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Abstract
Genome sequencing and assemblies  offer  fundamental  data  for  comprehensively  exploring genomic  variation among individuals.  Genomic  variation in
genic regions is of particular interest. However, identifying homologous genes or sequences and DNA variation, including structural variation, from multiple
genomes is a tedious process. Here we present the software package Homotools which includes multiple modules for retrieval of best-hit homologs, variant
discovery, variant annotation, and visualization of structural comparison. These modules facilitate all these processes and leverage genomic resources for
single-gene studies. The tools can be used for any species as long as assembled genomes and their genome annotations are available. In a case study using
Homotools, it is shown that tolerance to the herbicide nicosulfuron is associated with multiple independent genomic variants found in various maize inbred
lines, including structural variants due to insertions of transposable elements. The results from Homotools generate valuable testable hypotheses for further
examination. Scripts of all modules are publicly available in GitHub (liu3zhenlab/homotools).
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Introduction

With  the  advance  of  high-throughput  long-read  sequencing  and  the
development  of  effective  genome  assembly  algorithms,  the  commu-
nity of genomics has constructed a wealth of high-continuity genome
assemblies, frequently in the form of chromosome-level pseudomole-
cules,  of  individuals  from  a  wide  variety  of  species[1,2].  Such  genome
assemblies  provide  fundamental  resources  for  the  identification  of
genomic  variation,  including  single  nucleotide  polymorphisms,  small
insertion and deletion, and structural variation[3,4].  Genomic computa-
tional tools have been developed to facilitate genome alignments and
variant  discovery.  For  example,  NUCMER  and  minimap2  are  two
effective  sequence  aligners  that  could  handle  alignments  between
genome  sequences[5,6].  For  alignments  between  complex  genomes
with large structure variation, AnchorWave was designed for improved
alignment  accuracy[7].  Genomic  alignment  results  can  be  further
processed  to  identify  genomic  polymorphisms[8].  Such  analyses  are
frequently  conducted  for  global  genomic  comparisons  although  the
process is computationally intensive.

Genomic  variation  in  and  around  genes  is  of  particular  interest.
Without  knowing  homologous  genes  across  genomes,  extracting
data related to single genes and their homologs from the genome-
wide comparative  results  among multiple  genomes is  not  straight-
forward.  In  a  scenario  where  genes  of  all  genomes  are  well  anno-
tated,  genic  comparison  could  be  directly  conducted  by  aligning
sequences of gene models at the DNA and protein levels. However,
complete and precise gene annotation is a daunting task, and alter-
native splicing of a gene complicates such analysis. In addition, with
substantial  resources  of  genome  assemblies,  multiple  rounds  of
sequence  retrieval,  homolog  search,  variant  identification,  and
annotation  are  needed  for  examining  a  gene  of  interest  and  its
homologs.  The  process  also  typically  involves  manual  examination
and judgment. Therefore, a handy computational pipeline is needed
for an efficient process. An online tool, BridgeCereal, represents one
such  effort  to  discover  structural  variation  among  multiple
genomes[9].  Homotools,  including  a  suite  of  scripts  was  developed
to  ease  sequence  retrieval  of  homologs  and  comparisons  among

them  from  multiple  genomes.  Comprehensive  genomic  variation
can be uncovered, annotated, and visualized by Homotools. 

Materials and methods
 

Genomic data
Maize  genomes  of  28  inbred  lines,  including  A188,  B73,  Mo17,  and
other  25  parents  of  the  Nested  Association  Mapping  (NAM)  popu-
lation,  were used for  analysis[10−12].  All  data  can be downloaded from
https://download.maizegdb.org. 

Development of Homotools
The majority of  scripts were developed using Shell  scripting and Perl.
Plotting  was  implemented  through  R.  Bioinformatics  tools  frequently
used include Bedtools[13], BLAST+[14,15], and NUCMER[5]. 

Plant materials and herbicide treatment
Maize inbred lines were provided by the North Central Regional Plant
Introduction Unit, USDA, USA. Ten seeds per inbred line were sown in
10.8  cm  ×  10.8  cm  ×  9.5  cm  pots.  The  plants  were  cultivated  in
greenhouse  conditions  under  28/21  °C  day/night  (d/n)  temperature
and a  16/8 h d/n photoperiod,  supplemented with 600 μmol m−2 s−1

illumination  provided  by  sodium  vapor  lamps.  Seedlings  at  the  3−5
leaf  stage  (2- to  3-weeks  old)  were  used  for  herbicide  treatment.  At
least  two  seedlings  from  each  inbred  line  were  sprayed  with
nicosulfuron (Accent Q®, DuPont, Wilmington, USA) at a dose of 137 g
active  ingredient  per  hectare.  Herbicide  application  was  performed
using  a  bench-track  sprayer  (DeVries  Manufacturing,  Hollandale,  MN,
USA)  equipped  with  a  flat-fan  nozzle  (8002  TeeJet® tip,  Spraying
Systems, Wheaton, IL, USA), calibrated to deliver 187 liters per hectare
at  a  speed  of  4.85  km  h−1 at  207  kPa  pressure[16].  Two  weeks  after
treatment, the plants were phenotyped and photographed. 

Results
 

Overview of the Homotools package
Homotools  includes  five  major  modules,  geneseq,  homocomp,
homograph, homostack, and homomine (Fig. 1). Module geneseq can
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extract gene sequences, including sequences of genes, transcripts, and
coding  regions  based  on  a  query  gene  name  and  related  databases.
Module  homocomp  implements  homologous  searching  and  visuali-
zation of the comparison between the query and the target sequences.
A  homologous  gene  could  be  found  if  a  related  gene  annotation  is
supplied.  The  alignment  between  the  two  homologous  sequences  is
plotted.  Module  homostack  can  stack  input  sequences  and  visualize
alignments between two neighboring sequences. Module homograph
visualizes alignments of  multiple homologous sequences,  determines
the number of haplotypes, and views the haplotype alignment graph.
All scripts are publicly available in GitHub (liu3zhenlab/homotools).

These modules can be combined.  For example,  module geneseq
is typically run first to extract genomic and related sequences for an
input  gene  from  a  reference  genome,  with  which  module  homo-
comp  can  be  run  multiple  times  to  extract  homologs  from  other
genomes.  For  an  easier  implementation,  module  homomine  was
developed  to  combine  geneseq  and  homocomp  for  sequence
retrieval,  homologous search,  and annotation of  variants,  including
nucleotide  substitutions,  small  insertion,  small  deletion,  and  large
structural  variation.  In  this  manuscript,  example  codes  to  illustrate
the usages of these modules are provided (Supplemental File 1). 

An application example of geneseq, homocomp, and
homostack
Here,  homologous  genes  of  Zm00001eb001720  (knox1 encoding  a
homeobox protein)  from the inbred line B73 in the other four inbred
lines A188, CML333, Ki3, and P39 were examined[17]. First, the genomic
sequence  of  the  gene  and  the  annotation  were  extracted  from  the
B73  reference  genome  through  module  geneseq.  The  lengths  of  se-
quences flanking the gene can be set based on the purpose. Through
implementing homocomp, the knox1 sequence was then used to find
a homologous sequence in other  genomes.  The alignments  between
the knox1 sequence  and  a  homologous  sequence  from  the  A188
genome  are  visualized  in  an  alignment  connection  format  (alnplot)
(Fig. 2a) and in a dotplot view (Fig. 2b). From the alnplot output figure,
both structural variation and polymorphic levels of alignments can be
informed.

In  module  homocomp,  BLAST+  is  used  for  an  initial  alignment
search  for  the  query  sequence  in  a  targeted  genome[14].  The
genomic  region  with  the  highest  alignment  score  (bit  score)  with
the  query  is  anchored  and  then  the  region  is  expanded  from  both
sides  to  identify  the  alignment  start  and  end  sites.  Alignments  in
repetitive  regions  could  be  excluded  for  the  identification  of  the
highest-score alignment if the corresponding parameter is specified.
The sequence in  the  alignment  range identified  by  BLAST+ is  then

compared with the query sequence using NUCMER, which identifies
pairs of sequence blocks and reports their similarities[5].

Multiple  sequences  retrieved  using  homocomp  from  the  other
genomes  of  the  four  inbred  lines,  along  with  the  query  sequence,
can  be  used  for  sequential  sequence  comparisons via module
homostack  (Fig.  2c).  The  order  of  these  sequences  is  based  on  the
input order of these sequences. Sequence regions of any sequences
can  be  highlighted  with  additional  annotation  inputs.  The  gene
annotation,  including  exon  and  coding  regions,  of knox1 is  color-
highlighted (Fig. 2c). From the homostack result, P39 and A188 alle-
les are similar; Ki3 and CML333 alleles are structurally similar but the
identity is relatively low; and three presence and absence variations
(PAV)  were  observed  among  these  five  alleles  from  the  five  maize
inbred lines. 

Homograph for clustering and sequence block
analysis
To  provide  detailed  polymorphisms  among  multiple  sequences,  the
module homograph was developed. The homograph algorithm starts
with  multiple  sequence  alignment  (MSA)  with  input  DNA  sequences
(or  taxa),  including  a  reference  sequence.  Three  MSA  software
packages are available: Clustal Omega[18],  MUSCLE[19],  or MAFFT[20].  All
sequences  are  clustered  with  cd-hit  based  on  the  user-defined
clustering  criteria[21].  The  non-gap  consensus  sequences  of  MSA  are
then split into blocks at all transitions between a gap and a nucleotide
base  at  the  end  of  an  alignment.  In  each  block,  the  number  of
polymorphisms  and  the  number  of  haplotypes  are  determined.  An
informative  block  graph  is  plotted  to  represent  MSA  (Fig.  3a).  Blocks
are  color-coded  to  indicate  the  sequence  conservation  and  the
polymorphic  levels  as  compared  to  the  consensus  sequence.  The
haplotype  sequence  of  each  block  is  named  and  stored  in  a  FASTA
output  (Fig.  3b)  and the genotyping result  per  block in  each taxon is
output (Fig. 3c).

Using  sequences  from  the  previous knox1 case,  the  five
sequences were grouped into three clusters using the default crite-
ria:  c1,  c2,  and c3. The alleles of A188 and P39 were grouped to c1,
the CML333 and Ki3  alleles  were grouped to c2,  and the B73 allele
was in c3. Consistently with the homostack alignment output, three
PAV were observed among these five alleles. As compared with the
homostack  output,  more  details  related  to  DNA  substitution  poly-
morphisms  and  small  insertions  or  deletions  (INDELs)  are  provided
in  the  homograph  output  (Fig.  3d).  Briefly,  DNA  substitution  poly-
morphisms  spread  in  most  regions.  Only  a  few  small  regions  are
conserved  across  all  five  sequences,  and  interestingly,  most  of  the
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Fig.  1    Overview  of  Homotools.  Module  geneseq  extracts  sequences  and  related  information  from  databases  for  a  gene  (e.g.,  gene  X);  homocomp
implements homolog searching for gene X and visualizes the comparison of two homologs;  homograph determines haplotypes of multiple homologs,
and displays an alignment graph of a set of homologs;  and homostack stacks input sequences and shows alignments;  Module homomine is a pipeline
implementing modules geneseq and homocomp for homologous searching and annotating all variants between the query sequence and the resulting
homolog.
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conserved  sequences  are  not  in  coding  regions.  No  INDELs  were
observed in the protein-coding regions. 

The integrated pipeline homomine discovers and
annotates genomic variants
An  integrated  module,  homomine,  was  developed  to  simplify  the
procedure  for  sequence  retrieval,  homologous  searching,  variant
calling, and annotation of variants, including structural variants. For the
example  of  Zm00001eb001720,  the  input  gene  name  was  used  to
retrieve genomic DNA sequence data and the gene annotation in the
query  genome  (e.g.,  B73)  first.  The  homologous  region  and  the
homologous  gene  will  then  be  identified  in  a  target  genome  (e.g.,
A188). In the result, alignments between two homologous regions will
be visualized (Fig. 4a),  and the coordinates of detailed alignments are
provided (Fig. 4b).  To discover variants,  including large insertions and
deletions,  a  script  to  convert  alignments  using  an  MSA  algorithm  to
genomic variants was developed. All genomic variants were annotated
using  SNPEff[22].  In  particular,  genomic  variants  annotated  to  cause
moderate  or  high  impacts  on  the  gene  function  were  extracted  and
reported in  the  outputs  (Fig.  4c).  These  genomic  variants,  particularly
high-impact variants, likely contribute to form a functionally divergent
allele. The homomine outputs are extracted to produce a HTML report
for overviewing the major results (Supplemental Dataset 1).

To  facilitate  the  application  of  homomine,  a  web-based  Shiny
application  for  homologous  retrieval  and  variant  annotation  for
maize  genes  from  the  B73  reference  genome  was  developed.  The
webpage  (129.130.89.83:3838/maizeHM)  is  publicly  available.  Each
B73  gene  can  be  input  to  find  homologs  in  27  other  maize
genomes[10−12].  A  HTML  report  is  generated  for  each  of  the  27
genomes. 

Genomic variation of nicosulfuron tolerance gene in
multiple genomes
The  maize  gene, nsf1 or ben1, encoding  a  cytochrome  P450
monooxygenase  (CYP81A9)  confers  tolerance  to  a  herbicide

nicosulfuron[23−26].  The  B73  allele  (Zm00001eb214410)  is  a  functional
allele that contributes to the tolerance (Fig. 5a). Nineteen maize inbred
lines  were  tested,  including  B73,  for  their  sensitivity  to  nicosulfuron
(Supplemental Table S1). Three sensitive lines were identified, namely,
A188,  CML228,  and  Il14H  (Fig.  5b−d).  Homomine  analysis  using  the
B73 allele as a query found that the A188 allele contains an insertion of
392 bp at the end of the first exon and that the CML228 allele contains
an  insertion  of  5512  bp  in  the  middle  of  the  same  exon  (Fig.  5e, 5f).
Both  insertions  were  associated  with  the Gypsy retrotransposon  and
predicted  to  cause  shifts  of  the  open  reading  frames,  presumably
disrupting the gene function of herbicide tolerance. As compared with
the  B73  allele,  multiple  structural  variation  events  were  found  in  the
Il14H  allele,  including  a  120-bp  insertion,  a  297-bp  insertion  in  the
upstream of the transcription start site, and the absence of the partial
3’ untranslated regions (3'UTR) (Fig. 5g, Supplemental Table S2). These
structural  variants  can  also  be  found  between  at  least  a  nicosulfuron
tolerance  inbred  line  and  B73,  indicating  they  may  not  be  the  causal
variants  causing  the  loss  of  herbicide  tolerance  (Supplemental  Table
S2).  Two  variants  of  Il14H  exhibiting  moderate  impacts  on  the  gene
function are not in any of 16 herbicide tolerant lines: a SNP causing a
missense  alteration  and  a  6-bp  insertion  introducing  a  2-amino-acid
inframe insertion (Supplemental  Table  S2).  One of  the two variants  is
likely  the  causal  variant  for  herbicide  sensitivity.  In  this  case,  through
using homomine,  pangenome data  were  leveraged for  exploring the
genomic  variation  of  genic  regions,  facilitating  the  association  of  all
types of genomic variants with phenotypic data. 

Discussion

The  development  of  Homotools  was  motivated  by  the  tedious
procedure  for  retrieving  sequence  data  and  related  information  of  a
gene  from  a  reference  genome  and  homologous  genes  from  other
genomes.  Multiple  modules  have  been  developed  to  simplify
identification and comparison of  homologs.  The tools  are  particularly
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useful  for  single-gene  genomic  studies  of  a  species  with  multiple
genome  sequences.  Genomic  databases  with  standard  formats  (e.g.,
FASTA and General  Transfer Format,  GTF) are required. Therefore,  the
tools  can  be  used  for  genomic  analysis  for  any  species.  With
Homotools, pangenomic data related to an input gene can be readily
collected and related genomic variation, including structural variation,
can  be  accurately  identified  and  annotated.  In  addition,  publishable
high-resolution  figures  are  output  from  Homotools.  Specifically,

module  geneseq  can  extract  sequences  of  genomic  DNA,  coding
regions,  proteins,  and  related  transposable  elements  as  long  as
databases are supplied. Modules homocomp and homomine facilitate
homologous retrieval, structural comparison, and variant identification.
Modules  homostack  and  homograph  graphically  visualize  sequential
alignments  and  multiple  sequence  alignments,  respectively.  Because
many  software  dependencies  are  required,  guidance  for  creating  a
Conda environment is provided.
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Modules  of  Homotools  could  be  further  improved  to  enhance
computational  effectiveness  and  efficiency.  First,  the  mapping  of  a
query gene to a genome and identification of homologous genes in
the homocomp and homomine modules could fail due to repetitive
sequences.  Approximately  3%  of  genes  are  subject  to  this  issue  in
highly  repetitive  maize  genomes.  The  issue  may  be  mitigated  by
specifying  the  target  chromosome  and/or  a  rough  target  region.
Alternatively,  a  sophisticated  algorithm  such  as  the  algorithm  of
CHOICE (Clustering HSPs for Ortholog Identification via Coordinates
and Equivalence),  for  identifying homologous regions in a genome
could be adapted in the future[9].  Second, the variant annotation in
module homomine relies on the software SNPEff, which groups vari-
ants into high, moderate, low, and modifier impacts[22]. Most moder-
ate-impacted  variants  are  missense  polymorphisms  for  which  the
functional impacts can be further quantified using other annotation
tools  including  artificial  intelligence  (AI)  based  approaches  devel-
oped  to  assess  the  functional  impacts  of  missense
polymorphisms[27,28].  Third,  homostack  performs  alignments  and
plotting  based  on  the  order  of  DNA  sequences  that  users  input.
Users  may  be  uncertain  about  the  order  to  input.  An  algorithm

could be added to enable automatic ordering by determining pair-
wise similarities of input sequences. Fourth, homologous sequences
of  a  gene  collected  using  Homotools  from  pangenomes  could  be
used  to  build  a  pangenome  graph  of  genic  sequences[29].  Module
homograph  visualizing  alignments  of  MSA  is  capable  of  tackling
simple structural variations such as insertion and deletion. Inversion
and  translocation  would  be  better  represented  in  more  complex
graphical  structures[30].  In  addition,  the  development  of  algorithms
aiding  in  hypothesizing  evolutionary  trajectories,  events  of  muta-
tion and recombination among homologous genes would be highly
valuable.

In summary, it has been shown that Homotools can be useful for
readily  identifying  best-hit  homologous  genes  and  genomic  poly-
morphisms at the gene level. An online application has been devel-
oped that is tailored for the maize community, with the potential to
extend  similar  platforms  to  a  wide  range  of  species.  As  the  Homo-
tools  package  continues  to  be  refined  and  enhanced  to  ensure
greater  reliability  and  efficiency,  community  feedback  will  play  a
vital  role for  future improvement.  We look forward to collaborative
efforts to further advance the utility of this tool. 
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Fig.  4    Partial  outputs  from  module  homomine.  (a)  Homomine  searches  homologous  sequences  of  a  query  gene  Zm00001eb001720  in  a  targeted
genome  (A188).  The  flanking  1  kb  on  the  5’ end  and  500  bp  on  the  3’ end  are  included.  Homomine  identifies  the  matching  region  that  harbors
Zm00056a000187 in the A188 genome. Light and dark blue in gene structures represent untranslated exon regions and coding regions, respectively. (b)
In the homomine output, detailed alignments between the two homologs are provided. (c) The homomine output lists variants identified between the
two homologs, including structural variation. Variants are annotated and moderate- and high-impacted variants are highlighted in the output. The table
shows the annotation of variants with a high impact.
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Fig. 5    Phenotypic results of nicosulfuron treatments and allelic comparisons.  (a)−(d) Maize plants with nicosulfuron treatment at a dose of 137 gram
active ingredient per hectare (right) and a mock treatment (left). Bar = 10 cm. (e)−(g) The structural comparison between each allele of A188, CML228, and
Il14H with  the  B73 allele  of  gene Zm00001eb214410.  Light  and dark  blue  in  gene structures  represent  untranslated exon regions  and coding regions,
respectively.
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