PpMYB10.1 to bind to PpbHLH3
or  PpbHLH33[40].  Pear  PyMYB140  competes  with  anthocyanin-
activated  MYB  to  bind  to  bHLH  and  hamper  the  formation  of  the
MBW  complex,  repressing  anthocyanin  biosynthesis  in  red  pear[41].
Strawberry  FaMYB1  acts  as  a  negative  regulator  of  anthocyanin

REVIEW
 

© The Author(s)
www.maxapress.com/frures

www.maxapress.com

mailto:jxzhang@syau.edu.cn
https://doi.org/10.48130/frures-0024-0042
https://doi.org/10.48130/frures-0024-0042
https://doi.org/10.48130/frures-0024-0042
https://doi.org/10.48130/frures-0024-0042
https://doi.org/10.48130/frures-0024-0042
mailto:jxzhang@syau.edu.cn
https://doi.org/10.48130/frures-0024-0042
https://doi.org/10.48130/frures-0024-0042
https://doi.org/10.48130/frures-0024-0042
https://doi.org/10.48130/frures-0024-0042
https://doi.org/10.48130/frures-0024-0042
http://www.maxapress.com/frures
http://www.maxapress.com


biosynthesis  by  competing  with  MYB  activators  for  binding  to
bHLH[42].  Similar  to PpMYB18,  PyMYB140,  and FaMYB1,  many other
MYB  TFs  inhibiting  anthocyanin  biosynthesis  have  also  been
identified,  including  R2R3-type  PhMYB27  from  Petunia  (Petunia
hybrida)[43],  R2R3-type  SlMYB7  from  tomato  (Solanum
lycopersicum)[44],  R3-MYB  SlMYBATV  form  tomato[45−47],  R2R3-type
MdMYB308  and  MdMYB15L  from  apple  (Malus  domestica)[48,49],
R2R3-type  PpMYB17-20  from  peach  (Prunus  persica)[50],  R2R3-type
MYBC2-L1  and  MYBC2-L3  from  grape  (Vitis  vinifera)[51],  R2R3-type
FhMYB27  and  R3-type  FhMYBx  from Freesia  hybrida[52],  R3-type
BrMYBL2.1  from  Chinese  cabbage  (Brassica  rapa L.)[53],  R2R3-type
TgMYB4  from  tulips  (Tulipa  gesneriana L.)[54],  and  DcMYB2  from
carnation  (Dianthus  caryophyllus L.)[55].  Most  of  them  exert  their
function roles by interacting with the bHLH of the MBW complexes
via  the  bHLH  binding  domain  to  compete  binding  to  bHLH  and
interfere  with  the  MBW  complex  formation  to  repress  anthocyanin
biosynthesis.

Besides obstructing the formation of functional MBW complexes,
TFs are also identified by suppressing the assembly of other activa-
tion  complexes  to  repress  anthocyanin  biosynthesis  (Fig.  1)[34,35].
Pear PpBBX18 interacts with PpHY5 to form a PpBBX18-PpHY5 acti-
vation complex to activate the expression of PpMYB10 and promote
anthocyanin  biosynthesis.  However,  when  PpBBX21  interacts  with
PpBBX18  and  PpHY5,  it  destabilizes  the  PpBBX18-PpHY5  complex
and  represses  anthocyanin  biosynthesis[34].  Moreover,  pear
PyERF4.1/PyERF4.2  interact  with  PyERF3  to  destabilize  the  PyERF3-
PyMYB114-PybHLH3 activation complex,  decreasing the expression
of  the  anthocyanin  biosynthetic  gene PyANS and  anthocyanin
biosynthesis[35].  In  addition,  some  repressors  also  directly  inhibit
ABPs  (Fig.  1)[42−44].  Thus,  TFs  disrupting  the  formation  of  the  other
activation  complexes  and  directly  inhibiting  ABPs  also  represent
important  mechanisms  for  negatively  regulating  anthocyanin
biosynthesis in horticulture crops (Fig. 1). 

Regulation of repressors by other TFs to
dynamically regulate anthocyanin biosynthesis

The  recent  advance  in  anthocyanin  research  also  identifies  TFs
that  activate  the  expression  of  repressors  to  interfere  with  the
formation  of  MBW  complexes  or  other  activation  complexes,  thus
fine-tuning  anthocyanin  biosynthesis  (Fig.  1).  For  example,  PyERF3
interacts  with  PyMYB114  and  PybHLH3  to  promote  anthocyanin
biosynthesis  in  red-skinned  pears.  Interestingly,  PyMYB114
enhances  the  transcript  levels  of  anthocyanin  repressors  PyERF4.1/
PyERF4.2  to  destabilize  the  PyERF3-PyMYB114-PybHLH3  complex,
resulting  in  a  reduction  of  anthocyanin  biosynthesis[35].  In  pears,  a
feedback regulation loop forms to balance the excessive biosynthe-
sis  of  anthocyanin  in  red-skinned  pears[35].  Activator-type  R2R3-
MYBs  (PpMYB10.1  and  PpMYBPA18)  enhance  the  expression  of  a
repressor-type  R2R3-MYB  gene PpMYB18, and  then  PpMYB18
competes with PpMYB10.1 and PpMYBPA1 for binding to PpbHLH3
and  PpbHLH33  to  fine-tune  anthocyanin  and  proanthocyanidin
biosynthesis  in  peach[40].  Tomato  R2R3-MYB  TF  (SlAN2-like)  pro-
motes  the  expression  of  anthocyanin  suppressor SlMYBATV,  and
then  SlMYBATV  disturbs  the  formation  of  the  MBW  complex  to
affect  the  biosynthesis  of  anthocyanin[43].  Citrus  CsRuby1  and
CsMYB3 are activators and repressors of ABPs, respectively. CsRuby1
promotes  the  expression  of CsMYB3 by  promoter  binding,  while
CsMYB3  inhibits  the  activity  of  the  CsRuby1-CsbHLH1  complex.
Therefore,  CsRuby1  and  CsMYB3  form  an  'activator-and-repressor'
loop to modulate anthocyanin biosynthesis in citrus[56]. Moreover, in
Freesia flowers, the transcriptions of two types of suppressors, R2R3-
type  FhMYB27  and  R3-type  FhMYBx,  are  activated  by  the  MBW
complex to fine-tune anthocyanin biosynthesis[52].

These studies show that the repressors of anthocyanin biosynthe-
sis  not  only  inhibit  the  activation  complexes  but  are  also  activated
by  the  other  TFs  to  balance  the  anthocyanin  biosynthesis  (Fig.  1).
This kind of regulatory loop has been identified in numerous horti-
cultural  crops[35,40,41,43,56].  Furthermore,  the  hierarchical  and  feed-
back  regulatory  loops  also  show sophisticated anthocyanin  regula-
tory networks in horticultural crops. 

Repression motifs in TFs that repress
anthocyanin biosynthesis

Repression  motifs  are  important  regulatory  elements  of  TFs  in
inhibiting  the  synthesis  of  anthocyanins[16,36−38].  Several  repression
motifs  in  TFs  that  repress  anthocyanin  biosynthesis  have  been
identified.  They  include  the  bHLH-binding  motif  ([D/E]Lx2[R/K]x
3Lx6Lx3R), C1 motif (LIsrGIDPxT/SHRxI/L), the ERF-associated amphi-
philic  repression (EAR)  motifs  (LxLxL,  DLNxP,  and DLNxxP),  and the
TLLLFR motif (Fig. 2)[40,57−59].

In  peach,  PpMYB18  harbors  a  bHLH  binding  motif  which  makes
PpMYB18  compete  with  PpMYB10.1  and  PpMYBPA1  to  bind  to
bHLH, thereby passively repressing the biosynthesis of anthocyanin
and proanthocyanidin[40].  The C1 motif was also identified in peach
PpMYB18[40],  although the repression mechanism of the C1 motif is
unknown  (Fig.  2).  The  C2  repression  motif,  also  named  the  EAR
motif,  is  present  in  a  wide  range  of  repressors  from  different  TF
families[60]. The ability of the EAR repression motif to change a tran-
scriptional  activator  to  a  suppressor  has  been  broadly  investigated
through  chimeric  protein  fusion  assays[61,62].  ERF4.1/4.2  containing
an  EAR  repression  motif  inhibits  anthocyanin  biosynthesis  in  red-
skinned  pears[35].  Subgroup  4  R2R3-CstMYB16  with  EAR  repression
motif  interacts  with  CstPIF4  to  negatively  control  anthocyanin
biosynthesis  in Crocus[63].  Mutations  or  deletions  of  EAR  motif  in
peach  PpMYB18[40],  petunia  PhMYB27[43],  grape  VvMYB114[64],  and
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Fig. 1    The regulatory network of transcription factors (TFs) repressing
anthocyanin  biosynthesis  in  horticultural  crops.  The  repressors  affect
the formation of MBW(①)/other activation complexes (②)  to indirectly
repress  anthocyanin  biosynthetic  pathway  genes  (ABPs)  or  directly
inhibit  ABPs  (③).  TFs  activating  anthocyanin  and  MYB-bHLH-WD40
(MBW) complex can also induce the expression of repressors to balance
the  biosynthesis  of  anthocyanin  in  horticulture  crops.  The  activation
complexes  of  anthocyanin  mainly  include  MBW-WRKY26[33] in  grape,
BBX18-HY5[34] in pear, and ERF3-MYB114-bHLH3[55] in pear.
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apple  MdMYB16[65] all  lead to  the decrease or  the loss  of  repressor
activity,  thereby  resulting  in  the  biosynthesis  of  anthocyanins.  It
appears that the C1 and EAR motifs, especially the EAR motif, are key
motifs for the repressive activity of TFs.

In  addition to  the C1/EAR motifs,  the  TLLLFR motif  is  considered
another  key  repression  motif,  although  the  studies  on  this  repres-
sion motif  are less  than those of  the EAR motif.  The TLLLFR repres-
sion motif is often present at the very end of TFs[66]. TLLLFR motif is
identified in VvMYBC2-L1 and VvMYBC2-L3 in grape[51],  AtMYBL2 in
Arabidopsis[66],  MaMYB4  in  banana[67],  PtMYB182  in  poplar[68].
Notably,  the  VvMYBC2-L1,  VvMYBC2-L3,  and  MaMYB4  contain  C1,
EAR,  and  TLLLFR  repression  motifs  and  repress  the  biosynthesis  of
anthocyanin in grapes and bananas, respectively[51,67]. However, the
key  repression  motifs  of  VvMYBC2-L1,  VvMYBC2-L3,  and  MaMYB4
responsible  for  the  repressor  activity  are  unclear[51].  AtMYBL2  is  a
key inhibitor of anthocyanin biosynthesis in Arabidopsis. Deletion of
the  TLLLFR  motif  results  in  the  loss  of  the  repression  function  of
AtMYBL2[66].  The  poplar  subgroup  4  R2R3-PtMYB182  contains  the
bHLH-binding motif, C1, EAR, and TLLLFR motif, but the bHLH-bind-
ing  motif  instead  of  C1,  EAR,  and  TLLLFR  motif  is  the  key  motif
for  negatively  regulating  the  biosynthesis  of  anthocyanins  and
proanthocyanins[68].  These  studies  indicate  varied  ability  of  the
TLLLFF  repression  motif  in  different  plants  and  the  role  of  the
TLLLFR motif needs to be further analyzed in various plants.

The C1, EAR, and TLLLFR motifs are crucial for the repressive acti-
vities  of  TFs  to  regulate  anthocyanin  biosynthesis[40,59,66−68].  How-
ever,  the  repression  mechanisms  of  TFs  differ  greatly  among  diffe-
rent  plant  species  and  the  molecular  basis  of  C1  and  TLLLFR-
mediated suppression is largely unknown. To date, only the mecha-
nism  of  the  EAR  repression  motif  has  been  revealed.  Current
evidence  indicates  that  the  TFs  containing  EAR  repression  motif
recruit  the  transcriptional  co-repressors  TOPLESS/TOPLESS-related
(TPL/TPRs),  which  interact  with  histone  deacetylases  (HDAs)  to
repress  gene  expression  of  target  locus[58,69−72].  Pear  PpERF9  inte-
racts  with  PpTPL1  via  the  EAR  motif.  The  PpERF9-PpTPL1  complex
induces  histone  deacetylation  of  PpRAP2.4  and  PpMYB114  to

reduce the expression of PpRAP2.4 and PpMYB114, thus repressing
anthocyanin biosynthesis[73]. Under low red-to-far-red light, chrysan-
themum CmMYB4 interacts with CmTPL via the EAR motif,  and the
CmMYB4-CmTPL  complex  deacetylates  histone  H3  of  the  antho-
cyanin  activator  CmbHLH2,  resulting  in  reduction  of  anthocyanin
biosynthesis in the petals[74].

Notably,  similar  regulation  (TFs  with  EAR  motif  forming  TF-
TPL/TPRs-HDAs  complexes)  has  also  been  identified  in  horticulture
crops  to  affect  fruit  ripening  and  petal  size.  SlERF.F12  and  MdERF4
interact  with  SlTPL2  and  MdTPL4  through  the  EAR  motif  to  recruit
SlHDA1/3  and  MdHDA19  to  inhibit  transcription  of  ripening  genes
in tomato and apple, respectively[75,76]. RhMYB73 recruits RhTPL and
RhHDA19 to  form a  repression complex  to  regulate  cytokinin  cata-
bolism  in  rose,  thus  modulating  petal  size[77].  Interestingly,  banana
MaERF11  directly  interacts  with  MaHDA1  to  inhibit  banana  fruit
ripening[78], and Arabidopsis MYB96 directly interacts with HDA15 to
inhibit negative modulators of ABA signaling and this process does
not  need  TPL/TPRs  as  mediators  to  form  the  TFs-TPL/TPRs-HDAs
repression  complex[79].  Whether  TFs  directly  interact  with  HDAs  to
repress anthocyanin biosynthesis  needs more investigation (Fig.  2).
Nevertheless,  these  studies  reveal  that  TFs  harboring  EAR  motif
modulate  transcriptional  repression through histone deacetylation.
Interestingly, some studies show TPL/TPRs also interact with histone
methylation-linked  chromatin  remodelers,  containing  SUV39H-like
protein  (SUVH3)  and PICKLE (PKL)  CHD3/Mi-2-like  chromatin  remo-
deler-related protein (PKR1)[58,80]. Thus, it will be interesting to inves-
tigate whether TFs with EAR motifs utilize various chromatin-remo-
deling mechanisms to inhibit the expression of anthocyanin-related
genes (Fig. 2).

A  previous  study  indicates  that  the  TLLLFR  motif,  similar  to  the
EAR motif, is the interactor of TPL/TPRs[58]. This leads us to speculate
whether  the TLLLFR motif  also has  the same inhibitory  mechanism
as  the  EAR  motif,  or  whether  the  TLLLFR  motif  interacts  with
unknown  negative  regulators  to  induce  repression  of  their  target
genes. Another question regarding the repression motifs is whether
there  are  other  unidentified  repression  motifs  and  what  are  the
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Fig. 2    Repression motifs and the molecular mechanisms of TFs with repression motifs to repress anthocyanin biosynthesis in horticultural crops. The TFs
with bHLH-binding motifs repress anthocyanin biosynthesis by interfering with the formation of MBW complexes. The repression mechanism of the TFs
with  the  C1  motif  is  unknown.  The  TFs  with  EAR  motif  forming  TF-TPL/TPRs-HDAs  complexes  to  inhibit  anthocyanin  biosynthesis  have  been
identified[73,74].  In addition, TFs with EAR motif may recruit histone methylation-linked chromatin remodelers (SUVH3 and PKR1) or unknown chromatin
remodelers[58,80] to inhibit anthocyanin biosynthesis. The TFs with TLLLFR motif may interact with TPL/TPRs[58] or unknown negative regulators to inhibit
anthocyanin  biosynthesis.  The  function  of  unknown  repression  motifs  of  TFs  in  horticultural  crops  awaits  further  investigation.  MBW  is  the  complex
formed by R2R3-MYB, bHLH, and WD40; TPL/TPRs are transcriptional corepressor TOPLESS/TOPLESS-related proteins; HDAs are histone deacetylases.
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function  of  these  unknown  repression  motifs  in  horticultural  crops
(Fig.  2).  For  example,  subgroup1  R2R3-MdMYB306-like  inhibits
anthocyanin  synthesis  in  apple  but  lacks  the  C1,  EAR,  and  TLLLFR
repression motifs and the motif that induces the repressive function
is still unknown[59]. 

Posttranscriptional regulation of TFs negatively
regulates anthocyanin biosynthesis

In  addition  to  transcriptional  regulation,  many  repressors  are
regulated  at  the  posttranscriptional  level  to  negatively  regulate
anthocyanin  biosynthesis.  Posttranscriptional  regulation  of  gene
expression  includes  alternative  splicing  of  pre-mRNAs  and  nonco-
ding  RNAs  (ncRNAs)  in  plants.  Alternative  splicing  regulates  gene
expression  and  produces  greater  transcriptome  diversity,  which
plays  crucial  roles  in  plant  development  and responses  to  environ-
mental  cues[81−83].  Alternative  splicing  majorly  includes  exon  skip-
ping,  intron retention,  alternative  5'  splicing,  alternative  3'  splicing,
alternative 5' and 3' splicing, and mutually exclusive exon[83]. Among
them, intron retention is the most common type of alternative spli-
cing  in  plants[83].  With  the  advance  of  the  high-throughput  RNA
sequencing  technique,  global  changes  in  alternative  splicing  of
diverse  horticulture  crops  have  been  identified[84−90].  Compared
with  the Aft (Anthocyanin  fruit)  tomato,  alternative  splicing  of  an
R2R3 MYB activator  is  responsible for  the wild tomato species with
low  contents  of  anthocyanins[91].  In  chrysanthemum,  the  cultivar
'OhBlang'  generates  different  flower  colors  at  different  tempera-
tures,  which  is  related  to  the  alternative  splicing  of  CmbHLH2  to
affect  its  interaction  with  CmMYB6  to  reduce  anthocyanin
synthesis[92]. These studies document the role of alternative splicing
in reducing the biosynthesis of anthocyanins in horticulture crops.

The  ncRNAs  provide  another  major  mechanism  of  posttranscrip-
tional  regulation  of  gene  expression  in  plants.  ncRNAs  can  be
divided  into  small  interfering  RNA  (siRNA),  microRNA  (miRNA),
phased siRNA (phasiRNA), long noncoding RNA (lncRNA), and circu-
lar  RNA[93].  The  siRNA  is  generated  from  double-stranded  RNA  and
plays  a  significant  role  in  RNA  silencing[94].  The  bicolor  petunia
petals result from the accumulation of siRNAs of CHS-A gene. siRNAs
of CHS-A are  highly  accumulated  in  the  white  part  of  the  petals  of
bicolor  petunias  and  lead  to  undetectable  expression  of CHS-A[94].
RNAi-mediated silencing of strawberry FaMYB1, a repressor of antho-
cyanin biosynthesis,  produces a notable increase in the contents of
anthocyanin[95]. The miRNAs along with their targets play significant
regulatory  roles  in  various  biological  processes  by  affecting  gene
expression[93,96−98].  Pear  PySPL  interacts  with  the  MBW  complex  to
repress  anthocyanin  biosynthesis.  Under  bagged  and  debagged
treatment,  PymiR156a regulates the cleavage of PySPL9 and blocks
the  formation  of  MBW  complex  by  titrating  MYB10  and  MYB114
proteins,  leading to  increased anthocyanin  biosynthesis  in  the  skin
of  pear[99].  miR858  in  tomato  negatively  regulates  anthocyanin
biosynthesis  by  suppressing  the  transcripts  level  of  anthocyanin
activator SlMYB7-like[100] and miR858 in the skin of apple inhibits the
biosynthesis  of  proanthocyanidin  by  repressing  the  expression  of
MdMYB9/11/12[101].  In  kiwifruit,  miR828  and  its  phased  small  RNA
AcTAS4-D4(−)  target  and  cleave  MYB110  instead  of  MYB10  (two
MYB  activators  on  anthocyanin  production)  to  decrease  antho-
cyanin  biosynthesis,  while  miR156b,  miR160a,  miR171d,  and
miR394a  target  the  repressive  regulators  of  MYB10  and  indirectly
modulate  the  activity  of  MYB10  to  repress  anthocyanin
biosynthesis[102].  The  above  studies  indicate  that  miRNAs  usually
negatively  modulate  the  transcript  abundances  by  transcript  clea-
vage.  However,  translational  repression  by  miRNA  in  anthocyanin
biosynthesis remains largely unclear (Fig. 3)[93].

In  contrast  to  miRNAs,  lncRNAs  have  lower  sequence  conserva-
tion  in  different  species[103].  lncRNAs  interact  with  different
molecules  to  regulate  their  target  genes  at  transcriptional,  transla-
tional,  or  epigenetic  levels[93].  lncRNAs  also  play  crucial  roles  in
anthocyanin  biosynthesis  in  horticulture  crops.  Strawberry  lncRNA
FRILAI acts  as  the  target  mimics  of  miR397,  thus  protecting AC11a
encoding  a  putative  laccase-11-like  protein  from  cleavage  by
miR397  to  induce  anthocyanin  biosynthesis[104].  Apple  lncRNAs
MdLNC499  and  MdLNC610  regulate  light-induced  anthocyanin
biosynthesis  by  promoting  the  expression  of MdERF109 and
MdACO1,  respectively[105,106].  The  long  noncoding  RNA LINC15957
promotes the biosynthesis of anthocyanin in radish, while the regu-
latory  mechanism  of LINC15957 on  anthocyanin  biosynthesis  is
unknown[107].  The  lncRNAs  repressing  the  biosynthesis  of  antho-
cyanins  in  horticulture  crops  await  further  identification.  Additio-
nally,  numerous  circRNAs  have  been  identified  in  horticulture
crops[108−113].  However,  it  is  not  well  known  how  circular  RNA-
mediated regulation of TFs affects the biosynthesis of anthocyanins
(Fig. 3). 

Post-translation modifications of TFs to repress
anthocyanin biosynthesis

Post-translational modifications include ubiquitination, phospho-
rylation,  SUMOylation,  and  acetylation,  which  play  crucial  roles  in
various biological processes in plants[114]. Ubiquitination is a univer-
sal  posttranslational  modification  in  plants,  which  controls  the
degradation of  target factors.  Ubiquitination plays an essential  role
in plant biology[115].  Apple MdMYB1, a key factor promoting antho-
cyanin  biosynthesis[116,117],  interacts  with  the  ubiquitin  E3  ligase
CONSTITUTIVE PHOTOMORPHOGENIC1 (MdCOP1) and RING-type E3
ubiquitin ligase (MdMIEL1), respectively, and is degraded by ubiqui-
tin-mediated  degradation,  thus  resulting  in  inhibiting  anthocyanin
biosynthesis[116,117].  Similarly,  apple  MdMYB308L  interacts  with
MdMIEL1 in the absence of cold stress[118], and pear PpbHLH64 and
PpMYB10  interact  with  PpCOP1  under  dark  conditions[119],  thereby
repressing anthocyanin biosynthesis. In addition, apple MdSINA1(an
E3 ubiquitin  ligase)  interacts  with  phosphate  starvation response 1
(MdPHR1) mediating ubiquitination and degradation of MdPHR1 to
inhibit  anthocyanin  biosynthesis  under  the  inorganic  phosphate
sufficient  condition[120].  Besides  MdCOP1,  MdMIEL1,  and  MdSINA1,
apple bric-à-brac,  tramtrack and broad complex 2 (MdBTB2) affects
the  stability  of  TFs  (MdMYB9,  MdBBX22,  MdMYB1,  MdTCP46,
MdWRKY40,  MdbZIP44,  and  MdERF38)  to  suppress  anthocyanin
biosynthesis[121−128].  BTB  proteins  are  a  link  between  substrate
proteins and CUL3-RING E3 ligase, which is crucial  for the ubiquitin
process[121−123].  Tomato  SlCSN5-2  interacts  with  SlBBX20  which  is  a
transcript  activator  of  anthocyanin  biosynthesis  to  increase  the
ubiquitination  of  SlBBX20  and  accelerate  the  degradation  of
SlBBX20,  thereby  reducing  the  biosynthesis  of  anthocyanins[129].
Thus, ubiquitination of the positive TFs in anthocyanin biosynthesis
exerts  a  crucial  role  in  negatively  regulating  anthocyanin
biosynthesis.

Protein  phosphorylation  is  central  to  the  regulation  of  protein
stability, protein activity, protein-protein interactions, and subcellu-
lar localization[103,130].  Low temperature negatively regulates antho-
cyanin  biosynthesis  in  strawberry  fruit  via  activating  FvMAPK3-
mediated  phosphorylation  of  FvMYB10  and  FvCHS,  resulting  in  a
reduction  in  the  expression  of  FvMYB10  and  the  degradation  of
FvCHS[131]. In Arabidopsis, AtSnRK1 inhibits the expression of MYB75
at  the  transcriptional  level  to  suppress  anthocyanin  biosynthesis.
AtSnRK1  also  phosphorylates  all  the  members  of  MBW  complexes
(MYB75,  bHLH2,  and  TTG1)  and  results  in  dissociation  of  the
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complexes,  MYB75 degradation,  and TTG1 moving from nucleus to
cytoplasm, thereby inhibiting anthocyanin biosynthesis[132]. In addi-
tion,  many studies  indicate  phosphorylation of  TFs  positively  regu-
lates  anthocyanin  biosynthesis  via  increasing  TFs  stability,  thus
promoting  anthocyanin  biosynthesis[130,133−136].  These  studies  sug-
gest  protein  phosphorylation  on  protein  function  is  complicated.
Phosphorylation  of  TFs  causes  degradation  of  TFs,  regulating  the
expression  of  TFs,  dissociation  of  complexes,  and  translocation  of
TFs to regulate the function of TFs.

Small  ubiquitin-like  modifier  (SUMO)  widely  exists  in  plants  and
SUMOylation  influences  various  significant  biological  processes  in
plants,  including  abiotic  and  biotic  stresses,  plant  development,
plant  nutrition,  and  secondary  metabolism[137].  SUMOylation  is  a
significant regulator in gene transcription via controlling the stabil-
ity,  activity,  or  subcellular  localization  of  TFs  in  plants[22,136,138].  In
apple, MdSIZ1, a small ubiquitin-like modifier E3 ligase, SUMOylates
and stabilizes MdMYB1 to facilitate anthocyanin biosynthesis under
low-temperature conditions[139].  MdMYB2 binds to the promoter of
MdSIZ1  under  low-temperature  conditions,  thus  enhancing  the
anthocyanin  biosynthesis  via  SUMOylation  of  MdMYB1  by  interac-
ting  with  MdSIZ[140].  In  Arabidopsis,  AtSIZ1  also  SUMOylates
AtMYB75  to  improve  its  stability,  resulting  in  increasing  antho-
cyanin  biosynthesis  under  high  light  conditions[141].  In  addition,
SUMOylation  substrates  contain  activators  and  suppressors  and
SUMO  conjugations  are  likely  to  promote  or  repress  the  activity  of
substrates[138].  The  SUMOylation  of  TFs  negatively  modulating
anthocyanin production needs to be explored further and the iden-
tification  of  other  substrates  SUMOylated  by  SIZ1  will  enrich  our
understanding of SUMOylation on anthocyanin biosynthesis.

Histone  acetylation  also  exerts  important  regulatory  roles  in
anthocyanin  biosynthesis  in  horticulture  crops[73,74],  although  the
regulation  of  histone  acetylation  directly  on  TFs  repressing  antho-
cyanin  biosynthesis  is  still  unclear  (Fig.  4).  Intriguingly,  hydrogen
sulfide  (H2S)  suppresses  anthocyanin  biosynthesis  in  red-skinned

pears  by  persulfidation  of  MYB10  at  Cys218  and  Cys194[142],
suggesting  that  additional  novel  modifications  of  TFs  repressing
anthocyanin production await identification in horticulture crops.

Collectively,  post-translation  modifications  of  TFs  have  crucial
roles  in  regulating  anthocyanin  biosynthesis  and  the  mechanisms
share  a  certain  degree  of  similarity  across  different  horticulture
crops.  Diverse  post-translation  modifications  including  ubiquitina-
tion,  phosphorylation,  SUMOylation,  and  acetylation  may  work
cooperatively or competitively on the same TFs, thus regulating the
activity  or  stability  of  the  target  proteins  (Fig.  4).  Most  studies
focused on single TF mediated by post-translation modifications in
horticulture crops and the genome-wide post-translation modifica-
tions remain to be investigated in further studies. 

Methylation of TFs to repress anthocyanin
biosynthesis

DNA methylation is a crucial epigenetic modification required for
the  silencing  of  transposable  elements,  gene  regulation,  genomic
imprinting,  and  genome  stability.  DNA  methylation  occurs  in  cyto-
sine  residues  of  gene  sequences  and  transposable  elements:  CG,
CHG,  and  CHH  (H  =  A,  T,  or  C).  Increased  DNA  methylation  of  the
genes  and  transposable  elements  generally  down-regulates  gene
expression[143−145].  DNA methylation of TFs controlling anthocyanin
biosynthesis  is  intensely  associated  with  color  changes  in  some
horticulture crops[103,136,144,146].

The differences in anthocyanin biosynthesis between red-fleshed
and white-fleshed radish result  from the altered methylation levels
of transposon in the promoter of RsMYB1. The hypermethylation of
transposon in the promoter of RsMYB1 of white-fleshed radish leads
to  a  significant  reduction in  the  expression of  RsMYB1,  thus  inhibi-
ting  the  biosynthesis  of  anthocyanins  in  white-fleshed  radish[147].
The yellow-skin  apple  from somatic  mutation of  its  red-skin  parent
is  related  to  a  highly  methylated  level  of  the  promoter  of
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MdMYB10[148]. Similarly, the methylation patterns of the promoter of
MdMYB10 between red and green stripes apple[144], apple MdMYB1
under  bagging  and  bag  removal  treatment[149,150],  crabapple
McMYB10  under  phosphorus  deficiency  conditions[151],  and
PcMYB10 of green-skinned sports pear[152] are highly related to the
biosynthesis of anthocyanin.  The fruit  skin color of the 'Zaosu' pear
and  its  bud  sport  having  red  or  red-striped  skin  color  is  related  to
the  methylation  of  the  PyMYB10  promoter[153].  However,  another
study shows the methylation levels of pear PyMYB10 have no signifi-
cant  difference  between  bagging  and  bag  removal  treatment[154].
These  studies  suggest  the  methylation  levels  of  PyMYB10  induced
by light  and bud sport  in  pear  are  different  and the  reason for  the
difference awaits  further  investigation.  The methylation of  the pro-
moter  of  grape  VvMYBA1  is  connected  with  the  anthocyanin
content  of  grape  skin  and  high  methylation  level  confers  reduced
anthocyanin  biosynthesis[155].  Under  cold  stress,  the  same  sweet
orange  fruits  have  high-pigmented  and  low-pigmented  segments,
which is associated with methylation levels of the promoter of DFR
and  Ruby  (an  R2R3  MYB  transcriptional  activator  of  anthocyanin
biosynthesis)[156].  Lower  methylation  levels  in  the  promoter  of
PpbHLH3  and  some  ABPs  are  associated  with  increased  antho-
cyanin biosynthesis in the fruit of peach stored at 16 °C[157]. In straw-
berry,  DNA  methylation  inhibitor  treatment  makes  turning  red
earlier  compared  with  the  control.  Further  analysis  indicates  genes
related  to  RNA-directed  DNA  methylation  are  decreased  during
strawberry  fruit  maturation[158].  In  chrysanthemums,  CmMYB6  is  a
positive  regulator  of  anthocyanin[159],  and  the  formation  of  yellow
flowers  is  closely  related  to  higher  methylation  levels  of  the
CmMYB6  promoter  compared  with  the  pink  flowers[160].  Most  DNA

methylation  studies  have  focused  on  fruit  crops  and  how  DNA
methylation  controls  anthocyanin  production  in  vegetable  crops  is
largely unknown[143]. 

Conclusions and perspective

Anthocyanins  offer  an attractive  coloration to  horticultural  crops
and  play  crucial  roles  in  plants  responding  to  different  environ-
ments.  Although  tremendous  advances  have  recently  been  achie-
ved in identifying new TFs repressing anthocyanin biosynthesis and
uncovering their molecular basis, many studies utilize heterologous
plant  systems  and  transient  expression  systems.  Therefore,  it  is
critical to investigate and verify the function and molecular mecha-
nisms using more direct homologous systems in the future. In addi-
tion, anthocyanin biosynthesis in horticultural crops is under sophis-
ticated  regulatory  control  in  response  to  environmental  changes.
How to utilize gene editing and other technologies to improve the
anthocyanin content  of  horticultural  crops by modifying the activi-
ties  of  repressors  remains  challenging.  Many  unresolved  questions
on TFs repressing anthocyanin production need to be further inves-
tigated. The conservation of TFs repressing anthocyanin production
among  different  plant  species  needs  to  be  analyzed.  Furthermore,
the mechanism of circular RNA-mediated regulation, the repressing
mechanism of the EAR and TLLLFR motifs,  and the identification of
unknown  repression  motifs  are  awaiting  further  exploration.  Novel
regulatory controls  of  TFs repressing anthocyanin production need
to  be  investigated.  The  interaction  between  TFs  repressing  antho-
cyanin production and environmental signals and the sophisticated
regulations  in  horticultural  crops  (when  to  start  it  and  when  to
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remove  it)  is  still  not  well-known.  Answers  to  these  questions  will
enrich the understanding of the regulatory controls of anthocyanin
biosynthesis  and  lay  a  solid  foundation  for  the  designed  quality
improvement of horticultural crops. 
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